
Calculus 3
Lia Vas

Space Curves

Recall the parametric equations of a curve in xy-plane and compare them with parametric equa-
tions of a curve in space.

Parametric curve Parametric curve
in plane in space

x = x(t) x = x(t)
y = y(t) y = y(t)

z = z(t)

Given its parametric equations x = x(t), y = y(t), z = z(t), a curve C can be considered to be a
vector function, that is a function whose domain is in an interval of real numbers and the range is
a set of vectors:

~r(t) = 〈x(t), y(t), z(t)〉.
In this case, the curve C is the graph of the vector function ~r(t). Any value t = t0 from the domain
of ~r(t) corresponds to a point (x0, y0, z0) on the curve C.

The derivative of a vector function ~r =
〈x(t), y(t), z(t)〉 is the vector function

~r ′(t) = 〈x′(t), y′(t), z′(t)〉

At point (x0, y0, z0) which corresponds to the
value t0 of parameter t, the value of the derivative
~r′(t0) = 〈x′(t0), y′(t0), z′(t0)〉 represents the ve-
locity vector of the tangent line at (x0, y0, z0).

Note the analogy with the two-dimensional scenario.

To find a tangent line to the curve To find a tangent line to the curve
x = x(t), y = y(t) at t = t0, use x = x(t), y = y(t), z = z(t) at t = t0, use

Point: (x(t0), y(t0)), Point: (x(t0), y(t0), z(t0)),
Direction vector: 〈x′(t0), y′(t0)〉. Direction vector: 〈x′(t0), y′(t0), z′(t0)〉.

An equation of the tangent line: An equation of the tangent line:

x = x(t0) + x′(t0)t x = x(t0) + x′(t0)t
y = y(t0) + y′(t0)t y = y(t0) + y′(t0)t

z = z(t0) + z′(t0)t
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Recall that the length L of parametric curve x = x(t), y = y(t) with continuous derivatives on an
interval a ≤ t ≤ b can be obtained by integrating the length element ds from a to b.

L =
∫ b

a
ds.

The length element ds on a sufficiently small
interval can be approximated by the hypotenuse
of a triangle with sides dx and dy and so
ds2 = dx2 + dy2 ⇒ ds =

√
dx2 + dy2 =√

(x′(t))2 + (y′(t))2dt.

Analogously, the length element of a space curve satisfies ds2 = dx2 + dy2 + dz2 and so ds =√
dx2 + dy2 + dz2 =

√
(x′(t))2 + (y′(t))2 + (z′(t))2dt.

The expression
√

(x′(t))2 + (y′(t))2 + (z′(t))2

represents the length of the derivative vector
~r ′ = 〈x′, y′, z′〉. Thus the length of a space curve
on the interval a ≤ t ≤ b can be found as

L =
∫ b

a
ds =

∫ b

a
|~r ′(t)|dt =

∫ b

a

√
(x′(t))2 + (y′(t))2 + (z′(t))2dt.

Compare again the two and three dimensional formulas.

The length of the curve The length of the curve
~r = 〈x(t), y(t)〉 for a ≤ t ≤ b is ~r = 〈x(t), y(t), z(t)〉 for a ≤ t ≤ b is

L =
∫ b
a

√
(x′(t))2 + (y′(t))2dt =

∫ b
a |~r ′(t)|dt L =

∫ b
a

√
(x′(t))2 + (y′(t))2 + (z′(t))2dt =

∫ b
a |~r ′(t)|dt

Practice Problems.

1. Describe the following curves. For those without parametric representation, find equations of
parametric equations.

(a) The curve given by x = 1 + t, y = 2− 2t, z = 1 + 2t.

(b) The line segment from (1, 2, -4) to (3, 0, 1).

(c) The curve given by x = cos t, y = sin t, z = 2.

(d) The curve given by x = cos t, y = sin t, z = t.

(e) The curve in the intersection of the cylinder x2 + y2 = 1 with the plane y + z = 2.

(f) The triangle in the boundary of the part of the plane 3x+ 2y + z = 6 in the first octant.

(g) The boundary of the part of the paraboloid z = 4− x2 − y2 in the first octant.
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2. For the following curves, find an equation of the tangent line at the point where t = 0. Find
the normalization of a direction vector at t = 0.

(a) The curve given by x = cos t, y = sin t, z = t.

(b) The curve in the intersection of the cylinder x2 + y2 = 1 with the plane y + z = 2. Use
the parametrization of this curve from problem 1 (e).

3. For the following curves, find the length for 0 ≤ t ≤ π
2
. Use the calculator to evaluate the

integral in part (b).

(a) The curve given by x = cos t, y = sin t, z = t.

(b) The curve in the intersection of the cylinder x2 + y2 = 1 with the plane y + z = 2. Use
the parametrization of this curve from problem 1 (e).

4. Consider the curve C which is the intersection of the surfaces

x2 + y2 = 9 and z = 1− y2.

(a) Find the parametric equations that represent the curve C.

(b) Find the equation of the tangent line to the curve C at point (0, 3,−8).

(c) Find the length of the curve from (3, 0, 1) to (0, 3,−8). You can use the calculator to
evaluate the integral that you are going to get.

5. Consider the curve C which is the intersection of the surfaces

y2 + z2 = 16 and x = 8− y2 − z.

(a) Find the parametric equations that represent the curve C.

(b) Find the equation of the tangent line to the curve C at point (−8,−4, 0).

(c) Find the length of the curve from (4, 0, 4) to (−8,−4, 0). Use the calculator to evaluate
the integral that you are going to get.

6. Find the length of the boundary of the part of the paraboloid z = 4−x2−y2 in the first octant.

Solutions.

1. (a) This curve is a line passing the point (1, 2, 1) in the direction of 〈1,−2, 2〉.
(b) Any vector colinear with 〈3, 0, 1〉−〈1, 2,−4〉 = 〈2,−2, 5〉 can be used as a direction vector of
the line passing two points. You can also use any of (1,2,-4) and (3, 0, 1) for a point on the line.
For example, using (1,2,-4) we obtain parametric equations x = 1 + 2t, y = 2− 2tz = −4 + 5t.

In this case, the initial point corresponds to t = 0 and the end point to t = 1. So, the line
segment has parametrization x = 1 + 2t, y = 2− 2tz = −4 + 5t with 0 ≤ t ≤ 1.

(c) The xy-equations x = cos t, y = sin t, represent a circle of radius 1 in xy-plane. Thus,
the curve is on the cylinder determined by this circle. The z-equation z = 2 represents the
horizontal plane passing 2 on the z-axis. So, this curve is the intersection of the cylinder with
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the horizontal plane: it is a circle of radius 1 centered on the z-axis in the horizontal plane
passing z = 2.

(d) The xy-equations x = cos t, y = sin t, represent a circle of radius 1 in xy-plane. Thus,
the curve is on the cylinder determined by this circle. The equation z = t has an effect that
z-values increase as t-values increase. Thus, this curve is a helix spiraling up the cylinder as t
increases. Use Matlab to get a precise graph.

(e) The curve is the intersection of a cylinder with an inclined plane. So, the curve is an ellipse.

The xy-equations represent a cylinder based at the circle of radius 1 in xy-plane. Thus, x and
y can be parametrized as x = cos t, y = sin t. To get the z equation, solve the plane equation
y + z = 2 for z, get z = 2 − y and substitute that y = sin t. Thus z = 2 − sin t. This gives us
an equation of the ellipse to be x = cos t, y = sin t, z = 2− sin t. You can use Matlab to get a
precise graph.

1 (c) Circle in a horizontal plane 1 (d) Helix 1 (e) Ellipse

(f) The triangle in the boundary of the part of the plane 3x+2y+z = 6 in the first octant consists
of the three line segments, each of which will have a different set of parametric equations. The
intersection in xy-plane z = 0 can be obtained by plugging z = 0 in 3x+ 2y + z = 6 and using
x, for example, as a parameter. Thus, we have part of the line 3x + 2y = 6 ⇒ y = 3 − 3

2
x

between its two intercepts (2,0) and (0,3) and so 0 ≤ x ≤ 2

x = x, y = 3− 3

2
x, z = 0 or x = t, y = 3− 3

2
t, z = 0 with 0 ≤ t ≤ 2.

Alternatively, the parametric equations of this line can be obtained as equations of a line passing
x and y intercepts of the plane 3x+2y+z = 6, (2, 0, 0) and (0,3, 0). Using (-2,3,0) as direction
vector and (0,3,0) as a point on the line, we obtain the equations x = −2t, y = 3 + 3t, z = 0
with −1 ≤ t ≤ 0.

Similarly, you can find equations of the remaining two sides of the triangle. The intersection of
xz-plane y = 0 can be obtained by plugging y = 0 in 3x+ 2y+ z = 6 and using x, for example,
as a parameter. Thus, we have 3x + z = 6 ⇒ z = 6 − 3x and so x = x, y = 0, z = 6 − 3x or
x = t, y = 0, z = 6− 3t with 0 ≤ t ≤ 2.

The intersection of yz-plane x = 0 can be obtained by plugging x = 0 in 3x + 2y + z = 6
and using y, for example, as a parameter. Thus, we have 2y + z = 6 ⇒ z = 6 − 2y and so
x = 0, y = y, z = 6− 2y or x = 0, y = t, z = 6− 2t with 0 ≤ t ≤ 3.

(g) The boundary of the part of the paraboloid z = 4−x2−y2 in the first octant consists of three
curves, each of which will have a different set of parametric equations. The parametrizations
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can be obtained by considering intersections with three coordinate planes x = 0, y = 0, and
z = 0 respectively.

The intersection in xy-plane z = 0 is a circle 0 = 4−x2−y2 ⇒ x2+y2 = 4 which has parametric
equations x = 2 cos t, y = 2 sin t. Since we are considering just the part with x ≥ 0 and y ≥ 0,
we have that 0 ≤ t ≤ π

2
. Thus, this curve has parametric equations

x = 2 cos t, y = 2 sin t, z = 0 with 0 ≤ t ≤ π

2
.

The intersection in xz-plane y = 0 is a parabola z = 4 − x2 with 0 ≤ x ≤ 2. Using x as a
parameter produces parametric equations x = x, y = 0, z = 4 − x2 or x = t, y = 0, z = 4 − t2
with 0 ≤ t ≤ 2.

The intersection in yz-plane x = 0 is a parabola z = 4 − y2 with 0 ≤ y ≤ 2. Using y as a
parameter produces parametric equations x = 0, y = y, z = 4 − y2 or x = 0, y = t, z = 4 − t2
with 0 ≤ t ≤ 2.

2. (a) To find a point on the tangent, plug t = 0 in the parametric equations of the curve. Get
x = 1, y = 0, z = 0. To get a direction vector, plug t = 0 in the derivative x′ = − sin t, y′ = cos t,
z′ = 1. Get 〈0, 1, 1〉. So, the equation of the tangent is x = 1 + 0t, y = 0 + 1t, z = 0 + 1t ⇒
x = 1, y = t, z = t.

The direction vector 〈0, 1, 1〉 has length
√

2 so its normalization is 〈0, 1√
2
, 1√

2
〉.

(b) Use the parametric equations from problem 1 (d) x = cos t, y = sin t, z = 2− sin t. To find
a point on the tangent, plug t = 0 in the parametric equations. Get x = 1, y = 0, z = 2. To
get a direction vector, plug t = 0 in the derivative x′ = − sin t, y′ = cos t, z′ = − cos t. Get
〈0, 1,−1〉. So, the equation of the tangent is x = 1 + 0t, y = 0 + 1t, z = 2− 1t⇒ x = 1, y = t,
z = 2− t.
The direction vector 〈0, 1,−1〉 has length

√
2 so its normalization is 〈0, 1√

2
, −1√

2
〉.

3. (a) L =
∫ π/2
0

√
(x′(t))2 + (y′(t))2 + (z′(t))2dt =

∫ π/2
0

√
(− sin t)2 + (cos t)2 + (1)2dt =∫ π/2

0

√
1 + 1dt =

√
2
∫ π/2
0 dt =

√
2π
2
.

(b) L =
∫ π/2
0

√
(x′(t))2 + (y′(t))2 + (z′(t))2dt =

∫ π/2
0

√
(− sin t)2 + (cos t)2 + (− cos t)2dt. Using

the calculator, L ≈ 1.91.

4. (a) You can parametrize the cylinder x2 + y2 = 9 by x = 3 cos t and y = 3 sin t. From the
equation z = 1− y2, you obtain that z = 1− (3 sin t)2 = 1− 9 sin2 t.

(b) To find a direction vector, we need to plug t-value that corresponds to the point (0, 3,−8)
into the derivative x′ = −3 sin t, y′ = 3 cos t, z′ = −18 sin t cos t. To find this t-value, set
x = 0, y = 3 and z = −8 and make sure that you find the t-value that satisfies all three
equations. From the first equation x = 3 cos t = 0⇒ t = ±π

2
. From the second y = 3 sin t = 3⇒

t = π
2
. The value t = π

2
satisfies the third equation z = 1− 9 sin2 π

2
= 1− 9 = −8. Thus, t = π

2
.

Plugging this value in the derivatives produces the direction vector 〈−3, 0, 0〉. So, the tangent
line is x = 0− 3t, y = 3 + 0t, z = −8 + 0t ⇒ x = −3t, y = 3, z = −8.
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(c) From part (b), we have that t = π
2

corresponds to the point (0, 3,−8). Thus, π
2

is the
upper bound. To find the lower bound, determine the t-value that corresponds to (3, 0, 1). Set
x = 3, y = 0 and z = 1 and make sure that you find the t-value that satisfies all three equations.
From the first equation x = 3 cos t = 3⇒ cos t = 1⇒ t = 0. From the second y = 3 sin t = 0⇒
sin t = 0⇒ t = 0. The value t = 0 satisfies the third equation z = 1− 9 sin2 0 = 1− 0 = 1. So,
the bounds of integration are 0 to π

2
.

The length is L =
∫ π/2
0

√
(−3 sin t)2 + (3 cos t)2 + (−18 sin t cos t)2dt = 10.48.

5. (a) You can parametrize the cylinder y2 + z2 = 16 by y = 4 cos t and z = 4 sin t. From the
equation x = 8− y2 − z, you obtain that x = 8− (4 cos t)2 − 4 sin t = 8− 16 cos2 t− 4 sin t.

(b) To find a direction vector, we need to plug t-value that corresponds to the point (−8,−4, 0)
into the derivative x′ = 32 cos t sin t − 4 cos t, y′ = −4 sin t, z′ = 4 cos t. To find this t-value,
set x = −8, y = −4 and z = 0 and make sure that you find the t-value that satisfies all
three equations. From the second equation y = 4 cos t = −4 ⇒ cos t = −1 ⇒ t = π. From
the third z = 4 sin t = 0 ⇒ sin t = 0 ⇒ t = 0 and t = π. The value t = π agrees with
the t-value we obtained using the y-equation. Plugging this value in the x-equation gives you
x = 8 − 16 cos2 π − 4 sinπ = 8 − 16 = −8 which agrees with the x-coordinate of (−8,−4, 0).
Thus, t = π.

Plugging this value in the derivatives produces the direction vector 〈4, 0,−4〉. So, the tangent
line is x = −8 + 4t, y = −4 + 0t, z = 0− 4t ⇒ x = −8 + 4t, y = −4, z = −4t.

(c) From part (b), we have that t = π corresponds to the point (−8,−4, 0). Thus, π is the
upper bound. To find the lower bound, determine the t-value that corresponds to (4, 0, 4).
Set x = 4, y = 0 and z = 4 and make sure that you find the t-value that satisfies all three
equations. From the second equation y = 4 cos t = 0 ⇒ cos t = 0 ⇒ t = ±π

2
. From the

third z = 4 sin t = 4 ⇒ sin t = 1 ⇒ t = π
2
. So the value −π

2
obtained from the y-equation

can be discarded and we obtain that t = π
2
. Plugging this value in the x-equation gives you

x = 8 − 16 cos2 π
2
− 4 sin π

2
= 8 − 4 = 4 which agrees with the x-coordinate of (4, 0, 4). Thus,

the lower bound is t = π
2
.

The length is L =
∫ π
π/2

√
(32 cos t sin t− 4 cos t)2 + (−4 sin t)2 + (4 cos t)2dt = 14.515.

6. Recall that we found parametric equations of the three curves in the intersection to be

x = 2 cos t, y = 2 sin t, z = 0 with 0 ≤ t ≤ π
2
,

x = t, y = 0, z = 4− t2 with 0 ≤ t ≤ 2, and
x = 0, y = t, z = 4− t2 with 0 ≤ t ≤ 2.

The three derivative vectors and length elements are

x′ = −2 sin t, y′ = 2 cos t, z′ = 0⇒ ds =
√

4 sin2 t+ 4 cos2 tdt =
√

4dt = 2dt

x′ = 1, y′ = 0, z′ = −2t⇒ ds =
√

1 + 4t2dt, and

x′ = 0, y′ = 1, z′ = −2t⇒ ds =
√

1 + 4t2dt.

The total length can be calculated as a sum of the three integrals below. Using the calculator
for the second two produces∫ π/2

0
2dt+

∫ 2

0

√
1 + 4t2dt+

∫ 2

0

√
1 + 4t2dt = π + 4.65 + 4.65 ≈ 12.44.
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