
Calculus 2
Lia Vas

Parametric Curves

In the past, we mostly worked with curves in the form y = f(x). However, this format does not
encompass all the curves one encounters in applications. For example, consider the circle x2+y2 = a2.
Solving for y does not give you one but two functions y = ±

√
a2 − x2 and the implicit equation

x2 + y2 = a2 may not be the appropriate format in many cases. This example indicates the need for
another approach to representations of curves.

Assume that the variables x and y are given as functions of a new parameter t as

x = x(t) and y = y(t)

In this case the points (x, y) = (x(t), y(t)) consti-
tute the graph of a parametric curve.

Careful: don’t think of the equations x = x(t) and y = y(t) as the equations of two object
as they represent a single curve: the first equation describes the x-coordinate and the second the
y-coordinate on the given curve.

If a ≤ t ≤ b, the points (x(a), y(a)) and (x(b), y(b)) on the parametric curve x = x(t), y = y(t)
are called the initial and the terminal point respectively.

The following are some of the advantages of this approach.

1. It provides a good physical interpretation: the position (x, y) depends on the time t. It also
allows a direct generalization to three dimensions when position of point (x, y, z) depends on
time t (more about this in Calculus 3).

2. It enables one to consider orientation of a curve i.e. the direction of movement when t
increases. One can also reparametrize a curve to change the orientation.

3. Some important cases of implicit curves can be represented parametrically.

For example, circle x2 + y2 = a2 can be
parametrized by

x = a cos t and y = a sin t.

In this parametrization t corresponds to the
angle between the position vector of the point
(x, y) and the positive part of x-axis. Note
that cos t = x

a
⇒ a cos t = x and sin t = y

a
⇒

a sin t = y.

1



Also note that the parametric equations x = a cos t and y = a sin t satisfy the implicit equation
x2 + y2 = a2 since (a cos t)2 + (a sin t2) = a2 cos2 t+ a2 sin2 t = a2(cos2 t+ sin2 t) = a2.

The circle of radius a centered at (x0, y0) can be parametrized as

x = x0 + a cos t and y = y0 + a sin t with 0 ≤ t ≤ 2π.

Note that these equations satisfy the implicit equation (x− x0)2 + (y − y0)2 = a2.
To graph a parametric curve on your calculator, go to Mode and switch from Func to Par.

This will switch your calculator to the parametric mode. In this mode, you can enter both x and y
equations when pressing Y= key. Use key X,T,θ,n to display the variable t when needed.

Note also that the standard window on your calculator is set to be 0 ≤ t ≤ 2π. So, in cases
when you want to see the graph for negative t values you have to manually edit the window (ZOOM
Standard will give you the same standard t-interval [0, 2π]). The command ZOOM Fit may display
window set to note the limiting behavior and that make some other features of the curve (e.g. a
loop) not visible.

The derivative of a parametric curve. The slope of the tangent to the parametric curve
x = x(t), y = y(t) represents the rate of change dy

dx
at a point. This rate can be computed as

dy

dx
=
dy/dt

dx/dt
=
y′(t)

x′(t)
.

The second derivative can be obtained by differentiating the first derivative as follows

d2y

dx2
=
d
(
dy
dx

)
dx

=

d
dt

(
dy
dx

)
dx/dt

.

To find the line tangent to the curve x = x(t), y = y(t) at t = t0 note that this line passes the

point (x(t0), y(t0)) and has the slope m = y′(t0)
x′(t0)

.

Recall that a horizontal tangent corresponds to dy
dx

= 0 ⇒ dy = y′(t)dt = 0 and the vertical

tangent corresponds to dy
dx

not being defined. In most cases you will be able to find it by setting the
denominator dx equal to zero. Thus dx = x′(t)dt = 0.

The area enclosed by a parametric curve. To compute the area enclosed by the parametric
curve x = x(t), y = y(t) on interval t ∈ [t1, t2] is

A =
∫ b

a
y dx = ±

∫ t2

t1
y x′ dt

The sign may be negative depending on the orientation. If the curve is traversed one way when
t is increasing and the other way when x is increasing, that may cause the negative to appear. To
avoid the confusion with the sign, you can compute the integral and take the absolute value of
your answer.

The arc length of the parametric curve x = x(t) and y = y(t) on interval t ∈ [t1, t2] can be
computed by integrating the length element ds from t1 to t2. The length element ds on a sufficiently
small interval can be approximated by the hypotenuse of a triangle with sides dx and dy. Thus

ds2 = dx2 + dy2 ⇒ ds =
√
dx2 + dy2 =

√
(x′dt)2 + (y′dt)2 =

√
((x′)2 + (y′)2)dt2 =

√
(x′)2 + (y′)2 dt

and so

L =
∫ t2

t1

√
(x′(t))2 + (y′(t))2dt
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Careful: the bounds are t-bounds, not the x-bounds.
The surface area of the surface of revolution of the parametric curve x = x(t) and y = y(t) for

t1 ≤ t ≤ t2.

a) For the revolution about x-axis, integrate the surface area element dS which can be approxi-
mated as the product of the circumference 2πy of the circle with radius y and the height that

is given by the arc length element ds. Since ds is
√

(x′)2 + (y′)2dt, the formula that computes
the surface area is

Sx =
∫ t2

t1
2πy

√
(x′)2 + (y′)2dt.

b) For the revolution about y-axis, the surface element dS can be approximated as the product

of 2πx and the arc length element ds =
√

(x′)2 + (y′)2dt. Thus,

Sy =
∫ t2

t1
2πx

√
(x′)2 + (y′)2dt.

Practice Problems.

1. Sketch the curve and indicate the direction in which the curve is traced as the parameter
increases (you can use TRACE key to see that). Then eliminate the parameter to find a
Cartesian equation of the curve (i.e. y = y(x) format).

(a) x = −4t+ 4, y = 2t+ 5, 0 ≤ t ≤ 2. (b) x = t2, y = 6− 3t.

(c) x = t2, y = 6− 3t, 0 ≤ t ≤ 2. (d) x = et, y = e−t.

(e) x = 2 + 2 cos t, y = 2 sin t, 0 ≤ t ≤ π. (f) x = 2 + 2 cos t, y = 2 sin t, 0 ≤ t ≤ 3π.

2. Find the first and second derivatives. Then find an equation of the tangent to the curve at the
point corresponding to the given value of parameter t.

(a) x = t− t3, y = 2− 4t, t = 1. (b) x = et, y = e−t, t = 0.

3. Find an equation of the tangent to the curve at the given point.

(a) x = t2, y = 6− 3t, (9, 15). (b) x = 2 + 2 cos t, y = 2 sin t, (2,−2).

4. Find the points on the given curve where tangent is horizontal and vertical.

(a) x = t2, y = t3 − 3t. (b) x = cos t, y = cos t sin t.
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5. Find the point of self-intersection and find the equations of the two tangents at that point.

(a) x = t2, y = t3 − 3t. (b) x = cos t, y = cos t sin t.

6. Find the area bounded by the given curve(s).

(a) x = t2, y = t3 − 3t. (b) x = cos t, y = cos t sin t.

(c) x = sin t, y = cos2 t sin t and x-axis. (d) x = t− 1
t
, y = t+ 1

t
, and y = 2.5.

7. Find the length of the curve.

(a) x = t3, y = t2 for 0 ≤ t ≤ 4.

(b) x = 2 + 2 cos t, y = 2 sin t from (4, 0) to (0, 0).

(c) x = 1 + e−t, y = t2, −2 ≤ t ≤ 2. Use the Left-Right Sums program to approximate the
value of the integral computing the length to the first two digits.

(d) x = ln t, y = e−t, 1 ≤ t ≤ 2. Use the Left-Right Sums program to approximate the
value of the integral computing the length to the first two digits.

8. Find the length of the loop of the given curve. Use the Left-Right Sums program with 100
steps to approximate the integral.

(a) x = t2, y = t3 − 3t. (b) x = 3t− t3, y = t2.

9. Find the area of the surface obtained by rotating the given curve about the specified line.

(a) x = t3, y = t2, 0 ≤ t ≤ 1, about x-axis.

(b) x = 2 + 2 cos t, y = 2 sin t, from (4, 0) to (0,0) about x-axis.

(c) x = 3t2, y = 2t3, from (0,0) to (3,2), about y-axis.

(d) x = t + t3, y = t − 1
t2
, 1 ≤ t ≤ 2, about x-axis. Use the Left-Right Sums program to

approximate the value of the integral computing the surface area to the first two digits.

(e) x = t + t3, y = t − 1
t2
, 1 ≤ t ≤ 2, about y-axis. Average the Left and the Right Sums

with 100 steps to approximate the value of the integral computing the surface area.

Solutions.

1. (a) Graph x = −4t + 4, y = 2t + 5 and note that the graph is a line. When t = 0, x =
−4(0)+4 = 4 and y = 2(0)+5 = 5. When t = 2, x = −4(2)+4 = −4 and y = 2(2)+5 = 9.
So, this is a line segment from (4,5) to (-4, 9). The Cartesian equation of this line can be
obtained by solving the first equation for t (get t = x−4

−4 ) and plugging that in the second

equation. Obtain y = 2x−4−4 + 5 = −1
2
x + 7. Note that when t is increasing from 0 to 2,

x is decreasing from 4 to -4. So, the positive direction of t corresponds to the negative
direction of x.

(b) Graph x = t2, y = 6−3t and note that this is a parabola with vertex on y-axis. The curve
is traversed so that the y-values decrease when t-values increase. Solving the first equation
for x gives you t = ±

√
x. Plugging that in the second equation yields y = 6∓ 3

√
x.
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(c) This is the same curve as in part (b). When t = 0, x = 02 = 0 and y = 6 − 3(0) = 6.
When t = 2, x = 22 = 4 and y = 6 − 3(2) = 0. So, this is the part of the parabola from
(b) from (0,6) to (4,0).

(d) x = et ⇒ t = lnx (note that x = et is positive for every t). Plug that in y-equation to
get y = e− lnx = elnx

−1
= x−1. So, this is the hyperbola y = 1

x
for x > 0. The curve is

traversed so that the x-values increase and y-values decrease when t-values increase.

(e) x = 2 + 2 cos t and y = 2 sin t is the circle of radius 2 centered at (2,0). The Cartesian
equation of this circle is (x− 2)2 + y2 = 4. The curve is traversed counter-clockwise which
is the positive direction. When t = 0, x = 2 + 2 cos(0) = 2 + 2 = 4 and y = 2 sin(0) = 0.
When t = π, x = 2 + 2 cos(π) = 2− 2 = 0 and y = 2 sin π = 0. So, it is the upper half of
the circle traversed in the positive direction.

(f) This is the same circle as in part (e). When t = 0, x = 4 and y = 0. When t = 3π,
x = 2 + 2 cos(3π) = 2 − 2 = 0 and y = 2 sin 3π = 0. This indicates one full rotation and
one half of the full rotation from (4,0) to (0,0).

2. (a) x = t − t3, y = 2 − 4t ⇒ dx = (1 − 3t2)dt and dy = −4dt. So, dy
dx

= −4
1−3t2 . When

t = 1, x = 1 − 13 = 0 and y = 2 − 4(1) = −2. So, the tangent passes (0,-2). The
slope of the tangent is obtained by plugging t = 1 in the derivative dy

dx
= −4

1−3t2 . So

m = −4
1−3(1)2 = −4

−2 = 2. The equation of the tangent is y = 2x− 2.

The second derivative can be obtained as derivative of the first derivative dy
dx

= −4
1−3t2

divided by dx = (1− 3t2)dt. So, d2y
dx2

= −4(−1)(1−3t2)−2(−6t)
1−3t2 = −24t

(1−3t2)3 .

(b) x = et, y = e−t ⇒ dx = etdt and dy = −e−tdt. So, dy
dx

= −e−t
et

= −1
e2t
. When t = 0,

x = e0 = 1 and y = e−0 = 1. So, the tangent passes (1,1). The slope of the tangent is
obtained by plugging t = 0 in the derivative dy

dx
. So m = −1

e0
= −1. The equation of the

tangent is y − 1 = −1(x− 1)⇒ y = −x+ 2.

The second derivative can be obtained as derivative of the first derivative dy
dx

= −e−2t

divided by dx = etdt. So, d2y
dx2

= 2e−2t

et
= 2e−3t.

3. (a) Find the t-value that corresponds to (9,15). Note that you need that value because you
will plug it in the derivative to get the slope.

Set (x, y) = (9, 15) ⇒ x = t2 = 9, and y = 6 − 3t = 15. From the first equation, t = ±3
Just one of these two values will work in the the second equation. Either solving the
second equation for t (6 − 3t = 15 ⇒ −3t = 9 ⇒ t = −3) or plugging both ±3 into the
second equation to see which one works will produce t = −3.

The first derivative is dy
dx

= −3dt
2tdt

= −3
2t
. Thus, the slope is m = −3

2(−3) = 1
2
. The equation of

the tangent is y − 15 = 1
2
(y − 9)⇒ y = 1

2
x+ 21

2
.

(b) Find the t-value that corresponds to (2,-2). Set (x, y) = (2,−2)⇒ x = 2+2 cos t = 2, and
y = 2 sin t = −2. From the first equation, cos t = 0 ⇒ t = ±π

2
. Careful not to conclude

that t = π
2

just because it is the calculator answer for cos−1(0). You have to take the
second equation into consideration too. From the second equation sin t = −1⇒ t = −π

2
.

The first derivative is dy
dx

= 2 cos tdt
−2 sin tdt = − cos t

sin t
. Thus, the slope is m =

− cos(−π
2

)

sin(−π
2

)
= 0
−1 = 0.

The equation of the tangent is y + 2 = 0(x− 2)⇒ y = −2.
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4. (a) Graph the curve first. Note that using either zoom standard or zoom fit you will
not be able to see the loop of this curve. To see the loop, you can change Tmin in your
standard window to be a negative number (for example anything smaller than -3 will work
out nicely in this case). The graph looks like a ribbon. The loop has counter-clockwise
orientation. From the graph we can see that there are two horizontal and one vertical
tangent.

x = t2 ⇒ dx = 2tdt and y = t3 − 3t⇒ dy = (3t2 − 3)dt. Thus dy
dx

= 3t2−3
2t

. The curve has

horizontal tangents at points at which dy
dx

= 0⇒ dy = 0⇒ 3t2 − 3 = 0⇒ 3t2 = 3⇒ t2 =
1⇒ t = ±1. Plug the two t-values in x = t2 and y = t3 − 3t to get the coordinates of two
points with horizontal tangents. t = 1⇒ x = 1 and y = 1− 3 = −2. t = −1⇒ x = 1 and
y = −1 + 3 = 2. So the points are (1, 2) and (1, -2).

The curve has a vertical tangent at a point at which dy
dx

is not defined ⇒ dx = 0⇒ 2t =
0⇒ t = 0. When t = 0, x = 02 = 0 and y = 03 − 3(0) = 0. So, at the point (0,0) there is
a vertical tangent.

(b) The curve looks like an infinity symbol traversed counter-clockwise. From the graph
we can see that there are four points with horizontal and two with vertical tangent.
x = cos t⇒ dx = − sin tdt and y = cos t sin t⇒ dy = (− sin2 t+ cos2 t)dt.

For the horizontal tangents dy
dx

= 0 ⇒ dy = 0 ⇒ − sin2 t + cos2 t = 0 ⇒ cos2 t = sin2 t ⇒
cos t = ± sin t⇒ 1 = tan t and −1 = tan t⇒ t = ±π

4
, t = ±3π

4
. Plugging the four t-values

into the x and y equations, you obtain the coordinates of four points on the curve with
horizontal tangents (

√
2
2
,
√
2
2

), (−
√
2
2
,
√
2
2

), (−
√
2
2
,−
√
2
2

), and (
√
2
2
,−
√
2
2

).

For the vertical tangents dy
dx

is not defined ⇒ dx = 0 ⇒ − sin t = 0 ⇒ t = 0 and t = π.
t = 0⇒ (x, y) = (1, 0) and t = π ⇒ (x, y) = (−1, 0).

5. (a) From the graph you can see that the self-intersection is at the point that is on the x-axis.
The x-axis has the equation y = 0. So, to find the self-intersection, set y to 0 and solve
for t. Careful: don’t set x equal to y in order to find the self-intersection.

y = t3 − 3t = 0 ⇒ t(t2 − 3) = 0 ⇒ t = 0, t2 = 3 ⇒ t = 0, t = ±
√

3. When t = 0, then
x = 0 and y = 0. This point corresponds to the origin and from the graph you can see
that this is not the self-intersection. So, t = ±

√
3 are the values you need. You can think

of t = −
√

3 as the time when an object positioned at (x, y) enters the loop and of t =
√

3
as the time when it leaves the loop. Obtain the (x, y)-coordinate by plugging t-values in
x and y equations. t = ±

√
3⇒ x = 3 and y = 0. So, the point is (3,0).

To find the two slopes of the tangents at this point, plug t = ±
√

3 into the derivative
dy
dx

= 3t2−3
2t

.

t =
√

3 ⇒ m = 9−3
2
√
3

= 3√
3

=
√

3 or 1.73. So, the tangent is y − 0 =
√

3(x − 3) ⇒ y =√
3x− 3

√
3.

t = −
√

3 ⇒ m = 9−3
−2
√
3

= −3√
3

= −
√

3 or -1.73. So, the tangent is y − 0 = −
√

3(x− 3) ⇒
y = −

√
3x+ 3

√
3.

(b) From the graph, you can see that the self-intersection is at the origin (0,0). You need to
find (at least) two t-values that correspond to those points. So, solve the equations x = 0
and y = 0 for t. From the first, you have t = ±π

2
. Those values produce 0 when plugged

in the second equation, so those are the values you can use.

To find the two slopes of the tangents at this point, plug t = ±π
2

into the derivative
dy
dx

= − sin2 t+cos2 t
− sin t

.
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t = π
2
⇒ m = −1

−1 = 1. So, the tangent is y − 0 = 1(x− 0)⇒ y = x.

t = −π
2
⇒ m = −1

1
= −1. So, the tangent is y − 0 = −1(x− 0)⇒ y = −x.

6. (a) In the previous problem we have found that the t-values at the self-intersection are ±
√

3.
Those t-values bound all the t-values in the loop and give you the bounds of the integration.

Thus, A = ±
∫√3
−
√
3
ydx = ±

∫√3
−
√
3
(t3−3t)(2t)dt = ±

∫√3
−
√
3
(2t4−6t2)dt = ±(2

5
t5−2t3)|

√
3
−
√
3

=

±(−8.313). Thus, the area is A = 8.314.

(b) The area can be found as the double of the area of a single loop. The bounds are again

the self-intersection t-values ±π
2
. Thus A = ±2

∫ π
2
−π

2
ydx = ±2

∫ π
2
−π

2
cos t sin t(− sin t)dt =

∓2
∫ π

2
−π

2
cos t sin2 tdt. Evaluate this integral using the substitution u = sin t (this is the

“good case”). Get ∓2 sin3 t
3
|
π
2
−π

2
= ∓2(1

3
+ 1

3
) = 4

3
.

(c) The curve looks like the top part of the infinity symbol for x > 0 and the bottom part
for x < 0. The area can be found again as double of the area of just one of those two
parts. Note from the graph that the two points bounding the relevant part of the curve
are on the x-axis so y = 0. Thus, you need to find (at least) two (consecutive) t-values

that are solutions of y = 0. You can take t = 0 and t = π
2
. So A = ±2

∫ π
2
0 ydx =

±2
∫ π

2
0 cos2 t sin t cos tdt = ±2

∫ π
2
0 cos3 t sin tdt. Evaluate this integral using the substitution

u = cos t (this is the “good case”). Get ∓2 cos4 t
4
|
π
2
0 = ∓2(0− 1

4
) = 1

2
.

(d) To find the bounds, set two different y equations equal and solve for t. t + 1
t

= 2.5 ⇒
t2 − 2.5t + 1 = 0 ⇒ t = 2 and t = 1

2
. From the graph, you can see that y = 2.5 is upper

curve. So A = ±
∫ 2
1/2(2.5 − t − 1

t
)(1 + 1

t2
)dt = ±

∫ 2
1/2(2.5 − t − 1

t
+ 2.5

t2
− 1

t
− 1

t3
)dt =

(2.5t− t2

2
− 2 ln t− 2.5

t
+ 1

2t2
)|21/2 = .977.

7. (a) x = t3 ⇒ x′ = 3t2, y = t2 ⇒ y′ = 2t. The length elements is ds =
√

(3t2)2 + (2t)2dt =√
9t4 + 4t2dt =

√
9t2 + 4 tdt The bounds are 0 ≤ t ≤ 4 so the length is L =

∫ 4
0

√
9t2 + 4 tdt.

Using the substitution u = 9t2 + 4 obtain that L = 1
18

2
3
(9t2 + 4)3/2|40 = 1

27
(1483/2 − 8) =

66.38.

(b) You need to find the t-bounds. When (x, y) = (4, 0), x = 2 + 2 cos t = 4 ⇒ cos t = 1 ⇒
t = 0 and y = 2 sin t = 0⇒ t = 0 and π. The value t = 0 agrees with the first equation so
that is the lower bound. When (x, t) = (0, 0), x = 2 + 2 cos t = 0 ⇒ cos t = −1 ⇒ t = π
and y = 2 sin t = 0⇒ t = 0 and π. The value t = π agrees with the first equation so that
is the upper bound.

x = 2 + 2 cos t = 4 ⇒ x′ = −2 sin t and y = 2 sin t ⇒ y′ = 2 cos t. The length is

L =
∫ π
0

√
(−2 sin t)2 + (2 cos t)2dt =

∫ π
0

√
4 sin2 t+ 4 cos2 tdt =

∫ π
0

√
4dt = 2

∫ π
0 dt = 2π.

(c) Write down the integral you need to evaluate before using the program. x = 1+e−t ⇒ x′ =

−e−t and y = t2 ⇒ y′ = 2t. The length is L =
∫ 2
−2

√
(−e−t)2 + (2t)2dt =

∫ 2
−2
√
e−2t + 4t2dt.

Now that you know which integral you need, you can switch your calculator back to the
functions mode and use the program with Y1 =

√
e−2x + 4x2, a = −2, b = 2. With

n = 100, you have that the Left Sum is 11.94 and the Right Sum is 11.77. Since both
round to 12, conclude that the length is approximately 12.

(d) x = ln t ⇒ x′ = 1
t

and y = e−t ⇒ y′ = −e−t. L =
∫ 2
1

√
1
t2

+ e−2tdt. Using the Left-Right

Sums program with Y1 =
√

1
x2

+ e−2x, a = 1, b = 2, and n = 100 you obtain the length of
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.73.

8. (a) This is the same “ribbon curve” we have worked with in previous problems. We have
determined that t = ±

√
3 correspond to the self-intersection t-values. Note that we used the

same bounds to find the area of the loop. So, the length is L =
∫√3
−
√
3

√
(2t)2 + (3t2 − 3)2dt or∫ 2

0

√
4t2 + (3t2 − 3)2dt. Using the program with Y1 =

√
4x2 + (3x2 − 3)2, a = −

√
3, b =

√
3,

and n = 100, you obtain the length of L = 10.74.

(b) Graph the curve first. It is a “ribbon curve” with the self-intersection on the y-axis that
has the equation x = 0. So, the corresponding t-values can be found by setting x equal to 0.
x = 0⇒ 3t− t3 = 0⇒ t(3− t2) = 0⇒ t = 0, 3 = t2 ⇒ t = 0 and t = ±

√
3. When t = 0, x = 0

and y = 0 and this point is not the self-intersection. So t = ±
√

3 are the t-values needed. So,

the length is L =
∫√3
−
√
3

√
(3t2 − 3)2 + (2t)2dt or

∫ 2
0

√
(3t2 − 3)2 + 4t2dt. Using the program with

Y1 =
√

(3x2 − 3)2 + 4x2, a = −
√

3, b =
√

3, and n = 100, you obtain the length of L = 10.74.

9. (a) x = t3 ⇒ x′ = 3t2 and y = t2 ⇒ y′ = 2t. Sx =
∫ 1
0 2πt2

√
9t4 + 4t2dt. Simplify before

integrating. Sx = 2π
∫ 1
0 t

2
√

9t2 + 4 tdt. Use the substitution u = 9t2 + 4 ⇒ du = 18tdt.
Note that the term t2 substitutes as t2 = u−4

9
that can be obtained by solving u = 9t2 + 4

for t2. Thus, the integral becomes Sx = 2π
∫ 1
0
u−4
9

√
udu

18
= π

81

∫ 1
0 (u−4)

√
udu = π

81

∫ 1
0 (u3/2−

4u1/2)du = π
81

(2
5
(9t2 + 4)5/2 − 8

3
(9t2 + 4)3/2)|10 = π

81
(2
5
135/2 − 8

3
133/2 − 64

5
+ 64

3
) = 4.936.

(b) x = 2 + 2 cos t ⇒ x′ = −2 sin t and y = 2 sin t ⇒ y′ = 2 cos t. The length element is
ds =

√
4 sin2 t+ 4 cos2 t =

√
4 = 2. You need to find the t-bounds that correspond to (4,

0) to (0,0). Similarly as in problem 7 (b) obtain that the corresponding t-values are 0 and
π. So Sx =

∫ π
0 2π2 sin t 2dt = 8π(− cos t)|π0 = 16π.

(c) Compute the length element to be ds =
√

36t2 + 36t4dt =
√

1 + t2 6tdt and the t-values
corresponding to (0,0) and (3,2) to be t = 0 and t = 1. So, Sy =

∫ 1
0 2π3t2

√
1 + t2 6tdt =

36π
∫ 1
0 t

2
√

1 + t2 tdt. Using the substitution u = 1+t2 obtain that du = 2tdt and t2 = u−1.
So, Sy = 18π

∫ 1
0 (u−1)

√
udu = 18π(2

5
(1+t2)5/2− 2

3
(1+t2)3/2)|10 = 18π(2

5
25/2− 2

3
23/2− 2

5
+ 2

3
) =

36.405.

(d) Sx =
∫ 2
1 2π(t − 1

t2
)
√

(1 + 3t2)2 + (1 + 2t−3)2dt. Careful when typing this formula in the
calculator. Using the program with n = 200 subintervals obtain that the Left Sum is
58.74 and the Right Sum is 59.46. Thus the surface area is approximately Sx = 59.

(e) Sy =
∫ 2
1 2π(t + t3)

√
(1 + 3t2)2 + (1 + 2t−3)2dt. Using the program with n = 100 obtain

that the Left Sum is 303.71 and the Right Sum is 311.29. They average to the surface
area of Sy = 307.5.
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