
Calculus 3
Lia Vas

Double Integrals in Polar Coordinates
Volume of Regions Between Two Surfaces

In many cases in applications of double integrals, the region in xy-plane has much easier repre-
sentation in polar coordinates than in Cartesian, rectangular coordinates.

Recall that if r and θ are as in figure on the left, cos θ = x
r

and sin θ = y
r

so that

x = r cos θ, y = r sin θ, and x2 + y2 = r2.

Recall also how the area between two curves given
by functions of x on the first figure bellow corre-
sponds to the area between two polar curves given
by functions of θ.

Region between two curves in Cartesian and polar coordinates

Consider now a function z = f(x, y) of two variables defined on a region D which can be repre-
sented in polar coordinates as follows.

D = { (r, θ) | α ≤ θ ≤ β, r1(θ) ≤ r ≤ r2(θ) }.

The double integral of f over D is∫ ∫
D
f(x, y) dx dy =

∫ β

α

∫ r2(θ)

r1(θ)
f(r cos θ, r sin θ) r dr dθ

Note that dxdy becomes rdrdθ in polar coordinates. The presence of r in this formula will be explained
in section on Parametric Surfaces.

The use of polar coordinates can simplify evaluating the double integrals over regions bonded by
circles or their parts. The bounds for r and θ in those cases can be determined in the same way as
in Calculus 2.
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Area between curves in polar coordinates. Let D be a region in xy-plane which can be
represented α ≤ θ ≤ β and r1(θ) ≤ r ≤ r2(θ) in polar coordinates. Using the formula for the area
A =

∫ ∫
D dxdy, we can demonstrate the validity of the formula for the area between polar curves

from Calculus 2.

A =
∫ ∫

D
dxdy =

∫ ∫
D
rdrdθ =

∫ β

α

(∫ r2(θ)

r1(θ)
rdr

)
dθ =

∫ β

α

1

2
r2
∣∣∣∣r2(θ)
r1(θ)

dθ =
∫ β

α

1

2

(
(r2(θ))

2 − (r1(θ))
2
)
dθ

Volume of Regions Between Two Surfaces. Assume that two surfaces z = f(x, y) and
z = g(x, y) are such that f(x, y) ≤ g(x, y) over a region D in xy plane. The volume between f(x, y)
and g(x, y) over the region D can be found as the double integral of the difference f(x, y)− g(x, y)
over the region D. This can be shown using the same argument used in Calculus 1 when showing
that the area of the region between two curves f(x) and g(x) such that f(x) ≥ g(x) on interval [a, b]
can be found by integrating the difference f(x)− g(x) over the interval [a, b].

Area =
∫ b
a (upper - lower curve) dx Volume =

∫ ∫
D (upper - lower surface) dx

Practice problems.

1. Calculate the double integral

a) ∫ ∫
D
xdxdy

where D is the disk with center the origin and radius 5 in the first quadrant.

b) ∫ ∫
D
xydxdy

where D is the region in the first quadrant between the circles x2+y2 = 4 and x2+y2 = 25.

c) ∫ ∫
D

1√
x2 + y2

dxdy

where D is the region inside the curve r = 4 cos θ and outside the curve r = 2.
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d) ∫ ∫
D

1√
x2 + y2

dxdy

where D is the region inside the curve r = 2 and outside the curve r = 4 cos θ in the first
quadrant.

2. Find the volume of the solid under the paraboloid z = x2 + y2 and above the disk x2 + y2 ≤ 9.

3. Find the volume of the solid inside the cylinder x2 +y2 = 4 and between the cone z =
√
x2 + y2

and the xy-plane.

4. Find the volume of the solid above the cone z =
√
x2 + y2 and below the paraboloid z =

2− x2 − y2.

5. Find the volume of the solid enclosed by the paraboloids z = x2 + y2 and z = 36− 3x2 − 3y2.

6. Find the volume of the solid bounded by the cylinder x2 + y2 = 1 and the planes z = 2− y and
z = 0 in the first octant.

7. Using a double integral, find the area inside a loop of the four-leaved rose r = cos 2θ.

Solutions.

1. a) The bounds are 0 ≤ r ≤ 5 and 0 ≤ θ ≤ π
2
. Since x = r cos θ and dxdy = rdrdθ, the integral∫ ∫

D xdxdy becomes
∫ π/2
0

∫ 5
0 r cos θrdrdθ =

∫ π/2
0 cos θdθ

∫ 5
0 r

2dr = sin π
2
r3

3
|50 = 125

3

b)
∫ ∫

D xydxdy =
∫ π/2
0

∫ 5
2 r cos θr sin θrdrdθ =

∫ π/2
0 cos θ sin θdθ

∫ 5
2 r

3dr = 1
2
(5

4

4
− 24

4
) = 609

8
=

76.125.

c) Graph the region first. From the graph, you can see that the bounds for θ are determined
by intersection of r = 4 cos θ and r = 2. Solving 4 cos θ = 2, yields cos θ = 1

2
⇒ θ = ±π

3
.

The outer curve is 4 cos θ and the inner is r = 2. The function 1√
x2+y2

in polar coordinates

is 1
r
. So, the integral

∫ ∫
D

1√
x2+y2

dxdy transforms to
∫ π/3
−π/3

∫ 4 cos θ
2

1
r
rdrdθ =

∫ π/3
−π/3

∫ 4 cos θ
2 drdθ =∫ π/3

−π/3(4 cos θ − 2)dθ = 4
√

3− 4π
3

d) Graph again the region first. From the graph, you can see that the bounds for θ are
the intersection of the two curves and π

2
. From part c), we have that the curves r = 2 and

r = 4 cos θ intersect at π
3

in the first quadrant. So, π
3
≤ θ ≤ π

2
and 4 cos θ ≤ r ≤ 2. The

integral
∫ ∫

D
1√
x2+y2

dxdy becomes
∫ π/2
π/3

∫ 2
4 cos θ

1
r
rdrdθ =

∫ π/2
π/3

∫ 2
4 cos θ drdθ =

∫ π/2
π/3 (2− 4 cos θ)dθ =

π
3
− 4 + 2

√
3.

2. Volume can be found as
∫ ∫

D(x2 + y2)dxdy where D is the interior of the disk. The bounds
in polar coordinates are 0 ≤ θ ≤ 2π and 0 ≤ r ≤ 3. The function x2 + y2 is r2. So V =∫ 2π
0

∫ 3
0 r

2rdrdθ = 2π r
4

4
|30 = 81π

2
.

3. Volume can be found as
∫ ∫

D

√
x2 + y2dxdy where D is the interior of the disk determined by

the cylinder. The bounds in polar coordinates are 0 ≤ θ ≤ 2π and 0 ≤ r ≤ 2. The function√
x2 + y2 is r. So V =

∫ 2π
0

∫ 2
0 rrdrdθ = 2π r

3

3
|20 = 16π

3
.
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4. The paraboloid z = 2−x2− y2 is the upper surface and the cone z =
√
x2 + y2 is lower. Thus,

the volume can be found as

V =
∫ ∫

(2− x2 − y2 −
√
x2 + y2)dxdy.

The paraboloid and the cone intersect in a circle. The projection of the circle in xy-plane
determines the bounds of integration.

Use the polar coordinates. In polar coordinates the paraboloid 2− x2− y2 becomes 2− r2 and
the cone

√
x2 + y2 becomes r. They intersect when 2−r2 = r ⇒ 0 = r2+r−2 = (r−1)(r+2)⇒

r = 1 (the negative solution -2 is not relevant). Thus, the bounds of integration are 0 ≤ θ ≤ 2π
and 0 ≤ r ≤ 1. The volume is V =

∫ ∫
(2−x2−y2−

√
x2 + y2)dxdy =

∫ 2π
0

∫ 1
0 (2−r2−r) r dr dθ =∫ 2π

0 dθ
∫ 1
0 (2r − r3 − r2) dr = 2π (2 r

2

2
− r4

4
− r3

3
)|10 = 2π(1− 1

4
− 1

3
) = 2π 5

12
= 5π

6
.

5. The paraboloid z = 36 − 3x2 − 3y2 is the upper surface and the paraboloid z = x2 + y2 is
the lower. Thus, V =

∫ ∫
D(36 − 3x2 − 3y2 − (x2 + y2))dxdy. The two surfaces intersect in a

circle. The projection of the circle in xy-plane determines the bounds of integration. Use the
polar coordinates. In polar coordinates x2 + y2 = r2 and the surfaces become z = 36 − 3r2

and z = r2. They intersect when 36 − 3r2 = r2 ⇒ 36 = 4r2 ⇒ 9 = r2 ⇒ r = 3 and r = −3
(negative solution is not relevant: r represents the distance so r > 0). Thus, the bounds of
integration are 0 ≤ θ ≤ 2π and 0 ≤ r ≤ 3. The volume is

V =
∫ ∫

(36− 3r2 − r2)rdrdθ =
∫ 2π

0
dθ

∫ 3

0
(36r − 4r3) dr = 2π (18r2 − r4)

∣∣∣3
0

= 162π ≈ 508.94.

6. The plane z = 2 − y is the upper and the plane z = 0 is the lower surface. The cylinder
x2 + y2 = 1 determines the region of the integration in xy-plane. Thus, V =

∫ ∫
D(2 − y −

0)dxdy =
∫ ∫

D(2 − y)dxdy where D is the part of the unit disc in the first quadrant of the
xy-plane. Using polar coordinates, this region is given by 0 ≤ r ≤ 1, and 0 ≤ θ ≤ π

2
. So,

the volume is V =
∫ ∫

D(2 − y) dxdy =
∫ ∫

D(2 − r sin θ) rdrdθ =
∫ π/2
0

∫ 1
0 (2r − r2 sin θ)dθdr =∫ π/2

0 (r2 − r3

3
sin θ)dθ

∣∣∣1
0

=
∫ π/2
0 (1− 1

3
sin θ)dθ = θ + 1

3
cos θ

∣∣∣π/2
0

= π
2
− 1

3
≈ 1.24.

7. Graph the curve first. From the graph, you can see that the bounds will be determined by
the tangents to the curve. The tangents intersect the curve when r = 0. So, the bounds for
θ can be obtained from the equation cos 2θ = 0 ⇒ 2θ = ±π

2
⇒ θ = ±π

4
. So, the area is

A =
∫ π/4
−π/4

∫ cos 2θ
0 rdrdθ =

∫ π/4
−π/4

1
2

cos2 2θdθ = π
8
.
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