
Differential Equations
Lia Vas

Systems of Differential Equations

A system of n first order differential equations has the form

y′1 = F1(t, y1, . . . , yn), y′2 = F2(t, y1, . . . , yn), . . . , y′n = Fn(t, y1, . . . , yn),

This system is linear if functions F1, F2, . . . , Fn are linear functions of y1, y2, . . . , yn.

In particular, a system of two first order differential equations in two unknown functions x and y
has the form

dx

dt
= f(x, y, t),

dy

dt
= g(x, y, t).

The solution of such system is a parametric function x = x(t) and y = y(t). The curve (x(t), y(t)) is
called a trajectory. It may be helpful to think of the independent variable t as the time and the
depend variables x and y as the position (x, y) in xy-plane. In this case, xy-plane is referred to as
the phase plane.

Autonomous Systems. A system of two equations is autonomous or homogeneous if it is
of the form dx

dt
= f(x, y) and dy

dt
= g(x, y) (that is if the variable t does not appear on the right side).

Just like in one-equation case y′ = f(y), one can analyze the limit of the solutions by setting the right
side of the equation(s) to zero and solving for the dependent variable(s). Just as in one-equation case,
these solutions are called the equilibrium values or points and are also referred to as the steady
states of the system. Also just like in the one-equation case, we are interested in the stability of these
equilibrium points: whether the solutions of the system remain close and converge to the equilibrium
point or diverge from it. This analysis provides the insight in the long-term behavior of the system,
the sensitivity to the initial conditions, the type of the solutions (whether the solutions are periodic
functions, increasing or decreasing functions, etc) and the sensitivity to changes in parameters.

To find the equilibrium values of an autonomous system, set the equations equal to 0 and solve
for points (x, y) which amounts to solving the equations

f(x, y) = 0 and g(x, y) = 0.

Note that this parallels the method for finding equilibrium solutions of the first order autonomous
equation y′ = f(y). Assuming that the point (a, b) is a solution of the equations above, the point
(a, b) is said to be

- asymptotically stable if x→ a and y → b when t→∞ for any value of initial conditions.

- stable if a solution which starts close to the equilibrium point (a, b) stays close to it (but does
not necessarily converge to it).

- unstable if it is not stable.
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Note also that every autonomous system can be converted into a single first order differential
equation. Dividing two autonomous differential equations with each other produces a single equation
with derivative dy

dx
on the left side:

dx

dt
= f(x, y)

dy

dt
= g(x, y) ⇒ dy

dx
=

dy
dt
dx
dt

=
g(x, y)

f(x, y)

Although it may be possible to find solution y = y(x) as a function of x, it is important to keep in
mind that the formula for y(x) is not an oriented curve: all the information related to parameter t
is lost in this way.

In order to obtain the direction of parametric curves in the phase plane one can analyze the
graph in the phase plane together with the graphs of x(t) and y(t) as functions of t. The next several
examples illustrate this method as well as the analysis of asymptotic behavior of the system.

Example 1. Consider the system

dx

dt
= −x and

dy

dt
= −2y.

Its equilibrium point can be obtained from equations −x = 0 and −2y = 0. So (0,0) is the only
equilibrium point.

Note that this system is very simple: it consists of two independent first order equations which
can each be solved independently. By separating the variables, integrating and solving for x and y,
one obtains the solutions x = c1e

−t and y = c2e
−2t (note that it is possible to do this by hand only

because the system is very simple). When t → ∞, x → 0 and y → 0 regardless of the values of c1
and c2. Hence, (0,0) is an asymptotically stable equilibrium point.

One can obtain graphs of several solutions in the phase plane relatively easily in this case, Because
of more complex systems, let us examine how one would graph a few solutions in the phase plane
using Matlab. To start, represent the right side of the system as a vector function of two variables
by f =@(t,y)[-y(1); -2*y(2)]. Recall that y(1) represents x and y(2) represents y. The command
ode45(f, [t0, t1], [a; b]) plots the trajectory in the phase plane with initial conditions x(t0) = a
and y(t0) = b for t0 ≤ t ≤ t1. Repeating this command for sufficiently many values of the initial
conditions a and b creates a plot of solutions in the phase plane which can be used for the analysis
of the system. For example, let us graph the solutions of the given system for 0 ≤ t ≤ 10 and
parameters a and b taking values -3, -2.5, -2, -1.5, ... 2, 2.5, 3. In this case the following script can
be used after the right side is represented as f and the graph below is obtained.

close all; hold on

for a = -3:0.5:3

for b = -3:0.5:3

[t, y] = ode45(f, 0:0.25:10, [a; b]);

plot(y(:,1), y(:,2))

end

end

hold off

axis([-3 3 -3 3])

Stable node: the phase plane graph
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Since x→ 0 and y → 0 for t→∞ for any value of initial conditions (x(0), y(0)), the orientation
of the parametric curves on the graph is towards the origin. For more complex systems, one can
determine the orientation by graphing one or more of them as functions of t.

For example, for x(0) = 1 and y(0) =
3, one obtains the graph on the right by [t,
y]=ode45(f,[0,10],[1;3]); plot(t,y). We can
see that x → 0 and y → 0 when t → ∞ con-
firming our earlier conclusion.

An asymptotically stable point of the same
type as (0,0) in this example is called a stable
node.

One can easily modify the above script to obtain graphs of several solutions in tx-plane or ty-
plane. For example, for the graph in tx-plane, change the command plot(y(:,1), y(:,2)) to plot(t,
y(:,1)). Similarly, for ty-plane, this should be replaced by plot(t, y(:,2)). Change also the axis
command to match the t and x values.

close all; hold on

for a = -3:0.5:3

for b = -3:0.5:3

[t, y] = ode45(f, 0:0.25:10, [a; b]);

plot(t, y(:,1))

end

end

hold off

axis([0 10 -3 3])
Stable node: the tx-plane graph

The graph in the ty-plane is very similar. Note that these are familiar graphs of a stable equilib-
rium solution of a first order autonomous equation.

One can also obtain the formula for the trajectories as y = y(x). Dividing the second equation
by the first, we obtain dy

dx
= −2y
−x = 2 y

x
. Note that this is a separable differential equation dy

y
= 2dx

x
.

The general solutions of this equation has the form y = cx2. Note that this last formula contains no
information on the direction of the parametric curves when parametrized by t.

Example 2. Consider now the system dx
dt

= x and dy
dt

= 2y. The solutions are x = c1e
t and

y = c2e
2t, and, dividing the second equation by the first and solving for y in terms of x produces the

same equation dy
dx

= 2 y
x

and the parabolas y = cx2 as in the previous example. However, in this case,
the trajectories have the opposite direction than in the previous example which can be determined
on the same way as in the previous example: you can use the same script to obtain a plot with
several solutions in the phase plane and then graph one solution to examine stability. The graphs
below contain several solutions in the phase plane, in the tx-plane and in the ty-plane. From the
second and the third graph we can conclude that the solutions diverge away from the equilibrium
point (0,0). Thus, (0,0) is unstable. This type of equilibrium point is called an unstable node.

3



Unstable node: the phase plane, the tx-plane, and the ty-plane graphs

In particular, the limit of x and y for t → ∞ critically depends on the location of the initial
condition (x(0), y(0)). In this example, if (x(0), y(0)) is in the first quadrant, both x and y converge
to positive infinity and if (x(0), y(0)) is in the third quadrant, both x and y converge to negative
infinity. If (x(0), y(0)) is in the second quadrant, x converges to negative and y to positive infinity
and if (x(0), y(0)) is in the fourth quadrant, vice versa.

Example 3. Consider the system dx
dt

= −x + y and dy
dt

= −x − y. The equations −x + y = 0
and −x− y = 0 have a single solution x = 0 and y = 0 so the system has just one equilibrium point
(0,0). To graph the trajectories in the phase plane, represent the right side of the system as a vector
function by f =@(t,y) [-y(1)+y(2);-y(1)-y(2)] and use the same script as before. The output is
the first graph on the figure below. The point (0,0) is called a spiral point in this case.

To figure out the directions of the trajectories, graph one solution or more solutions in tx and
ty-planes as functions of t. For example, for x(0) = 1 and y(0) = 3, you get the second graph below
by using [t, y]=ode45(f,[0,10],[1;3]); plot(t,y)). From this graph, we can see that x → 0 and
y → 0 when t→∞. Graphing more initial conditions if necessary, as it has been done in the tx-plane
on the third graph below, you can see that the trajectories are approaching the equilibrium point
(0, 0) when t → ∞ for every value of the initial conditions (x(0), y(0)). Thus, the spiral point (0,0)
is asymptotically stable.

Stable spiral point: the phase plane, a single (x, y) solution, and the tx-plane graphs

If you need to obtain the explicit formulas of the solutions x and y you can use Matlab command
dsolve or, in this case, you can use Laplace Transform as well. The solutions of this system are
x = c1e

−t cos t+ c2e
−t sin t and y = −c1e−t sin t+ c2e

−t cos t. The fact that the terms e−t converge to
zero for t→∞ and, as a consequence (x, y)→ (0, 0) agrees with our earlier analysis.

Example 4. The system dx
dt

= x+y and dy
dt

= −x+y is an example of the system with unstable
spiral point. The formulas of the solution looks similar as in previous example except that the
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coefficients in the exponent of e are positive. The graphs in the phase plane, the graph of solutions
with initial conditions x(0) = 1 and y(0) = 3, and the graph in the tx-plane are below. The graph
in ty-plane looks similar to the graph in the tx-plane. From the graphs, we conclude that the phase
plane curves are traced away from (0,0). Thus, (0,0) is an unstable point. In this case the limits of
x and y for t→∞ do not exist.

Unstable spiral point: the phase plane, a single (x, y) solution, and the tx-plane graphs

Example 5. The system dx
dt

= −x − y and dy
dt

= −x + y has one equilibrium point (0,0). The

solutions turn out to be linear combination of e
√
2t and e−

√
2t (you can find explicit formulas using

dsolve or using the Laplace transform). Graphing the phase plane and the tx and ty-planes produces
the graphs below. The solutions in the phase plane are hyperbolas. The point (0,0) is called a saddle
point in this case.

Saddle point: the phase plane, the tx-plane, and the ty-plane graphs

By the second and the third graph, the point (0,0) is unstable which is the case for every point
of this type.

However, the direction of the curves in the
phase plane may not be clear, nor the limits of x
and y when t→∞. To figure out the directions of
the parametric curves on this graph, graph one of
them as function of t. For example, for x(0) = 1
and y(0) = 3, you get the graph on the right. We
can see that x→ −∞ and y →∞ when t→∞.

Graphing more initial conditions if necessary and analyzing the hyperbolas in the phase plane,
you can see that they lie in four “quadrants” formed by two lines, one called the asymptote and
the other called the separatrix of the solutions.
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The solution with x(0) = 1 and y(0) = 3 and
any other solution with (x(0), y(0)) above sepa-
ratrix has the direction towards the upper half of
the asymptote. So, in this case x → −∞ and
y → ∞ when t → ∞. On the other hand, if the
initial point (x(0), y(0)) is below the separatrix,
the solutions converge towards the lower half of
the asymptote and so x→∞ and y → −∞ when
t→∞.

Thus, the separatrix “separates” two types of behavior of solutions: converging towards the upper
half of the asymptote and converging towards the lower half of the asymptote. Just like in the case
of an unstable node, this system is critically sensitive to the values of the initial conditions.

Example 6. Consider now the system dx
dt

= −y and dy
dt

= x. Its only equilibrium point is (0,0).
Using Laplace transform (or dsolve in Matlab), you can see that the solutions are linear combinations
of cos t and sin t. To obtain the formula for y as a function of x, you can divide the second equation
by the first, obtain dy

dx
= x
−y ⇒ ydy = −xdx ⇒ y2 = −x2 + 2c ⇒ x2 + y2 = C. So, the solutions

are circles with the center at (0,0). In this case (or similar case when the solutions are ellipses), the
equilibrium point is called a center.

Center point: the phase plane and the tx-plane graphs

The first graph contains solutions in the phase plane and the second graph several solutions in
the tx-plane. The graphs in the ty-plane look very similar.

You can use the graph of single solution to determine the directions of the parametric curves in
the phase plane. For example, graph the solution with x(0) = 1 and y(0) = 3. The first graph are x
and y as functions of t and the second graph below is the graph of (x(t), y(t)) in the phase plane.
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Considering the x-curve (in blue) for example, one can conclude that the x-values are decreasing.
So, starting at (1,3) in the phase plane and considering the circle passing this point, the direction
should be such that the x-values are decreasing and this happens if this circle is traversed counter
clock-wise. Similarly, considering y-values, the first graph indicates that the y-values first increase
for a bit and then decrease. This produces the same conclusion: the direction is counter clock-wise.

Regarding the stability, we can conclude that both x and y do not converge to 0 as t → ∞.
However, they do not diverge to ∞ or −∞ either but stay bounded: starting close to (0,0), the
solutions remain close to 0 also as t increases. Thus, a center point is an example of stable equilibrium
point which is not asymptotically stable.

Summary of the types. To summarize, let us consider the following homogeneous system with
constant coefficients.

dx

dt
= ax + by

dy

dt
= cx + dy

The determinant ∣∣∣∣∣ a− r b
c d− r

∣∣∣∣∣ = (a− r)(d− r)− bc = r2 − (a + d)r + ad− bc

takes over the role of the characteristic equation of a second order equation. Say that r1 and r2
are two solutions (more about this in your Linear Algebra course: in particular, r1 and r2 are the

eigenvalues of the matrix

[
a b
c d

]
of the system). If 0 is not a solution of the above equation in r,

the following cases exhaust all possibilities. Note also that 0 is a solution exactly when (0,0) is not
the only critical point of the system. In this case, the system has infinitely many critical points and
we consider such systems in the last section.

1. r1 and r2 are real and negative.

2. r1 and r2 are real and positive.

3. r1 is real and positive and r2 is real and negative.

4. r1 = p + iq (thus r2 = p− iq) and p is negative.

5. r1 = p + iq (thus r2 = p− iq) and p is positive.

6. r1 = iq (thus r2 = iq) that is, p is zero.

In the first three cases, the solutions x and y are a sum of constant multiples of er1t and er2t

(or er1t and ter1t in case r1 = r2). The constants in front of these functions can be found using the
material of Linear Algebra course (in fact by finding the eigenvectors of r1 and r2).

Let us consider these three cases first. The absence of trigonometric functions in the solutions
indicates that (0,0) is not a spiral or a center point. Hence, the first three cases correspond to stable
and unstable nodes and a spiral point.

1. r1 and r2 are real and negative. In this case, er1t → 0 and er2t → 0 when t → ∞ so any
combination of constant multiples of those two function converges to zero. Because of this
x → 0 and y → 0 when t → ∞ for any initial value of the initial conditions. Thus, (0,0) is
asymptotically stable and so it cannot be an unstable node or a spiral. Thus, (0,0) is a stable
node in this case.
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2. r1 and r2 are real and positive. In this case, er1t → ∞ and er2t → ∞ when t → ∞ so any
combination of constant multiples of those two function depends on the sign of these multiples
and converges to either∞ or −∞. This indicates sensibility to the initial conditions so (0,0) is
unstable. When t→ −∞, er1t → 0 and er2t → 0 which is not the case with a spiral point. So
(0,0) is an unstable node in this case.

3. r1 is real and positive and r2 is real and negative. In this case, er1t → ∞ and er2t → 0 when
t → ∞ and, because of the first limit, (0,0) is unstable. We also have that er1t → 0 and
er2t → ∞ when t → −∞. Thus, for large negative values of t, the terms with er2t dominate
and for large positive values of t, the terms with er1t dominate. The dependence on the initial
conditions and the fact that both for t → ∞ and for t → −∞ x and y are not finite, implies
that (0,0) is a saddle point. The t-value when the domination of er2t ends and the domination
of er1t is the point on the graph of a solution which is closest to (0,0).

Let us now consider the cases when r1 and r2 are complex. If r1 = p + iq (thus r2 = p − iq),
the solutions x and y are a sum of constant multiples of ept cos qt and ept sin qt. The presence of
trigonometric functions in the solution indicates that the system has a stable spiral, an unstable
spiral or a center point.

4. r1 = p + iq (thus r2 = p − iq) and p is negative. In this case, ept → 0 when t → ∞ so both
ept cos qt and ept sin qt converge to 0 also. As a result, any combination of constant multiples
of those two function converges to zero. Because of this x→ 0 and y → 0 when t→∞ for any
initial value of the initial conditions. Thus, (0,0) is asymptotically stable and so it has to be a
stable spiral (an unstable spiral and a center point are not asymptotically stable.

5. r1 = p+ iq (thus r2 = p− iq) and p is positive. In this case, ept →∞ when t→∞ so the limit
of both ept cos qt and ept sin qt is not defined (the values oscillate from −∞ to ∞). Thus, (0,0)
is neither stable nor asymptotically stable and so (0,0) is an unstable spiral.

6. r1 = iq (thus r2 = iq) that is, p is zero. In this case, the solutions x and y are a sum of constant
multiples of cos qt and sin qt. Hence, the values of x and y do not converge to 0 but also do
not diverge to ∞ or −∞. This makes (0,0) not asymptotically stable and also not unstable.
Hence, (0,0) is a center point.

If a system of differential equations is not linear, the system can have more than one equilibrium
point and the graphs in phase plane can be a combination of the types listed above. We study further
examples of both linear and nonlinear systems by considering systems that model situations studied
in biology and population dynamics.

Applications of Systems of Differential Equations

When studying the first order differential equations, we have seen several examples that model
the population growth of a single species. If two species are interacting and their growth is govern
by the outcome of such interaction, their size can be modeled by a system of differential equations.
The most widely used models are competitive hunter model (in which two species compete for
common resources) and predator-prey model in which one population acts as a predator and the
other as pray. Let x(t) and y(t) denote the sizes of two species at time t.
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Competitive Hunter Model. In this model, x is growing at a rate proportional to the size of
x but is decaying at a rate proportional to the number of interactions between the two species. Same
is true for y so the system describing the sizes of the two species is given by

dx

dt
= ax− bxy

dy

dt
= cy − dxy

Note that the first two terms on the right side of the equations mean that in the absence of the other
population, the remaining population increases.

The equilibrium points of this system are
(0, 0) and ( c

d
, a
b
). Note that along the horizontal

line y = a
b
, dx

dt
= 0 and so x is constant in time.

Along the vertical line x = c
d
, dy

dt
= 0 and so y is

constant in time.
If y < a

b
and x < c

d
both derivatives are pos-

itive and so the trajectory is increasing towards
(a
b
, c
d
) and away from (0,0). If y < a

b
and x > c

d
, x

is increasing and y deceasing. If y > a
b

and x < c
d
,

x is decreasing and y increasing. Finally, if y > a
b

and x > c
d
, both derivatives are negative so both

x and y are decreasing.
Competitive Hunter System

The graph above displays several trajectories in the phase plane of one typical competitive hunter
model. The equilibrium point (0,0) is an unstable node and ( c

d
, a
b
) is a saddle point. Thus, there is no

stable equilibrium value meaning that the system is very dependent on the initial conditions. There
is a separatrix approximately close to a line connecting two equilibrium points. It distinguishes two
types of behavior: if the initial conditions are such that x(0) is much larger than y(0) (more precisely
on the left side of the separatrix) the species x survives and y dies out. Otherwise, y survives and
x dies out. Both species survive only if the initial condition point lies exactly on the separatrix. In
this case, the (x, y)-values approach the saddle point and so x → c

d
and y → a

b
when t → ∞. This

off chance is the only case when the two species coexists together. So, in vast majority of cases, one
of the two species dies out. This phenomenon is called the principle of competitive exclusion.

Predator-Prey Model. Let us consider the situation in which two species are such that one
prays on the other. This leads to a predator-prey model. Let x denote the size of prey and y
denote the size of predator population at time t. Then we can assume that x is growing at a rate
proportional to the size of x but is decaying at a rate proportional to the number of interactions
xy between the two species. The rate of y on the other hand, is increasing proportionally to the
number of interactions xy and is decreasing proportionally to the size (because the more predators
there are, less food to support all of them there will be). Thus the system describing the sizes of the
two species is given by

dx

dt
= ax− bxy

dy

dt
= −cy + dxy

Note that the first two terms on the right side of the equations mean that

- In the absence of the predators, prey grows at a rate proportional to the size.
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- In the absence of the prey, the predator dies out – thus the size is decreasing at a rate propor-
tional to the size.

The equilibrium points of this system are (0, 0) and ( c
d
, a
b
). Note that along the horizontal line

y = a
b
, dx

dt
= 0 and so x is constant in time. Along the vertical line x = c

d
, dy

dt
= 0 and so y is constant

in time.

If y < a
b

and x < c
d
, x is increasing and y

deceasing. If y < a
b

and x > c
d
, both derivatives

are positive so the both species are increasing in
size. If y > a

b
and x < c

d
, both derivatives are

negative so the trajectory is decreasing. Finally,
if y > a

b
and x > c

d
, x is decreasing and y in-

creasing. This gives us that the trajectories in
the phase plane revolve about ( c

d
, a
b
) so this equi-

librium point is a center. (0,0) is a saddle point.
Thus, (0,0) is unstable and ( c

d
, a
b
) is stable but

not asymptotically stable (i.e. there is not a sin-
gle x and y value towards which the trajectories
converge when t→∞).

Predator-Prey System

The graph above displays several trajectories in the phase plane of one typical predator-prey
model. The equilibrium point (0,0) is a saddle point and ( c

d
, a
b
) is a center point. The existence of

a center guarantees that no species becomes extinct: an increase in x causes y’s to increase. As a
consequence, x’s are hunted more and they decrease. This causes a decrease of y’s also because the
decrease in the food supplies. The decrease of y’s causes x’s to be hunted less and they start increasing
again and so the cycle continues. This periodicity reflects the fact that the graphs of solutions in
tx and ty planes are periodic curves. The initial conditions impacts the size of the amplitude and
the horizontal and vertical shifts of x and y curves. Thus the species coexist regardless of the initial
conditions.

The predator-prey model is also known as Lotka-Volterra model in honor of its creators Lotka
and Volterra. The basic model can be modified depending on any additional assumptions. Let us
consider two such scenarios.

1. External factors diminishing the growth. If the prey is being hunted by humans or
another species so that its rate is decreasing proportionally to the population size, we can add
the term −kx to the right side of the first equation. This decrease in the size of prey results
in a decrease in the size of the predators as well and it is feasible to assume that the predator
size decreases also proportionally to the population size. So, the term −ry can be added to the
right side of the second equation.

With those assumptions, we arrive to the modified model

dx

dt
= ax− bxy − kx

dy

dt
= −cy + dxy − ry

The additional terms result in the shift of the center point from ( c
d
, a
b
) to ( c+r

d
, a−k

b
). Note that

this means that a moderate hunt of the prey in fact increases the average level of the prey and
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decreases the average level of the predator population. This conclusion is known as Volterra’s
principle.

The above model also applies to the cases when both predator and prey population are de-
creasing as a result of an external force (for example pollution, insecticides etc).

2. Internal competitiveness of the prey. One criticism of the Lotka-Volterra models is that
in the absence of predators, prey is increasing without bound. This can be corrected by getting
the logistic instead of exponential solution for x when y = 0. In this case, the equilibrium point
becomes asymptotically stable (either a node or a spiral). This can be achieved when taking into
consideration the level of internal competitiveness within prey population. In this case, we can
add the term −kx2 to the first equation. Thus the model becomes dx

dt
= ax− bxy−kx2 dy

dt
=

−cy + dxy.

In this case, the center point shifts from ( c
d
, a
b
) to ( c

d
, a
b
− kc

bd
). Note although the added term

diminish the derivative of x, the long term effect is that the y-coordinate of the equilibrium
point decreases.

3. Internal competitiveness of both populations. Another criticism of the basic model is
that the system is unrealistic because it is not asymptotically stable whereas most observed
natural systems tend to converge to equilibrium values. One model that does exhibit oscillations
but has asymptotically stable equilibrium value takes into consideration the level of internal
competitiveness within both species. In this case, we can add the terms −kx2 and −ry2 to the
equations respectively. Thus the model becomes

dx

dt
= ax− bxy − kx2 dy

dt
= −cy + dxy − ry2.

Similar modification of the basic hunter model is possible as well. If we incorporate the internal
competitiveness and assume that the rate of decrease is proportional to the number of the encounters
of members of the same species, the basic model dx

dt
= ax − bxy and dy

dt
= cy − dxy is modified to

become
dx

dt
= ax− bxy − kx2 dy

dt
= cy − dxy − ry2.

Practice Problems.

1. Find all the equilibrium points of the following systems.

(a) dx
dt

= x− x2 − xy dy
dt

= 0.75y − y2 − 0.5xy

(b) dx
dt

= x− x2 − xy dy
dt

= 0.5y − 0.25y2 − 0.75xy

2. Recall that the total charge Q of a simple series circuit with a resistance R, capacitance C, and
an inductance L can be described using Kirchhoff’s second law as a differential equation of the
second order LQ′′ + RQ′ + 1

C
Q = E(t). where E(t) is the impressed voltage at time t. Write

this equation as a system of two first order differential equations.

3. Consider the system dx
dt

= 3x− y and dy
dt

= 4x− 2y.

11



(a) Find the solution of this system with initial conditions x(0) = 1 and y(0) = 3 using the
Laplace Transform.

(b) The point (0,0) is the only equilibrium point of the system. The first graph below rep-
resents the trajectories in the phase plane and the second graph represents the graph of
solutions with initial conditions x(0) = 1 and y(0) = 3.

Use the graphs to classify the equilibrium point (0,0), determine its stability and the
direction of the trajectories in the phase plane. Use your conclusions to determine the
limiting values of the general solutions x and y for t → ∞ with the initial conditions
x(0) = 1 and y(0) = 3.

4. Consider the system dx
dt

= −x + y and dy
dt

= −x− y

(a) Find the solution of this system with initial conditions x(0) = 1 and y(0) = 3 using the
Laplace Transform.

(b) The point (0,0) is the only equilibrium point of the system. The first graph below rep-
resents the trajectories in the phase plane and the second graph represents the graph of
solutions with initial conditions x(0) = 1 and y(0) = 3.

Use the graphs to classify the equilibrium point (0,0), determine its stability and the
direction of the trajectories in the phase plane. Compare your conclusions with the answers
of part (a) to ensure they agree.

5. The sizes R and W of a population of rabbits and a population of wolves are described using
the predator-prey model with (a, b, c, d) = (0.08, 0.001, 0.02, 0.00002).

(a) Find the equilibrium points.

(b) Consider the following graphs of trajectories in the phase plane and the solutions with
initial conditions R(0) = 400 and W (0) = 100 to classify the equilibrium points and
determine their stability. Indicate the direction in which the curves in the phase place are
traced as the parameter increases and discuss the long term tendencies of the system.

12



(c) Using the second graph, estimate the values in between which the solutions oscillate.

6. Suppose that there are two competing species in a closed environment. Let x and y denote the
sizes of two populations at time t measured in thousands.

(a) Assume that the rate of change of the populations is governed by the equations.

dx

dt
= x− x2 − xy

dy

dt
= 0.75y − y2 − 0.5xy

The first graph below contains a multitude of solutions in the phase plane. The graph of
the solutions with initial conditions x(0) = 1 and y(0) = 3 is given on the right.

Find the equilibrium points of the system and discuss their stability. Discuss the long
term behavior and provide biological interpretation.

(b) Assume that the changes in environment cause the coefficients in the second equation to
change. The modified system becomes

dx

dt
= x− x2 − xy

dy

dt
= 0.5y − 0.25y2 − 0.75xy

The first graph below contains a multitude of solutions in the phase plane. The graph of
the solutions with initial conditions x(0) = 1 and y(0) = 3 is in the middle given and the
graph of the solutions with initial conditions x(0) = 3 and y(0) = 1 is on the right.
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Find the equilibrium points of the system and discuss their stability as well as their type.
Discuss the long term behavior and provide biological interpretation.

Solutions.

1. (a) The first equation x−x2−xy = 0 factors as x(1−x− y) = 0. In the first case, x = 0 and
in the second x = 1− y.

In the first case (x = 0), the second equation becomes 0.75y − y2 = 0. This has two
solutions y = 0 and y = 0.75. Thus, the first case yield two equilibrium points (0,0) and
(0, 0.75).

In the second case (x = 1−y), the second equation becomes 0.75y−y2−0.5(1−y)y = 0⇒
y(0.75− y − 0.5 + 0.5y) = 0⇒ y(0.25− 0.5y) = 0⇒ y = 0 and y = 0.5. Since x = 1− y,
the two corresponding x-values are x = 1 and x = 0.5. Thus, the second case produces
two equilibrium points (1,0) and (0.5, 0.5).

So, there are four equilibrium points total (0,0), (0, 0.75), (1,0), and (0.5, 0.5).

(b) The first equation x−x2−xy = 0 factors as x(1−x− y) = 0. In the first case, x = 0 and
in the second x = 1− y.

In the first case (x = 0), the second equation becomes 0.5y−0.25y2 = 0⇒ 1
4
y(2−y) = 0⇒

y = 0 and y = 2. Thus, the first case yield two equilibrium points (0,0) and (0, 2).

In the second case (x = 1−y), the second equation becomes 0.5y−0.25y2−0.75(1−y)y =
0⇒ 1

4
y(2− y − 3 + 3y) = 0⇒ y(2y − 1) = 0⇒ y = 0 and y = 0.5. Since x = 1− y, the

two corresponding x-values are x = 1 and x = 0.5. Thus, the second case produces two
equilibrium points (1,0) and (0.5, 0.5).

So, there are four equilibrium points total (0,0), (0, 2), (1,0), and (0.5, 0.5).

2. Putting y1 = Q and y2 = Q′, the differential equation becomes a system: y′1 = y2 and y′2 =

−R
L
y2 − 1

LC
y1 − E(t)

L
.

3. (a) Let X = L[x] and Y = L[y]. Taking L of both equations gives you sX − 1 = 3X − Y
and sY − 3 = 4X − 2Y. From the first equation Y = −sX + 3X + 1. Plugging that in
the second gives you s(−sX + 3X + 1) − 3 = 4X − 2(−sX + 3X + 1) ⇒ s − 3 + 2 =

s2X − 3sX + 4X + 2sX − 6X ⇒ X = s−1
s2−s−2 = s−1

(s−2)(s+1)
. Thus Y = (−s+3)(s−1)+s2−s−2

s2−s−2 =
3s−5

s2−s−2 = 3s−5
(s−2)(s+1)

. Using partial fraction decomposition X = s−1
(s−2)(s+1)

= 1/3
s−2 + 2/3

s+1
and

Y = 3s−5
(s−2)(s+1)

= 1/3
s−2 + 8/3

s+1
. Taking inverse Laplace transform, x = L−1[X] = 1

3
e2t + 2

3
e−t

and y = L−1[Y ] = 1
3
e2t + 8

3
e−t.

(b) From the first graph, we can conclude that (0,0) is a saddle point (thus unstable). There is
a separatrix (line with positive slope passing the origin). The solutions (x, y) with initial
conditions on the left of the separatrix converge to (−∞,−∞). The solutions (x, y) with
initial conditions on the right of the separatrix converge to (∞,∞). Since (1,3) is on the
right of separatrix, x→∞ and y →∞. The second graph supports this conclusion.

4. (a) Let X = L[x] and Y = L[y]. Taking L of both equations produces sX − 1 = −X +Y and
sY − 3 = −X − Y. From the first equation Y = sX + X − 1. Plugging that in the second
gives you s(sX+X−1)−3 = −X−(sX+X−1)⇒ s2X+2sX+2X = s+4⇒ X = s+4

s2+2s+2
.

Thus, Y = s2+4s+s+4−s2−2s−2
s2+2s+2

= 3s+2
s2+2s+2

.
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Complete the denominator to a sum of squares: s2 +2s+2 = s2 +2s+1+1 = (s+1)2 +1.
Then x = L−1[X] = L−1[ s+1+3

(s+1)2+1
] = L−1[ s+1

(s+1)2+1
+ 3 1

(s+1)2+1
] = e−t cos t + 3e−t sin t and

y = L−1[Y ] = L−1[ 3s+2
s2+2s+2

] = L−1[3(s+1)−1
(s+1)2+1

] = 3e−t cos t− e−t sin t.

(b) From the first graph, we can conclude that (0,0) is an asymptotically stable spiral point.
The second graph supports this conclusion. Hence, x → 0 and y → 0 when t → ∞
regardless of initial conditions. The answers in part (a) agree with this conclusion since
e−t → 0 for t→∞ so x→ 0 and y → 0.

5. The system is dR
dt

= 0.08R− 0.001RW dW
dt

= −0.02W + 0.00002RW.

(a) Set the equations to zero. Multiply the first by 1000 to avoid decimals. Get 80R−RW =
0 ⇒ R(80 − W ) = 0 ⇒ R = 0 or W = 80. In the first case, the second equation is
−0.02W = 0⇒ W = 0 giving you the first critical point (0,0).

In the second case, the second equation is −1.6 + 0.0016R = 0 ⇒ −16000 + 16R = 0 ⇒
R = 16000

16
= 1000. So, (1000, 80) is the second critical point.

(b) From the phase plane graph, we can see that the equilibrium point (1000, 80) is a center.
Thus, it is stable but not asymptotically stable. (0,0) is a saddle point and it is unstable.
The solutions oscillate: x-values about 1000 and y-values about 80. The amplitude of a
solution depends on the initial conditions. The second graph also enables us to determine
the direction of the trajectories: since starting with 400, the x values decrease a bit at
first but then increase and the y-values decrease first starting at 100, we can conclude
that the curves in the xy-plane are traversed in the counter clock-wise direction.

(c) With 400 rabbits and 100 wolves initially, the number of rabbits oscillates between about
460 and 2200 and the number of wolves between about 50 and 200.

6. (a) The system is the same as the one in problem 1 (a). Solving on the same way, we obtain
four critical points (0,0), (0,0.75), (1,0) and (0.5,0.5). The first three involve the extinction
of at least one of the two species and the last one corresponds to co-existence of both.
The trajectories accumulate at (0.5, 0.5) indicating this to be a stable node.

From the second graph, we see the trajectory starting at (1, 3) converges towards (0.5,
0.5) when t→∞. This supports the conclusion that (0.5,0.5) is an asymptotically stable
node. The other three points are unstable (in fact (1, 0) and (0, 0.75) are saddle points
and (0,0) is an unstable node). This means that any trajectory with positive initial x and
y-values approaches (0.5, 0.5). In context of the problem, this means that the number
of both population approach 500 members after some period of time provided that both
populations have at least one member initially.

(b) The system is the same as the one in problem 1 (b). Solving on the same way, we obtain
four critical points (0,0), (0,2), (1,0) and (0.5,0.5).

The graph indicates certain clustering around both (0,2) and (1,0). This indicates that
some trajectories converge to (0,2) and some other to (1,0). These two points are asymp-
totically stable nodes. The points (0,0) and (0.5, 0.5) are unstable. (0.5, 0.5) is a saddle
points and there is a separatrix passing (0.5, 0.5) separating two possible outcomes: if the
initial conditions are above separatrix, then (x, y) → (0, 2). If the initial conditions are
below separatrix, then (x, y)→ (1, 0). The point (0,0) is an unstable node.
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The second two graphs confirm this hypothesis: if x(0) = 1 and y(0) = 3, then (1,3) is
above the separatrix and the solutions converge x to 0 and y to 2, and if x(0) = 3 and
y(0) = 1, then (3,1) is below the separatrix and the solutions converge x to 1 and y to 0.

These conclusions have biological interpretation too: the coexistence is possible just in
the off chance scenario that the initial conditions are exactly on the separatrix. In any
other case, one species eventually overwhelms the other resulting in the extinction of the
other. Which species survives depends on the initial conditions. If the initial conditions
are such that the x’s survive, the trajectory ends up at the node (1,0) resulting in 1000
members of the first and zero of the second population. On the other hand, if the initial
conditions are such that the y’s survive, the trajectory ends up at the node (0,2) resulting
in 2000 members of the second and zero of the first population.

Systems with infinitely many equilibrium points

In some cases, two equations with infinitely many solutions could be obtained when finding
the equilibrium solutions. For example, this happens when the coefficients of one equation are
proportional to the coefficients of the other equation. Note that in this case r = 0 is a solution of
the quadratic equation in r which takes over the role of the characteristic equation (see the section
summarizing the types).

If there are infinitely many critical points, there is no equilibrium point, but an equilibrium line
or every point in the plane is an equilibrium point. The following example illustrates the situation
with an equilibrium line.

Example 1. A car rental company has distributors in Orlando and Tampa. The company
specializes in catering to travel agents who want to arrange tourist activities in both cities. Con-
sequently, a traveler may rent a car in one city and return it in another. The company wants to
determine how much to charge for this drop-off convenience. Let us assume that 60% of the cars
rented in Orlando are returned there and 70% rented in Tampa are returned there. If there are 7000
cars total to be distributed between the two cities, determine the number of cars in either city in the
following two scenarios: (1) There are 2000 cars in Orlando and 5000 cars in Tampa initially. (2)
There are no cars in Orlando and all 7000 in Tampa initially.

Solution. To model this situation, consider the following variables. Let t denote the time, O
the number of cars in Orlando at time t, and T the number of cards in Tampa at time t. The
mathematical model of the system of two differential equations in O and T could be obtained by
considering the following daily tendencies.

- Orlando is loosing 40% cars to Tampa and is gaining 30% of the number of cars from Tampa.

- Tampa is loosing 30% cars to Orlando and is gaining 40% of the number of cars from Orlando.

Thus
dO

dt
= −0.4O + 0.3T and

dT

dt
= 0.4O − 0.3T

When we set the equations to zero, we obtain a system that does not have a unique solution but
infinitely many solutions described by the condition O = 3

4
T. This condition tells us the optimal

ratio of cars in the two cities.
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Thus, if the total number of cars is 7000, O + T = 7000 −→ 3
4
T + T = 7000 −→ 7

4
T = 7000 −→

T = 4000 and O = 3
4
400 = 3000. (More generally, if m is the total number of cars, from O + T = m

we obtain that the limiting values of O and T would be 3
7
m and 4

7
m respectively.)

Thus, we can conclude that in both scenarios O(0) = 2000, T (0) = 5000 and O(0) = 0, T (0) =
7000, the distributions of the cars on the long run is O = 3000 and T = 4000. The graphs of the two
solutions corresponding to two scenarios are on the figure below.

Two Scenarios in Orlando-Tampa Example

If this system of differential equations is solved, for example using Matlab, one obtains the
solutions O = 3c1 + c2e

−.7t and T = 4c1 − c2e
−.7t. When t → ∞, O → 3c1 and T → 4c1. Since

O(0) = 3c1 and T (0) = 4c1, m = 7c1 is the total number of cars. Thus O → 3
7
m and T → 4

7
m when

t→∞.
Note also that dividing the two equations would yield

dO

dT
=

dO
dt
dT
dt

=
−0.4O + 0.3T

0.4O − 0.3T
=
−(0.4O − 0.3T )

0.4O − 0.3T
= −1

Separating the variables produces dO = −dT and integrating both sides produces O = −T +c. Using
again that m is the total number of cars, we obtain that c = m.

Thus, the trajectories in the phase plane are
parallel line segments with slope -1, presented on
the graph on the right. The direction of the tra-
jectories is towards the point (3

7
m, 4

7
m) which is

the intersection of the line O = −T +m with the
line O = 3

4
T . For any given value of initial con-

ditions (T (0), O(0)) the graph of the particular
solution is a line segment on O = −T +m ending
at the intersection of O = −T + m and O = 3

4
T.

Example 2. Consider a three party system with Republicans, Democrats, and Independents.
Assume that in the next election 75% of those that voted Republican again vote Republican, 20% vote
Democrat and 5% vote Independent. Of those that voted Democrat, 80% vote Democrat again, 10%
vote Republican and 10% vote Independent. Of those that voted Independent, 60% vote Independent
again, 10% vote Republican and 30% vote Democrat. Assuming that these tendencies continue from
election to election and that no voters leave the system, estimate the long term tendencies.

Solution. Let R, D and I stands for the number of Republican, Democrat and Independent
voters respectively at the time t. Note that
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1. The rate of change of R : decreases by 25%R and increases by 10% D and by 10% I.

2. The rate of change of D : decreases by 20% D and increases by 20% R and 30% I.

3. The rate of change of I : decreases by 40% I, and increases by 5%R and 10% D.

The system of differential equations that models this is:

dR
dt

= −0.25R +0.1D +0.1I
dD
dt

= 0.20R −0.2D +0.3I
dI
dt

= 0.05R +0.1D −0.4I

Getting a system of three ordinary equations by setting the right side to zero and solving it for
(R,D, I) we obtain (10

6
I, 19

6
I, I). Note that if we assume that R + D + I = 100% (we assume that

the number of voters remains the same for many elections), we have that (10+19+6
6

)I = 35
6
I = 1 and

so I = 6
35

= 17.14% R = 10
35

= 28.57% and D = 19
35

= 54.29%.

Practice Problems.

1. Assume that two lakes are connected by a water flow. Suppose also that the measurement of
the pollution indicated that 10% of the pollution of the first lake comes from the other lake.
For the second lake, assume that 65% of the pollution comes from the first lake. Represent this
situation with a system of differential equations. Find the equilibrium values of the system and
discuss the long term behavior.

2. There are three delivery restaurants near a university called Pizza Paradise, Quick Burger
and Noodles Unlimited. They are trying to get as much customers out of 3000 university
undergraduates as possible. A survey conducted showed that 80% of those that ordered pizzas
in the past again order pizzas, 15% switch to burgers and 5% to noodles. Of those that
ordered burgers, 60% order burgers again, 10% order pizzas and 30% order noodles. Of those
that ordered noodles, 70% order noodles again, 10% switch to burgers and 20% to pizzas.
Assuming that these tendencies continue and that the number of students remains constant,
estimate the long term tendencies.

Solutions.

1. Let a and b be the total amounts of pollution in two lakes respectively after time t. System:
a′ = −0.65a + 0.10b and b′ = 0.65a − 0.10b. From here, b = 13

2
a. Assume that there is no

new pollution added to either lake (thus a + b is constant). If we denote the total amount of
pollutant with a + b = c, the long term stable state of the system are a = 2

15
c and b = 13

15
c.

Thus about 13% of the pollutants ends up in the first and 87% in the second lake.

2. Let P, B and N denote the number of students that order pizzas, burgers and noodles re-
spectively. The system becomes: P ′ = −0.20P + 0.1B + 0.2N, B′ = 0.15P − 0.4B + 0.1N,
and N ′ = 0.05P + 0.3B − 0.3N. From here, P = 18

13
N and B = 10

13
N. Substituting that in

P + B + N = 3000 and solving for N gives us N = 951. Then P = 1317 and B = 732.
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