Review for Exam 2

a) Integration. Evaluate the integrals:

1.	$\int \frac{x-9}{(x+5)(x-2)} dx$
2.	$\int 2x \sin 3x dx$
3.	$\int \frac{\ln(2x-1)}{(2x-1)^2} dx$
4.	$\int_{1}^{\infty} \frac{1}{x^3} dx$
5.	$\int \frac{5x^2 + 3x - 2}{x^3 + 2x^2} dx$
6.	$\int \frac{2x^2 + x + 1}{x^3 + x} dx$
7.	$\int_0^\infty x e^{-2x} \ dx$
8.	$\int \sin^{10} x \ \cos x \ dx$
9.	$\int \sin^3 x \ \cos^2 x \ dx$
10.	$\int 3\sin^{-1}2x \ dx$
11.	$\int e^x \sin x dx$
12.	$\int \frac{x^2+1}{x^2-x} dx$
13.	$\int x^2 \ e^x \ dx$

14.
$$\int \sin^2 x dx$$

15.
$$\int \sin^5 x dx$$

$$\int \frac{x+1}{x^3 - 2x^2 + x} \, dx$$

17.

$$\int \frac{2x^2 - 4x}{(x-1)^2(x^2+1)} \, dx$$

- b) Unbounded area. Improper integrals. Sketch the following region and find its area if the area is finite.
 - 1. $x \ge 3$, $0 \le y \le \frac{1}{(x-2)^2}$ 2. $x \ge 0$, $0 \le y \le \frac{1}{(x+2)(x+3)}$ 3. $x \ge 1$, $0 \le y \le \frac{\ln x}{x^2}$

c) The arc length.

- 1. Find the length of the curve $y = x^{3/2}$, $1 \le x \le 4$
- 2. Find the length of the curve $y = \sqrt{1 x^2}$, $-1 \le x \le 1$
- 3. Use the Left-Right sum calculator program with n = 100 subintervals to approximate the length of the curve $y = e^x$, for $0 \le x \le 1$.
- 4. Use the Left-Right sum calculator program to approximate the length of the curve y = $\sin x$, for $0 \le x \le \pi$ to five digits.
- d) The surface area. Find the area of the surface obtained by rotating the given curve about the specified line.
 - 1. $y = x^3$, $0 \le x \le 2$ about the x-axis.
 - 2. $y = \sqrt{x}$, $4 \le x \le 9$ about the x-axis.
 - 3. $y = x^2$, $1 \le x \le 2$ about the y-axis.
 - 4. Use the Left-Right sum calculator program to approximate the surface area obtained by rotating the curve $y = \sin x$, for $0 \le x \le \pi$ about x-axis to four digits.
 - 5. Use the Left-Right sum calculator program with 100 subintervals to find the Right sum which approximates the surface area of the surface obtained by rotating $y = \ln(x^3 + 1)$ $0 \le x \le 1$, about y-axis.
- e) Approximate integration.

- 1. A CAT scan produces equally spaced cross-sectional views of a human organ that provide information about the organ otherwise obtained only by surgery. Suppose that a CAT scan of a human liver shows cross-sections spaced 2 cm apart. The liver is 12cm long and the cross-sectional areas, in square centimeters are 0, 58, 94, 106, 117, 63, 0. Use the Trapezoidal Sum to approximate the volume of the liver.
- 2. A chemical reaction produces a compound X with a rate of 23, 19, 12, 11, 9, 5, 2 liters per second at time intervals spaced by 1 second. Approximate the total volume of the compound X produced in the 6 seconds for which the rate is given using the Simpson's Sum.
- 3. A 5 mg bolus of dye is injected into the right atrium. The concentration of dye (mg/l) is measured in the aorta at one-second intervals as shown.

t	0	1	2	3	4	5	6	7	8	9	10
c(t)	0	.4	2.8	6.5	9.8	8.9	6.1	4	2.3	1.1	0

Use Simpson's Rule to estimate the cardiac output.

4. A 10 mg bolus of dye is injected into the right atrium. The concentration of dye (mg/l) is measured in the aorta at one-second intervals as shown.

t	0	1	2	3	4	5	6	7	8
c(t)	0	0.5	2.4	6.1	8.3	6.3	4.1	1.6	0.4

Use Trapezoidal Rule to estimate the cardiac output.

f) Center of Mass.

- 1. Find the center of mass of the region bounded by $y = \sin x$, $y = \cos x$, x = 0, $x = \pi/4$.
- 2. Find the center of mass of the region bounded by $y = \sin 2x$, y = 0, x = 0, $x = \pi/2$.

Review 2 – Solutions

The class handouts contain more detailed solutions of these problems.

a) Integration

1. $2\ln|x+5| - \ln|x-2| + c$ 2. $\frac{-2}{3}x\cos 3x + \frac{2}{9}\sin 3x + c$ 3. $\frac{-\ln(2x-1)}{2(2x-1)} - \frac{1}{2(2x-1)} + c$ 4. Convergent, $\frac{1}{2}$ 5. $\frac{1}{x} + 2\ln|x| + 3\ln|2 + x| + c$ 6. $\ln x + \frac{1}{2}\ln(1+x^2) + \tan^{-1}x + c$ 7. Convergent, $\frac{1}{4}$ 8. $\frac{1}{11}\sin^{11}x + c$ 9. $\frac{-1}{3}\cos^3 x + \frac{1}{5}\cos^5 x + c$ 10. $3x\sin^{-1}2x + \frac{3}{2}\sqrt{1-4x^2} + c$ 11. $\frac{-1}{2}e^x \cos x + \frac{1}{2}e^x \sin x + c$ 12. $x - \ln |x| + 2 \ln |x - 1| + c$ 13. $x^2e^x - 2xe^x + 2e^x + c$ 14. $\frac{1}{2}x - \frac{1}{4}\sin 2x + c$ 15. $-\cos x + \frac{2}{3}\cos^3 x - \frac{1}{5}\cos^5 x + c.$ 16. $\ln x - \frac{2}{x-1} - \ln |x-1| + c$ 17. $\ln|x-1| + \frac{1}{x-1} - \frac{1}{2}\ln(1+x^2) + 2\tan^{-1}x + c$

- b) Unbounded area. Improper integrals.
 - 1. $A = \int_3^\infty \frac{1}{(x-2)^2} dx$. This integral is convergent and equal to 1 so A = 1. 2. $A = \int_0^\infty \frac{1}{(x+2)(x+3)} dx$ This integral is convergent and equal to $A = \ln \frac{3}{2} \approx 0.405$. 3. $A = \int_1^\infty \frac{\ln x}{x^2} dx$. This integral is convergent and equal to 1 so A = 1.
- c) The arc length. 1. 7.6337 2. π 3. 2.00 4. 3.8202
- d) The surface area. 1. 203.0436 2. 81.1418 3. 30.8465 4. 14.42 5. 4.54
- e) Approximate integration. 1. 867 cm³.
 2. 69 liters
 3. .12 liters per second
 4. .34 liters per second
- f) Center of Mass. 1. $A = .414, (\bar{x}, \bar{y}) = (.267, .6035)$ 2. $A = 1, (\bar{x}, \bar{y}) = (\frac{\pi}{4}, \frac{\pi}{8})$