Calculus 2 Lia Vas

Recursive Integration

When evaluating integrals such as $\int x^8 \sin x \, dx$, $\int \sin^8 x \, dx$ or $\int \ln^5 x \, dx$, it might be easier to find patterns by which the integrals $\int x^n \sin x \, dx$, $\int \sin^n x \, dx$ or $\int \ln^n x \, dx$ reduce to integrals depending on smaller *n*-values. Such patterns are called **recursive formulas**. If the initial integral is denoted by I_n , repetitive use of the recursive formula enables you to reduce I_n to I_1 or I_0 eventually and these integrals can be evaluated directly.

Example 1. Find a recursive formula for $\int x^n e^x dx$ and use it to evaluate $\int x^5 e^x dx$. Note that without a recursive formula, this integral would require five integration by parts in a row.

Solution. Denote the integral $\int x^n e^x dx$ by I_n . Note that the integral requires integration by parts and that $u = x^n$ and $dv = e^x dx$ is a good start. Then $du = nx^{n-1}dx$ and $v = e^x$ so that

$$I_n = \int x^n e^x dx = x^n e^x - n \int x^{n-1} e^x dx = x^n e^x - n I_{n-1}.$$

This produces the recursive formula $I_n = x^n e^x - nI_{n-1}$. Note that it reduces any I_n to I_0 eventually. Since

$$I_0 = \int x^0 e^x dx = \int e^x dx = e^x,$$

the formula enables one to find the antiderivative.

When using the formula for $I_5 = \int x^5 e^x dx$, we get

$$I_{5} = x^{5}e^{x} - 5I_{4} = x^{5}e^{x} - 5(x^{4}e^{x} - 4I_{3}) = x^{5}e^{x} - 5x^{4}e^{x} + 20(x^{3}e^{x} - 3I_{2}) =$$

= $x^{5}e^{x} - 5x^{4}e^{x} + 20x^{3}e^{x} - 60(x^{2}e^{x} - 2I_{1}) = x^{5}e^{x} - 5x^{4}e^{x} + 20x^{3}e^{x} - 60x^{2}e^{x} + 120(xe^{x} - I_{0}) =$
= $x^{5}e^{x} - 5x^{4}e^{x} + 20x^{3}e^{x} - 60x^{2}e^{x} + 120xe^{x} - 120e^{x} + c.$

Example 2. Find a recursive formula for $\int (\ln x)^n dx$ and use it to evaluate $\int (\ln x)^6 dx$.

Solution. You can use I_n to denote $\int (\ln x)^n dx$. The integral requires integration by parts and you can use $u = \ln^n x$ and dv = dx. Then $du = n \ln^{n-1} x \frac{1}{x} dx$ and $v = \int dx = x$ so that $I_n = \int (\ln x)^n dx = x \ln^n x - \int nx \ln^{n-1} x \frac{1}{x} dx = x \ln^n x - n \int \ln^{n-1} x dx = x \ln^n x - n I_{n-1}$. Thus, the recursive formula is $I_n = x \ln^n x - n I_{n-1}$ and $I_0 = \int dx = x$.

formula is $I_n = x \ln^n x - nI_{n-1}$ and $I_0 = \int dx = x$. For n = 6 this gives you $I_6 = x \ln^6 x - 6I_5 = x \ln^6 x - 6(x \ln^5 x - 5I_4) = x \ln^6 x - 6x \ln^5 x + 30(x \ln^4 x - 4I_3) = x \ln^6 x - 6x \ln^5 x + 30x \ln^4 x - 120(x \ln^3 x - 3I_2) = x \ln^6 x - 6x \ln^5 x + 30x \ln^4 x - 120x \ln^3 x + 360(x \ln^2 x - 2I_1) = x \ln^6 x - 6x \ln^5 x + 30x \ln^4 x - 120x \ln^3 x + 360x \ln^2 x - 720(x \ln x - I_0) = x \ln^6 x - 6x \ln^5 x + 30x \ln^4 x - 120x \ln^3 x + 360x \ln^2 x - 720x \ln x + 720x + c.$

Example 3. Find a recursive formula for $\int \sin^n x dx$ and use it to evaluate $\int \sin^6 x dx$. Note that without a recursive formula, this integral would fall under the "very bad case" category.

Solution. Denote the integral $\int \sin^n x dx$ by I_n . To find the recursive formula, we can use the integration by parts with $u = \sin^{n-1} x$ and $dv = \sin x dx$. Hence, $du = (n-1) \sin^{n-2} x \cos x dx$ and $v = -\cos x$. Hence

$$I_n = -\sin^{n-1} x \cos x + \int (n-1)\sin^{n-2} x \cos^2 x \, dx.$$

To relate this last integral I_k for one (or more) k-values, use the trigonometric identity $\cos^2 x = 1 - \sin^2 x$. Hence, we have that

$$I_n = -\sin^{n-1}x\cos x + (n-1)\int \sin^{n-2}x(1-\sin^2x)dx = -\sin^{n-1}x\cos x + (n-1)\int (\sin^{n-2}x-\sin^nx)dx = -\sin^{n-1}x\cos x + (n-1)\int$$

 $-\sin^{n-1}x\cos x + (n-1)\int\sin^{n-2}xdx - (n-1)\int\sin^n xdx = -\sin^{n-1}x\cos x + (n-1)I_{n-2} - (n-1)I_n.$

Hence, $I_n = -\sin^{n-1} x \cos x + (n-1)I_{n-2} - (n-1)I_n$. Solve the formula for I_n to obtain the resulting recursive formula -1 n-1

$$I_n = \frac{-1}{n} \cos x \sin^{n-1} x + \frac{n-1}{n} I_{n-2}$$

Note that $I_0 = \int \sin^0 x dx = \int dx = x$.

Using the recursive formula to evaluate I_6 , we obtain the following.

$$I_{6} = \frac{-1}{6}\cos x \sin^{5} x + \frac{5}{6}I_{4} = \frac{-1}{6}\cos x \sin^{5} x + \frac{5}{6}(\frac{-1}{4}\cos x \sin^{3} x + \frac{3}{4}I_{2}) =$$
$$= \frac{-1}{6}\cos x \sin^{5} x - \frac{5}{24}\cos x \sin^{3} x + \frac{15}{24}(\frac{-1}{2}\cos x \sin x + \frac{1}{2}I_{0}) =$$
$$= \frac{-1}{6}\cos x \sin^{5} x - \frac{5}{24}\cos x \sin^{3} x - \frac{15}{48}\cos x \sin x + \frac{15}{48}x + c.$$

Practice Problems.

- 1. Find a recursive formula for $\int x^n e^{ax} dx$ and use it to evaluate $\int x^4 e^{5x} dx$.
- 2. Find a recursive formula for $\int \cos^n x dx$ and use it to evaluate $\int \cos^8 x dx$.

Solutions.

1. The recursive formula is $I_n = \frac{1}{a}x^n e^{ax} - \frac{n}{a}I_{n-1}$ and $I_0 = \frac{1}{a}e^{ax}$.

$$\int x^4 e^{5x} dx = \frac{1}{5} x^4 e^{5x} - \frac{4}{25} x^3 e^{5x} + \frac{12}{125} x^2 e^{5x} - \frac{24}{625} x e^{5x} + \frac{24}{3125} e^{5x} + c.$$

2. The recursive formula is $I_n = \frac{-1}{n} \sin x \cos^{n-1} x + \frac{n-1}{n} I_{n-2}$ and $I_0 = \int dx = x$.

$$\int \cos^8 x dx = \frac{-1}{8} \sin x \cos^7 x - \frac{7}{48} \sin x \cos^5 x - \frac{35}{192} \sin x \cos^3 x - \frac{105}{384} \sin x \cos x + \frac{105}{384} x + c.$$