Calculus 3
Lia Vas

Space Curves

Recall the parametric equations of a curve in xy-plane and compare them with parametric equa-
tions of a curve in space.

Parametric curve

Parametric curve

: : curve C
in plane in space
x = x(t) x = x(t)
y=y(t) y=y(t)
z = 2(t)

Given its parametric equations x = z(t), y = y(t), z = z(t), a curve C can be considered to be a
vector function, that is a function whose domain is in an interval of real numbers and the range is

a set of vectors:
(1) = (x(t), y(t), 2(1)).

In this case, the curve C' is the graph of the vector function 7(¢). Any value t = ¢, from the domain
of r(t) corresponds to a point (zo, yo, z0) on the curve C. \

The derivative of a vector function 7 =
(x(t), y(t), z(t)) is the vector function

() = (1), ¥(t), ()

At point (xg, o, 20) which corresponds to the
value ty of parameter ¢, the value of the derivative
™ (tg) = (2'(to),y (to), 2'(to)) represents the ve-
locity vector of the tangent line at (xg, 3o, 20)-

point (Xo, Yo, Z0)
t=t0

curve C tangent

line

Note the analogy with the two-dimensional scenario.

To find a tangent line to the curve
x=ux(t), y =y(t), z= z(t) at t = to, use

Point: (z(to), y(to), 2(to)),
Direction vector: (2/(tg), v (to), 2’ (to)).

To find a tangent line to the curve
x=2xz(t), y =y(t) at t = tg, use
Point: (z(to), y(to)),
Direction vector: (z'(to), v (t0))-

An equation of the tangent line: An equation of the tangent line:

x = x(ty) + 2 (to)t x = x(ty) + ' (to)t
y =y(to) +y'(to)t y =y(to) +y'(to)t
z = 2(to) + 2 (to)t




Recall that the length L of parametric curve z = x(t),y = y(¢) with continuous derivatives on an
interval a <t < b can be obtained by integrating the length element ds from a to b.

b
L:/ ds.

The length element ds on a sufficiently small
interval can be approximated by the hypotenuse
of a triangle with sides dr and dy and so

ds? = da? + dy* = ds = de?+dy? =
V(@ ()2 + (y/(t))2dt.

Analogously, the length element of a space curve satisfies ds?> = da? + dy? + dz? and so ds =
VAT +dy? + A2 = \J(2/(1)* + (v (1) + (#(t))dt.

The expression \/(91;’(15))2 + (1 (1) + (2 (1))? beginning t=a
represents the length of the derivative vector
=/

7' = (a',y',2'). Thus the length of a space curve end t=b
on the interval a < ¢ < b can be found as

b b length L
L= [ ds= [ |F'(t)|dt=

a a

/ab (x’(t))2+(y’(t))2+(z’(t))%lt,

Compare again the two and three dimensional formulas.

curve C

The length of the curve The length of the curve
7= (x(t),y(t)) for a <t <bis 7= (x(t),y(t),z(t)) for a <t <bis

L= [\ @ () + (' (0)%dt = [ 7 (Dlde | L= [21/(@(1)? + (v (1)* + (/(£)%dt = [7 |7(t)]dt

Practice Problems.

1. Describe the following curves. For those without parametric representation, find equations of
parametric equations.

(a) The curve given by x = 1+t, y =2 —2t, z = 14 2t.
(b) The line segment from (1, 2, -4) to (3, 0, 1).

(c) The curve given by z = cost, y = sint, z = 2.

(e) The curve in the intersection of the cylinder 22 + y? = 1 with the plane y + z = 2.
(

(g) The boundary of the part of the paraboloid z = 4 — x? — y? in the first octant.

)
)
)
(d) The curve given by = = cost, y = sint, z = t.
)
f) The triangle in the boundary of the part of the plane 3z + 2y + z = 6 in the first octant.
)
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D.

For the following curves, find an equation of the tangent line at the point where t = 0. Find
the normalization of a direction vector at t = 0.

(a) The curve given by x = cost, y = sint, z = t.

(b) The curve in the intersection of the cylinder 2% + y? = 1 with the plane y + z = 2. Use

the parametrization of this curve from problem 1 (e).

For the following curves, find the length for 0 < ¢ < 5. Use the calculator to evaluate the
integral in part (b).

(a) The curve given by x = cost, y = sint, z = t.

(b) The curve in the intersection of the cylinder 2% + y? = 1 with the plane y + z = 2. Use

the parametrization of this curve from problem 1 (e).

Consider the curve C which is the intersection of the surfaces
?+y?=9 and 2=1-—y>2%

a) Find the parametric equations that represent the curve C.
p q p
(b) Find the equation of the tangent line to the curve C' at point (0,3, —8).

(c¢) Find the length of the curve from (3,0,1) to (0,3,—8). You can use the calculator to
evaluate the integral that you are going to get.

Consider the curve C' which is the intersection of the surfaces
V¥ +22=16 and 2=8-—19%— =z

(a) Find the parametric equations that represent the curve C.
(b) Find the equation of the tangent line to the curve C at point (-8, —4,0).

(c¢) Find the length of the curve from (4,0,4) to (—8,—4,0). Use the calculator to evaluate
the integral that you are going to get.

6. Find the length of the boundary of the part of the paraboloid z = 4 —? — 2 in the first octant.

Solutions.

1.

(a) This curve is a line passing the point (1,2,1) in the direction of (1, —-2,2).

(b) Any vector colinear with (3,0, 1) — (1,2, —4) = (2, —2,5) can be used as a direction vector of
the line passing two points. You can also use any of (1,2,-4) and (3, 0, 1) for a point on the line.
For example, using (1,2,-4) we obtain parametric equations x = 1 + 2t,y = 2 — 2tz = —4 + 5t.

In this case, the initial point corresponds to ¢ = 0 and the end point to t = 1. So, the line
segment has parametrization x =14 2t,y =2 — 2tz = —4 + 5t with 0 <t < 1.

(¢) The zy-equations x = cost, y = sint, represent a circle of radius 1 in zy-plane. Thus,
the curve is on the cylinder determined by this circle. The z-equation z = 2 represents the
horizontal plane passing 2 on the z-axis. So, this curve is the intersection of the cylinder with
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the horizontal plane: it is a circle of radius 1 centered on the z-axis in the horizontal plane
passing z = 2.

(d) The zy-equations x = cost, y = sint, represent a circle of radius 1 in zy-plane. Thus,
the curve is on the cylinder determined by this circle. The equation z = t has an effect that
z-values increase as t-values increase. Thus, this curve is a helix spiraling up the cylinder as t
increases. Use Matlab to get a precise graph.

(e) The curve is the intersection of a cylinder with an inclined plane. So, the curve is an ellipse.

The zy-equations represent a cylinder based at the circle of radius 1 in xy-plane. Thus, x and
y can be parametrized as x = cost, y = sint. To get the z equation, solve the plane equation
y+ 2z =2 for z, get 2 = 2 — y and substitute that y = sint. Thus z = 2 — sint. This gives us
an equation of the ellipse to be x = cost, y = sint, 2 = 2 — sint. You can use Matlab to get a

x=1cos(t)y = 1 sin(), 2= 240t x=1c0s(lhy = 1sint), z =1 x=1costly = 1 sin(t), z = 2-sin()

1 (c) Circle in a horizontal plane 1 (d) Helix 1 (e) Ellipse

(f) The triangle in the boundary of the part of the plane 3z42y+2z = 6 in the first octant consists
of the three line segments, each of which will have a different set of parametric equations. The
intersection in zy-plane z = (0 can be obtained by plugging z = 0 in 3z 4+ 2y 4+ 2z = 6 and using
x, for example, as a parameter. Thus, we have part of the line 3z +2y =6 = y = 3 — %x
between its two intercepts (2,0) and (0,3) and so 0 <z < 2

3 3
x:x,y:3—§x,z:0orx:t,y:3—§t,z:0WithO§t§2.
Alternatively, the parametric equations of this line can be obtained as equations of a line passing
x and y intercepts of the plane 3z+2y+2z = 6, (2, 0, 0) and (0,3, 0). Using (-2,3,0) as direction
vector and (0,3,0) as a point on the line, we obtain the equations x = —2t,y =3+ 3t,z =0
with —1 <t <0.

Similarly, you can find equations of the remaining two sides of the triangle. The intersection of
xz-plane y = 0 can be obtained by plugging y = 0 in 3z + 2y + z = 6 and using z, for example,
as a parameter. Thus, we have 3r +2 =6 =2 =6 -3z andsox = 2,y = 0,2 = 6 — 3z or
r=t,y=0,2=6—3t with 0 <t < 2.

The intersection of yz-plane x = 0 can be obtained by plugging x = 0 in 3x +2y + 2 = 6
and using y, for example, as a parameter. Thus, we have 2y + 2z = 6 = 2 = 6 — 2y and so
r=0y=y,z2=6—2yorx=0,y=t,2z=6—2t with 0 <t < 3.

(g) The boundary of the part of the paraboloid z = 4—z%—? in the first octant consists of three
curves, each of which will have a different set of parametric equations. The parametrizations

4



can be obtained by considering intersections with three coordinate planes x = 0,y = 0, and
z = 0 respectively.

The intersection in zy-plane z = 0 is a circle 0 = 4— 2% —y? = 2%+y? = 4 which has parametric
equations x = 2cost,y = 2sint. Since we are considering just the part with x > 0 and y > 0,
we have that 0 < ¢ < g Thus, this curve has parametric equations

o= 2cost,y = 2sint, z = 0 with 0 < t < g
The intersection in zz-plane y = 0 is a parabola z = 4 — 22 with 0 < z < 2. Using z as a

parameter produces parametric equations ¢ = x,y =0,z =4 —22orx =t,y = 0,2 = 4 — 2
with 0 < ¢ < 2.

The intersection in yz-plane x = 0 is a parabola z = 4 — y? with 0 < y < 2. Using y as a
parameter produces parametric equations v = 0,y =9,z =4 —y>ora =0,y = t, 2 = 4 — 2
with 0 <t < 2.

. (a) To find a point on the tangent, plug ¢ = 0 in the parametric equations of the curve. Get
x =1,y =0,z = 0. To get a direction vector, plug ¢t = 0 in the derivative ' = —sint, vy = cost,
z' = 1. Get (0,1,1). So, the equation of the tangent is z = 1+ 0t, y =0+ 1t, 2 =0+ 1t =
r=1y=t z=1t.

The direction vector (0,1, 1) has length v/2 so its normalization is (0, %, %)

(b) Use the parametric equations from problem 1 (d) x = cost, y = sint, z = 2 —sint. To find
a point on the tangent, plug t = 0 in the parametric equations. Get x = 1,y = 0,z = 2. To
get a direction vector, plug ¢ = 0 in the derivative 2’ = —sint, y = cost, 2/ = —cost. Get
(0,1, —1). So, the equation of the tangent is z = 1+0t,y =0+ 1t, z =2 -1t = x =1,y =,
z=2—1.

The direction vector (0,1, —1) has length /2 so its normalization is (0,

).

(1)2dt =

Y

Sl-
Sl

+

() L= J77 @ (0)2 + /(D) + (2/(0)2dt = 77 /(= sin1)? + (cos)?
P NVTF Tdt = V2 7 dt = V2=

(b) L =[5/ \J(@/ ()2 + (' ()2 + (2/(1)2dt = [ \/(—sint)? + (cost)? + (— cost)?dt. Using
the calculator, L ~ 1.91.

. (a) You can parametrize the cylinder 22 + y*> = 9 by x = 3cost and y = 3sint. From the
equation z = 1 — y%, you obtain that z = 1 — (3sint)? = 1 — 9sin®¢.

(b) To find a direction vector, we need to plug t-value that corresponds to the point (0,3, —8)
into the derivative ' = —3sint, 3y = 3cost, 2/ = —18sintcost. To find this t-value, set
x = 0,y = 3 and 2z = —8 and make sure that you find the ¢-value that satisfies all three
equations. From the first equation x = 3cost = 0 = ¢ = 7. From the second y = 3sint = 3 =
t = 5. The value t = 7 satisfies the third equation z =1 — QSiHQg =1—-9= -8 Thus, t = 7.
Plugging this value in the derivatives produces the direction vector (—3,0,0). So, the tangent
lineisx=0—-3t,y=3+0t, 2=—-8+40 = x=-3t,y=3, z=—-8.



(c) From part (b), we have that ¢ = 7 corresponds to the point (0,3, —8). Thus, 7 is the
upper bound. To find the lower bound, determine the ¢-value that corresponds to (3,0,1). Set
x =3,y = 0 and z = 1 and make sure that you find the t-value that satisfies all three equations.
From the first equation x = 3cost = 3 = cost = 1 = t = 0. From the second y = 3sint =0 =
sint =0 = t = 0. The value t = 0 satisfies the third equation z =1 —9sin?0=1—0 = 1. So,

the bounds of integration are 0 to 7.

The length is L = J7/* \/(—3 sint)? 4 (3cost)? 4+ (—18sint cost)?dt = 10.48.

. (a) You can parametrize the cylinder y* + 2% = 16 by y = 4cost and z = 4sint. From the
equation x = 8 — y* — 2, you obtain that z = 8 — (4cost)? — 4sint = 8 — 16 cos®t — 4sint.

(b) To find a direction vector, we need to plug t-value that corresponds to the point (=8, —4,0)

into the derivative o’ = 32costsint — 4cost, y = —4sint, 2/ = 4cost. To find this t-value,
set + = —8,y = —4 and z = 0 and make sure that you find the t-value that satisfies all
three equations. From the second equation y = 4cost = —4 = cost = —1 = t = 7. From

the third z = 4sint = 0 = sint = 0 = ¢t = 0 and ¢ = 7. The value ¢t = 7 agrees with
the t-value we obtained using the y-equation. Plugging this value in the z-equation gives you
r =8 —16cos’m — 4sinT = 8 — 16 = —8 which agrees with the x-coordinate of (—8,—4,0).
Thus, t = 7.

Plugging this value in the derivatives produces the direction vector (4,0, —4). So, the tangent
lineisx =—-8+44t,y=—-4+0t, 2=0—4t = x = -8+ 4t, y = —4, z = —4t.

(c¢) From part (b), we have that ¢ = 7 corresponds to the point (=8, —4,0). Thus, 7 is the
upper bound. To find the lower bound, determine the ¢-value that corresponds to (4,0,4).
Set x = 4,y = 0 and z = 4 and make sure that you find the t-value that satisfies all three
equations. From the second equation y = 4cost = 0 = cost = 0 = ¢ = £7. From the
third z = 4sint =4 = sint =1 =t = So the value —7 obtained from the y-equation
can be discarded and we obtain that t = Plugging this value in the x-equation gives you
r =8—16cos® 5 —4sinZ = 8 — 4 = 4 which agrees with the z-coordinate of (4,0,4). Thus,

the lower bound is ¢t = g

s
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The length is L = [/, \/(32 costsint —4cost)? + (—4sint)? + (4 cost)?dt = 14.515.

. Recall that we found parametric equations of the three curves in the intersection to be
x=2cost,y=2sint,z=0 with0 <t <7,
r=t,y=02=4—12 with 0 < ¢ < 2, and
r=0y=tz=4—1t2 with 0 < ¢ < 2.
The three derivative vectors and length elements are
' = —2sint,y =2cost,? =0 = ds=+V4sin’t+ 4cos?tdt = /Adt = 2dt

=1y =02 =-2t= ds = /1 + 4t2dt, and
=0,y =172 =-2t= ds = /1 + 4t2dt.

The total length can be calculated as a sum of the three integrals below. Using the calculator
for the second two produces

/2 2 2
/ 2dt + / V1t 482dt + / VI + 424t = 7 + 4.65 + 4.65 ~ 12.44.
0 0 0



