Calculus 3 Lia Vas

Review for the Final Exam

- 1. **Sequences.** Determine whether the following sequences are convergent or divergent. If they are convergent, find their limits.
 - (a) $a_n = \left(\frac{1}{2}\right)^n$
 - (b) $a_n = \frac{n+1}{2n-1}$
 - (c) $a_n = \frac{n+3n^3}{4n^2+35n-7+2n^3}$,
 - (d) $a_1 = 1$, $a_{n+1} = \frac{1}{1+a_n}$
 - (e) $a_0 = 0$, $a_{n+1} = \sqrt{2 + a_n}$
 - (f) When calculating the hydrogen ion concentration [H⁺] in a acid-base system, the problem frequently boils down to finding the limit of a recursive sequence. For example, when hydrochloric acid HCl is dissolved in water, we have [H⁺]₁ = C_{HCl} and

$$[H^+]_{n+1} = C_{\text{HCl}} + \frac{K_w}{[H^+]_n},$$

where C_{HCl} is the analytical concentration of HCl and K_w is the water's autoprotolysis constant that is equal to 10^{-14} at 25 degrees Centigrade. If the analytical concentration of HCL C_{HCl} is equal to 10^{-7} , find the hydrogen ion concentration [H⁺] and its pH value.

- 2. Sum of Series. Find the sum of the following series.
 - (a) $\sum_{n=2}^{\infty} \frac{2^{n+2}}{3^{n-1}}$
 - (b) $\sum_{n=1}^{\infty} 2^{2n} 5^{-n}$
 - (c) $2 2/3 + 2/9 2/27 + 2/81 \dots$
 - (d) $3 3/4 + 3/16 3/64 + 3/256 \dots$
- 3. Convergence of Series. Determine whether the following series are convergent or divergent.
 - (a) $\sum_{n=1}^{\infty} \frac{13n^2}{n^2+4n+5}$
 - (b) $\sum_{n=0}^{\infty} (1/2)^n$
 - (c) $\sum_{n=1}^{\infty} \frac{n}{n+1}$
 - (d) $\sum_{n=1}^{\infty} \frac{1}{n^4}$
 - (e) $1 + \frac{1}{8} + \frac{1}{27} + \frac{1}{64} + \frac{1}{125} + \dots$
 - $(f) \sum_{n=1}^{\infty} \frac{1}{(n+3)^4}$
 - (g) $1 \frac{1}{2} + \frac{1}{3} \frac{1}{4} + \dots$
 - (h) $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{2n}{4n+1}$
 - (i) $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{2n}{4n^2+1}$

- (j) $\frac{1}{2^1} + \frac{2}{2^2} + \frac{3}{2^3} + \frac{4}{2^4} + \dots$

- 4. Convergence of Power Series. Find all the values of x for which the series converges.

 - (b) $\sum_{n=1}^{\infty} \frac{(x-1)^n}{n2^n}$ (c) $\sum_{n=1}^{\infty} \frac{x^n}{n!}$ (d) $\sum_{n=1}^{\infty} \frac{3^n x^n}{n+1}$
- 5. Power Series Expansion. Find the power series expansion of the following functions centered at given point.
 - (a) e^{2x} ; x = 0
 - (b) xe^{2x} ; x = 0
 - (c) $\frac{1}{1-x^2}$; x=0
 - (d) $\frac{1}{1+x}$; x = 0
 - (e) $\sin 3x$; x = 0
 - (f) $\int_0^x e^{x^2} dx$; x = 0
- 6. Applications of Taylor Polynomials.
 - (a) Find the Taylor polynomial of the third degree centered at 0 for e^x . Using the polynomial, evaluate $e^{0.3}$.
 - (b) Find the Taylor polynomial of the fourth degree centered at 0 for sin x. Using the polynomial, evaluate $\sin(0.2)$.
 - (c) Find the Taylor polynomial of the second degree centered at 0 for $e^x \sin x$. Using the polynomial, evaluate $e^{1/2}\sin(1/2)$.
 - (d) If f(2) = 5, f'(2) = 3 and f''(2) = 1, approximate f(2.1).
 - (e) If f(2) = 5, f'(2) = 3, f''(2) = 1, and f'''(x) = 1/2 approximate f(1.9).
 - (f) If f(1) = f'(1) = -1, f''(1) = f'''(1) = 0 and $f^{iv}(1) = 2$, approximate f(1.01).
 - (g) Approximate the function $e^{\frac{hv}{kT}}-1$ with the Taylor polynomial of the second degree in terms of v.
 - (h) The magnitude of the electric field E of a single charge q can be described by $E = \frac{kq}{r^2}$ where r is the distance between the field and the charge and k is a proportionality constant. If two opposite charges on distance d from each other create an electric dipole moment, this formula changes to

$$E = \frac{kq}{(r-d)^2} - \frac{kq}{(r+d)^2} = \frac{kq}{r^2(1-\frac{d}{r})^2} - \frac{kq}{r^2(1+\frac{d}{r})^2}$$

Use the Taylor polynomial of the second degree of the function $f(x) = \frac{1}{(1-x)^2}$ to show that the magnitude of the electric field E can be approximated as $E \approx \frac{4kqd}{r^3}$.

2

7. Lines and Planes.

- (a) Find an equation of the line through the point (1,0,6) and perpendicular to the plane x + 3y + z = 5.
- (b) Find an equation of the line through the points (3, 1, -1) and (3, 2, -6).
- (c) Find an equation of the plane through the point (4, -2, 3) and parallel to the plane 3x 7z = 12.
- (d) Find an equation of the plane through the points (0,1,1), (1,0,1) and (1,1,0).

8. Curves in Space.

- (a) Let C be the curve of intersection of the cylinder $x^2 + y^2 = 1$ with the plane y + z = 2. Find an equation of the tangent line to the curve at the point where t = 0. Using the calculator, estimate the length of the curve from t = 0 to $t = \pi/2$.
- (b) Consider the curve C which is the intersection of the surfaces

$$y^2 + z^2 = 16$$
 and $x = 8 - y^2 - z$

i) Find the parametric equations that represent the curve C. ii) Find the equation of the tangent line to the curve C at point (-8, -4, 0). iii) Find the length of the curve from (4, 0, 4) to (-8, -4, 0). Use the calculator to evaluate the integral that you are going to get.

9. Partial Derivatives. Find the indicated derivatives.

- (a) $z = ax^2e^{x^2-xy}$ where a is a constant; z_x , z_y , z_{xx} , z_{xy} and z_{yy} .
- (b) $z = x \ln(xy^2)$; z_x , z_y , z_{xx} , z_{xy} and z_{yy} .
- (c) $xy^2 + yz^2 + zx^2 = 3$; z_x and z_y at (1, 1, 1).
- (d) $x yz = \cos(x + y + z)$; z_x and z_y at (0, 1, -1).

10. **Tangent planes.** Find the equation of the tangent plane to a given surface at a specified point.

- (a) $z = y^2 x^2$, at (-4, 5, 9) (b) $x^2 + 2y^2 + 3z^2 = 21$, at (4, -1, 1)
- (c) $xy^2 + yz^2 + zx^2 = 3$; at (1, 1, 1).

11. Linear Approximation.

- (a) If f(1,2) = 3, $f_x(1,2) = 1$ and $f_y(1,2) = -2$, approximate f(.9, 1.99).
- (b) Find the linear approximation of $z = \sqrt{20 x^2 7y^2}$ at (2, 1) and use it to approximate the value at (1.95, 1.08).

12. Applications.

(a) The pressure of 1 mole of an ideal gas is increasing at a rate of 0.05 kPa/s and the temperature is rising at a rate of 0.15 K/s. The pressure P, volume V and temperature T are related by the equation PV = 8.31T. Find the rate of change of the volume when the pressure is 20 kPa and temperature 320 K.

- (b) The temperature at a point (x,y) is T(x,y), measured in degrees Celsius. A bug crawls so that its position after t seconds is given by $x = \sqrt{1+t}$, $y = 2 + \frac{1}{3}t$ where x and y are measured in centimeters. The temperature function satisfies $T_x(2,3) = 4$ and $T_y(2,3) = 3$. How fast is the temperature rising on the bug's path after 3 seconds?
- (c) The number of flowers N(S,T) in a closed environment depends on the amount of sunlight S that the flowers receive and the temperature T of the environment. Assume that $N_S=2$ and $N_T = 4$. i) Assume that there are 100 flowers when S = 50 and T = 70. Use the linear approximation to estimate the number of flowers when S=52 and T=73. ii) If the temperature depends on time as $T(t) = 85 - 8/(1 + t^2)$ and the amount of sunlight decreases on time as S=1/t find the rate of change of the flower population N'(t) at time t = 2 days.
- (d) Find the points on the surface $z^2 = xy + 1$ that are closest to the origin.
- (e) Set up the equations for finding the dimensions of the rectangular box with the largest volume if the total surface area is 64 cm².
- (f) A cardboard box without a lid is to have volume of 32,000 cm³. Set up the equations for finding the dimensions that minimize the amount of cardboard used.
- 13. Maximum and Minimum Values. Find the maximum and minimum values of f.

(a)
$$z = 9 - 2x + 4y - x^2 - 4y^2$$
 (b) $z = x^2 + y^2 + x^2y + 4$

(b)
$$z = x^2 + y^2 + x^2y + 4$$

14. Lagrange Multipliers. Find the maximum and minimum values of f subject to the given constraint(s).

(a)
$$f(x,y) = x^2 - y^2$$
; $x^2 + y^2 = 1$

(a)
$$f(x,y) = x^2 - y^2$$
; $x^2 + y^2 = 1$ (b) $f(x,y,z) = 2x + 6y + 10z$; $x^2 + y^2 + z^2 = 35$

15. Double Integrals.

- (a) $\iint_D (x+2y) dx dy$ where $D = \{ (x,y) \mid 0 \le x \le 1, 0 \le y \le x^2 \}$
- (b) $\iint_D 2x dx dy$ where $D = \{ (x, y) \mid 0 \le y \le 1, y \le x \le e^y \}$
- (c) $\iint_D y^3 dx dy$ where D is the triangular region with vertices (0, 2), (1, 1) and (3, 2)
- (d) Find the average value of the function f(x,y) = 4x on the region D between the parabolas $y = x^2 - 2$ and $y = 3x - x^2$.

16. The Volume.

- (a) Find the volume of the solid bounded by the plane x + y + z = 1 in the first octant.
- (b) Find the volume of the solid under the paraboloid $z = x^2 + y^2$ and above the disk $x^2 + y^2 \le$
- (c) Find the volume of the solid above the cone $z = \sqrt{x^2 + y^2}$ and below the paraboloid $z = 2 - x^2 - y^2.$
- (d) Find the volume of the solid enclosed by the paraboloids $z = x^2 + y^2$ and $z = 36 3x^2 3y^2$.

17. Surface Area. Parametric Surfaces

(a) Find the area of the part of the plane 3x + 2y + z = 6 that lies in the first octant.

- (b) Find the area of the part of the surface $z = y^2 x^2$ that lies between the cylinders $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$.
- (c) Find the equation of the tangent plane to the parametric surface x = u + v, $y = 3u^2$, z = u v at the point (2,3,0).
- (d) Find the surface area of the part of the cone $z = \sqrt{x^2 + y^2}$ that lies between the cylinders $x^2 + y^2 = 4$ and $x^2 + y^2 = 9$. Write down the parametric equations of the cone first. Then find the surface area using the parametric equations.
- (e) Using the parametric equations and formula for the surface area for parametric curves, show that the surface area of the cylinder $x^2 + z^2 = 4$ for $0 \le y \le 5$ is 20π .

18. Triple Integrals and volume.

- (a) $\iint_E xy \ dx \ dy \ dz$ where E is the solid tetrahedron with vertices (0,0,0), (1, 0, 0), (0, 2, 0) and (0, 0, 3).
- (b) $\iint \int \int E^2 dx dy dz$ where E is the solid that lies between the cylinders $x^2 + y^2 = 1$ $x^2 + y^2 = 4$ and between the xy-plane and the plane z = x + 2.
- (c) $\iint_E x^2 + y^2 + z^2 dx dy dz$ where E is the unit ball $x^2 + y^2 + z^2 \le 1$.
- (d) $\iint_E z \ dx \ dy \ dz$ where E is the region between the spheres $x^2 + y^2 + z^2 = 1$ and $x^2 + y^2 + z^2 = 4$ in the first octant.
- (e) Find the volume of the ellipsoid $\frac{x^2}{4} + \frac{y^2}{9} + \frac{z^2}{25} = 1$ by using the transformation x = 2u, y = 3v z = 5w.

19. Line Integrals.

- (a) $\int_C x y^4 ds$, C is the right half of the circle $x^2 + y^2 = 16$.
- (b) $\int_C (xy + \ln x) dy$, C is the parabola $y = x^2$ from (1,1) to (3,9).
- (c) $\int_C xy \ dx + (x-y) \ dy$, C consists of line segments from (0,0) to (2,0) and from (2,0) to (3,2).
- (d) $\int_C z^2 dx + y dy + 2y dz$, where C consists of two parts C1 and C2. C1 is the intersection of the cylinder $x^2 + y^2 = 16$ and the plane z = 3 from (0,4,3) to (-4,0,3). C2 is a line segment from (-4,0,3) to (0,1,5).
- (e) Find the work done by the force field $\overrightarrow{F}(x,y,z) = (x+y^2,y+z^2,z+x^2)$ in moving an object along the curve C which is the intersection of the plane x+y+z=1 and the coordinate planes.
- (f) Find the work done by the force field $\overrightarrow{F} = (-y^2, x, z^2)$ in moving an object along the curve C which is is the intersection of the plane y + z = 2 and the cylinder $x^2 + y^2 = 1$.

20. Potential. Independence of Path.

- (a) Check that $\vec{f} = \langle x^3y^4, x^4y^3 + 2y \rangle$ is conservative, find its potential function and use it to evaluate $\int_C \vec{f} d\vec{r}$ where C is $x = \sqrt{t}$, $y = 1 + t^3$, $0 \le t \le 1$.
- (b) Check that $\vec{f} = \langle y, x+z, y \rangle$ is conservative, find its potential function and use it to evaluate $\int_C \vec{f} d\vec{r}$ where C is any path from (2,1,4) to (8,3,-1).

- (c) Show that the line integral $\int_C (2xy+z^2)dx + (x^2+2yz+2)dy + (y^2+2xz+3)dz$ where C is any path from (1, 0, 2) to (0, 1, 4), is independent of path and evaluate it.
- 21. Green's Theorem. Evaluate the following integrals using Green's theorem.
 - (a) $\oint_C x^4 dx + xy dy$ where C is the triangle with vertices (0, 0), (0, 1), and (1, 0). Compute the integral also without using Green's Theorem.
 - (b) $\oint_C y^2 dx + 3xy dy$ where C is the boundary of the region between the circles $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$ above x-axis.
 - (c) $\oint_C e^y dx + 2xe^y dy$ where C is the square with vertices (0, 0), (1, 0), (1, 1), and (0, 1).
 - (d) $\oint_C xydx + 2x^2dy$ where C is the line segment from (-2,0) to (2,0) and the upper half of the circle $x^2 + y^2 = 4$.
- 22. Curl and Divergence. Find curl and divergence of the following vector fields.

(a)
$$\vec{f} = \langle xz, xyz, -y^2 \rangle$$

(b)
$$\vec{f} = \langle e^x \sin y, e^x \cos y, z \rangle$$

Solutions

More detailed solutions of the problems can be found on the class handouts.

- 1. Sequences. (a) convergent, limit is 0 (b) convergent, limit is 1/2 (c) convergent, limit is 3/2 (d) convergent, find limit from the equation $x = \frac{1}{1+x}$, the limit is .618 (e) convergent, find limit from the equation $x = \sqrt{2+x}$, the limit is is 2 (f) Find limit from the equation $x^2 10^{-7}x 10^{-14} = 0$. The relevant solution is $[H^+] = 1.618 \cdot 10^{-7}$ and pH= 6.7910.
- 2. Sum of Series. (a) $\frac{2^2}{3^{-1}} \sum_{n=2}^{\infty} \frac{2^n}{3^n} = \frac{12\frac{4}{9}}{\frac{1}{3}} = 16$. (b) 4 (c) sum=3/2 (d) sum = 12/5
- 3. Convergence of Series.
 - (a) Divergent by the Divergence Test (b) Geometric Series. Convergent because 1/2 is between -1 and 1 (c) Divergent by the Divergence Test (d) p-series. Convergent because 4 > 1 (e) p-series, p = 3. Convergent because 3 > 1 (f) Convergent by the Integral Test (g) Note that the series is $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n}$. Use the Alternating Series Test with $b_n = \frac{1}{n}$. The sequence b_n has limit 0 and is decreasing. Thus, the series is convergent. (h) Divergent by the Divergence Test
 - (i) Convergent by the Alternating Series Test $(b_n = \frac{2n}{4n^2+1})$ has limit 0 and is decreasing)

- (j) Note that the series is $\sum_{n=1}^{\infty} \frac{n}{2^n}$. Use the Ratio Test. The limit from the test is $\frac{1}{2}$ which is less than 1 and so the series is convergent.
- (k) Convergent by the Ratio Test (limit from the test is 0 which is less than 1)
- (l) Convergent by the Root Test (limit from the test is 0 which is less than 1)
- 4. Convergence of Power Series. Series converges for (a) -1/4 < x < 1/4 (b) $-1 \le x < 3$ (c) All values of x (d) $-1/3 \le x < 1/3$ (e) $-1 \le x < 5$.
- 5. Power Series Expansion. (a) $e^{2x} = \sum_{n=0}^{\infty} \frac{2^n x^n}{n!}$ (b) $xe^{2x} = \sum_{n=0}^{\infty} \frac{2^n x^{n+1}}{n!}$ (c) $\frac{1}{1-x^2} = \sum_{n=0}^{\infty} x^{2n}$ (d) $\frac{1}{1+x} = \sum_{n=0}^{\infty} (-1)^n x^n$ (e) $\sin 3x = 3x \frac{3^3 x^3}{3!} + \frac{3^5 x^5}{5!} \frac{3^7 x^7}{7!} + \dots = \sum_{n=0}^{\infty} \frac{(-1)^n 3^{2n+1} x^{2n+1}}{(2n+1)!}$. (f) $e^{x^2} = \sum_{n=0}^{\infty} \frac{x^{2n}}{n!} \Rightarrow \int_0^x e^{x^2} dx = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{n!(2n+1)}$.
- 6. Applications of Taylor Polynomials. (a) $1+x+x^2/2+x^3/6$. $e^{0.3}\approx 1.3495$ (b) $0+x+0-x^3/6+0=x-x^3/6$. $\sin(0.2)\approx .1987$ (c) $0+x+x^2$. $e^{1/2}\sin(1/2)\approx .75$ (d) $f(2.1)\approx 5+3(.1)+1/2(.1)^2=5.305$ (e) $f(1.9)\approx 5+3(-.1)+(1/2)(-.1)^2+1/12(-.1)^3=4.705$ (f) $f(1.01)\approx -1-1(.01)+2/24(.01)^4=-1.00999\approx -1.01$
 - (g) $f(v) = e^{\frac{hv}{kT}} 1 \Rightarrow f'(v) = \frac{h}{kT}e^{\frac{hv}{kT}} \Rightarrow f''(v) = \frac{h^2}{k^2T^2}e^{\frac{hv}{kT}}$. Thus f(0) = 1 1 = 0, $f'(0) = \frac{h}{kT}$, $f''(0) = \frac{h^2}{k^2T^2}$. So $f(v) \approx \frac{hv}{kT} + \frac{h^2v^2}{2k^2T^2} = \frac{hv(2kT + hv)}{2k^2T^2}$.
 - (h) $\frac{1}{(1-x)^2} \approx -1 2x 3x^2$ and $\frac{1}{(1+x)^2} \approx -1 + 2x 3x^2 \Rightarrow E = \frac{kq}{r^2} \left(-1 + 2\frac{d}{r} 3\frac{d^2}{r^2} + 1 + 2\frac{d}{r} + 3\frac{d^2}{r^2} \right) = \frac{4kqd}{r^3}$.
- 7. Lines and Planes. (a) x = 1 + t y = 3t z = 6 + t (b) x = 3 y = 1 + t z = -1 5t (c) 3x 7z = -9 (d) x + y + z = 2
- 8. Curves in Space. (a) Tangent: x=1, y=t, z=2-t. Length: 1.91 (b) i) $y=4\cos t, z=4\sin t, x=8-y^2-z=8-16\cos^2 t-4\sin t$. ii) (-8,-4,0) corresponds to $t=\pi$. Plugging π in derivative gives you $\langle 4,0,-4\rangle$. Tangent line: x=4t-8 y=-4 z=-4t. iii) (4,0,4) corresponds to $t=\pi/2$ and (-8,-4,0) to $t=\pi$. The length is 14.515.
- 9. Partial Derivatives.
 - (a) $z_x = 2axe^{x^2-xy} + ax^2e^{x^2-xy}(2x-y) = a(2x+2x^3-x^2y)e^{x^2-xy}, z_y = ax^2e^{x^2-xy}(-x) = -ax^3e^{x^2-xy}$. Then $z_{xx} = a(2+6x^2-2xy)e^{x^2-xy} + a(2x+2x^3-x^2y)e^{x^2-xy}(2x-y)$ and $z_{yy} = -ax^3e^{x^2-xy}(-x) = ax^4e^{x^2-xy}$. Differentiating z_x with respect to y get $z_{xy} = a(-x^2)e^{x^2-xy} + a(2x+2x^3-x^2y)e^{x^2-xy}(-x) = a(-x^2-2x^2-2x^4+x^3y)e^{x^2-xy} = a(-3x^2-2x^4+x^3y)e^{x^2-xy}$. Alternatively, differentiating z_y with respect to x get $z_{xy} = -3ax^2e^{x^2-xy} ax^3e^{x^2-xy}(2x-y) = a(-3x^2-2x^4+x^3y)e^{x^2-xy}$.
 - (b) $z_x = \ln(xy^2) + 1$, $z_y = 2x/y$, $z_{xx} = 1/x$, $z_{xy} = z_{yx} = 2/y$, $z_{yy} = -2x/y^2$
 - (c) $z_x = -(y^2 + 2xz)/(2yz + x^2)$, $z_y = -(2xy + z^2)/(2yz + x^2)$. At (1, 1, 1), $z_x = -1$, $z_y = -1$.
 - (d) $z_x = -(1 + \sin(x + y + z))/(-y + \sin(x + y + z))$ and $z_y = -(-z + \sin(x + y + z))/(-y + \sin(x + y + z))$. At (0, 1, -1), $z_x = 1$ and $z_y = 1$.
- 10. Tangent planes. (a) 8x+10y-z=9 (b) $F_x=2x, F_y=4y, F_z=6z$. At (4,-1,1) this produces vector $\langle 8,-4,6\rangle$. The tangent plane is 4x-2y+3z=21. (c) $F_x=y^2+2xz, F_y=2xy+z^2, F_z=2yz+x^2$. At (1,1,1) this produces vector $\langle 3,3,3\rangle$. The tangent plane x+y+z=3.

- 11. Linear Approximation. (a) $f(.9, 1.99) \approx 2.92$ (b) $f(1.95, 1.08) \approx 2.847$
- 12. Applications.
 - (a) -.27 liter per second (b) 2 degrees Celsius per second
 - (c) i) 100+2(52-50)+4(73-70)=116 flowers. ii) $N_t = N_S S_t + N_T T_t = 2(-1/4) + 432/25 = 4.62$ flowers/day. (d) $(0,0,\pm 1)$
 - (e) Equations: $yz 2\lambda y 2\lambda z = 0$, $xz 2\lambda x 2\lambda z = 0$, $xy 2\lambda x 2\lambda y = 0$, 2xy + 2yz + 2xz = 64. If solved, the equations would yield: $x = y = z = 4\sqrt{6}/3$ cm.
 - (f) Equations: $y + 2z yz\lambda = 0$, $x + 2z xz\lambda = 0$, $2x + 2y xy\lambda = 0$, xyz = 32,000. (If solved, the equations would yield: square base of side x = y = 40 cm, height z = 20 cm.)
- 13. Maximum and Minimum Values. (a) Maximum f(-1, 1/2) = 11 (b) Minimum f(0, 0) = 4, saddle points $(\pm \sqrt{2}, -1)$
- 14. Lagrange Multipliers. (a) Max. $f(\pm 1, 0) = 1$, min. $f(0, \pm 1) = -1$ (b) Max. f(1, 3, 5) = 70, min. f(-1, -3, -5) = -70
- 15. Double Integrals. (a) $\frac{9}{20}$ (b) 2.86 (c) $\frac{147}{20}$ (d) mass = 6, center of mass = $(\frac{3}{4}, \frac{3}{2})$
- 16. The Volume. (a) $\frac{1}{6}$ (b) $\frac{81\pi}{2}$ (c) $\frac{5\pi}{6}$ (d) 162π
- 17. Surface Area. Parametric Surfaces.
 - (a) $3\sqrt{14}$ (b) 30.85 (c) Plane 3x y + 3z = 3
 - (d) Parameterization: $x = r \cos t$, $y = r \sin t$, $z = \sqrt{x^2 + y^2} = \sqrt{r^2} = r$. The length of the cross product is $\sqrt{2}r$. The surface area is $5\pi\sqrt{2}$.
 - (e) Parameterization: $x=2\cos t,\,y=y,\,z=2\sin t.$ Bounds: $0\leq t\leq 2\pi,\,0\leq y\leq 5.$ Length of the cross product is 2. Thus the double integral is $2\pi\cdot 5\cdot 2=20\pi.$
- 18. Triple Integrals and volume. (a) $\frac{1}{10}$ (b) 12π (c) $\frac{4\pi}{5}$ (d) $\frac{15\pi}{16}$ (e) 40π
- 19. Line Integrals. (a) 1638.4 (b) 102.68 (c) 17/3 (d) $\int_{C_1} = -44$, $\int_{C_2} = 67.83$. So, $\int_C = 67.83 44 = 23.83$
 - (e) Let C_1 be a line from (1,0,0) to (0,1,0), C_2 a line from (0,1,0) to (0,0,1) and C_3 a line from (0,0,1) to (1,0,0). Find that $\int_{C_1} = \frac{-1}{3}$, $\int_{C_2} = \frac{-1}{3}$, and $\int_{C_3} = \frac{-1}{3}$. Thus $\int_{C} = \int_{C_1} + \int_{C_2} + \int_{C_3} = -1$.
 - (f) C has parametrization $x = \cos t$, $y = \sin t$, $z = 2 y = 2 \sin t$, $0 \le t \le 2\pi$. $\int_C = \int_C -y^2 dx + x dy + z^2 dz = \int_0^{2\pi} \sin^3 t dt + \cos^2 t dt + (2 \sin t)^2 \cos t dt = \pi$.
- 20. Potential. Independence of Path. (a) $F = \frac{1}{4}x^4y^4 + y^2 + c$, $\int_C = F(1,2) F(0,1) = 7$ (b) F = xy + yz + c, $\int_C = F(8,3,-1) F(2,1,4) = 15$ (c) $F = x^2y + z^2x + y^2z + 2y + 3z + c$, $\int_C = F(0,1,4) F(1,0,2) = 8$.
- 21. Green's Theorem. (a) $\frac{1}{6}$ (b) $\frac{14}{3}$ (c) e-1 (d) 0
- 22. Curl and Divergence. (a) $\operatorname{div}\vec{f}=z+xz$, $\operatorname{curl}\vec{f}=\langle -y(x+2),x,yz\rangle$ (b) $\operatorname{div}\vec{f}=1$, $\operatorname{curl}\vec{f}=\langle 0,0,0\rangle$