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1.  Review of Matlab in Calculus 1

1.1 Basic Arithmetic

MATLAB can do anything your calculator can do and much more. You can use +, -, *, \ and ^ to add,
subtract, multiply, divide or exponentiate, respectively. For example if you enter: 
>> 2^3 - 2*2  
MATLAB gives you the answer:   ans =     4

If you want to perform further calculations with the answer, you can type ans rather than retyping the
whole answer. For example, 
>> sqrt(ans) ans =      2

To perform symbolic calculations in MATLAB, use syms to declare the variables you plan to use. For
example, suppose that you need factor x²-3x+2. First you need 
>> syms x   (you are declaring that x is a variable)
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Then, for example, you can use the command factor. 
>> factor(x^2-3*x+2)
ans =  (x-1)*(x-2)   

Note that we entered 3*x  to represent 3x in the command above.  Entering * for multiplication is
always necessary in MATLAB. 

1.2 Solving Equations

For solving equations, you can use the command solve. The command solve is always followed by
parenthesis.  After that,  you type the equation you would like to solve in single quotes. Then type
coma, and variable for which you are solving in (single) quotes. Thus, the command solve has the
following form

solve('equation', 'variable for which you are solving')

For example, to solve the equation x³-2x-4, you can use: 
>> solve('x^3-2*x-4=0')
and get the following answer: 
ans =
[    2]
[ -1+i]
[ -1-i]  
Here i stands for the imaginary number −1 . This answer tells us that there is just one real solution,
2. 

MATLAB can give you both symbolic and numerical answer. For example, to solve the equation 3x²-
8x+2=0, you can use 
>> solve('3*x^2-8*x+2=0','x')
Matlab produces the following ans =
[ 4/3+1/3*10^(1/2)] [ 4/3-1/3*10^(1/2)]

If we want to get the answer in the decimal form with, say, three significant digits, we can use the
command vpa. 
>> vpa(ans, 3) 
ans =  [ 2.38] [ 0.28]

The command vpa has the general form
vpa(expression you want to approximate, number of significant digits) 

You can solve more than one equation simultaneously. For example suppose that we need to solve
the system x²+ x+ y²   =  2  and 2x-y  =  2. We can use:     
>>  [x,y] =solve( 'x^2+ x+ y^2   =  2', '2*x-y  =  2') 
to get the answer 
x = [ 2/5] [   1]  
y = [ -6/5] [    0]

Note that the [x,y]=  part at the beginning of the command was necessary since without it MATLAB
produces  the answer:
ans =     x: [2x1 sym] y: [2x1 sym]
This answer tells us just that the solutions are two values of the pair (x,y) but we do not get the
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solutions themselves. To get the solution vectors displayed, we must use [x,y]= before the command
solve. 

You can solve an equation in two variables for one of them. For example the command
>> solve('y^2-5*x*y-y+6*x^2+x=2', 'y') 
solves the given equation for values of y in terms of x. The answer is: 
ans = [ 3*x+2] [ 2*x-1]

1.3 Representing a function

The  following  table  gives  an  overview  of  how  most
commonly used functions or expressions are represented
in MATLAB. 

To represent a function, use the command inline. Similarly
to solve, this command is followed by parenthesis and has
the following form:

inline('function', 'independent variable of the function') 

Here is how to define the function x²+3x-2:
>> f = inline('x^2+3*x-2', 'x')
f =
     Inline function:
     f(x) = x^2+3*x-2

After defining a function, we can evaluate it at a point. For example, 
>> f(2)
ans =      8

In some cases, we will need to define function f as a vector. Then we use:  
>> f = inline(vectorize('x^2+3*x-2'), 'x')
f =     Inline function:
     f(x) = x.^2+3.*x-2

In this case, we can evaluate a function at more than one point at the same time. For example, to 
evaluate the above function at 1, 3 and 5 we have:
>> f([1 3 5])
ans =      2    16    38

If a function is short, it might be faster to evaluate a function at a point simply by typing the value
of x directly for x. For example, to evaluate sin(x) at x=2, simply type 
>> sin(2) and obtain the answer ans = .909297

As when using the calculator, one must be careful when representing a function. For example 

●
1

x x+6 
    should be represented as 1/(x*(x+6)) not as  1/x*(x+6) nor as 1/x(x+6),

●
3

x25x6
  should be represented as 3/(x^2+5*x+6) not as  3/x^2+5*x+6,

● e5x
2

   should be represented as exp(5*x^2)  not as  e^(5*x^2), exp*(5*x^2),  exp(5x^2)  
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function or symbol representation in MATLAB
 e x̂ exp(x)
ln x log(x)
log x log(x)/log(10)

log. base a of x log(x)/log(a)
sin x sin(x)
cos x cos(x)

arctan(x) atan(x)
π pi



nor as exp^(5*x^2).
● Ln(x)  should be represented as log(x), not ln(x).
● log3(x2)  should  be  represented  as log(x^2)/log(3)  not  as

log(x)/log(3)*x^2.

1.4  Graphic

Let us start by declaring that x is a variable:
>> syms x  

The  simplest  command  in  MATLAB  for  graphing  is  ezplot.  The
command has the following form

ezplot(function)

For example, to graph the function x²+x+1, you can use
>> ezplot(x^2+x+1)

A new window will open and graph will be displayed. To copy the figure to a text file, go to Edit and
choose  Copy Figure. Then place cursor to the place in the word file
where you want the figure to be pasted and choose Edit and Paste. 

We can specify the different scale on x and y axis. 
To do this, the command axis is used. 
It has the following form

axis([xmin,  xmax,  ymin, ymax])  

This command parallels the commands in menu WINDOW on the TI83
calculators. 

For example, to see the above graph between x-values -10 and 10 and
y-values 0 and 60, you can enter 
>> axis([-10  10  0  60])  

Note that the domain of function did not change by command axis. To
see the graph on the entire domain (in this case [-10, 10]),  add that
domain after the function in the command ezplot:

ezplot(function, [xmin,  xmax])

In this case, 
>> ezplot(x^2+x+1, [-10, 10])
will give you the desired graph. 

For  the  alternative  command  for  graphics,  plot, you  can  find  more
details by typing help. 

To plot multiple curves on the same window, you can also use the ezplot command. For example: 
>> ezplot(sin(x))
>> hold on
>> ezplot(exp(-x^2))
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>> hold off

1.5 Solving equations using fzero

In some cases, the command  solve may fail to produce all the solutions of an equation. In those
cases, you can try to find solutions using fzero (short for "find zero") command. In order to use the
command, first you need to write equation in the form 

f(x)=0. 
Thus,  put all the terms of th equations on one side leaving just zero on the other. To find a solution
near the x-value x=a, you can use 

fzero('left side of the equation', a)

The command fzero, similarly as solve is always followed by parenthesis. The equation should be in
single quotes. 

If it is not clear what a convenient x-value a should be, you may want to graph the function on the left
side of the equation first, check where it intersects the x-axis (alternatively graph left and right side of
the equation if it is not in f(x)=0 form and see where the two functions intersect) and then decide which
solution you need to find.  

For example, to solve the equation  ex^2-2=x+4, we can first graph the functions on the left and right
side of the equation using 

syms x ezplot(exp(x^2)-2) hold on ezplot(x+4) hold off 
From the graph, we can see that the two functions intersect at a number near -1 and at a number near
1. To use fzero, we need to represent the equation in the form ex^2-2-(x+4)=0 (or simplified form ex^2-x-
6=0). Then, we can find the positive solution by using fzero to find a zero near 1 and then to find the
negative solution near -1, for example. Thus, both solutions can be obtained by:  
>> fzero('exp(x^2)-2-(x+4)', -1) ans = -1.248
>> fzero('exp(x^2)-2-(x+4)', 1) ans = 1.415

Note also that  the command  solve('exp(x^2)-2=x+4',  'x')  returns just  the positive solution.  Thus,
knowing how to use fzero command may be really useful in some cases. 

1.6 Differentiation

Start by declaring x for a variable. The command for differentiation is diff. It has the following form 
diff(function)

For example, 
>> syms x
>> diff(x^3-2*x+5)
gives us the answer ans = 3*x^2-2

To get n-th derivative use 
diff(function, n)

For example, the 23rd derivative of sin(x) is obtained as follows. 
>> diff(sin(x), 23) ans =-cos(x)

1.7 Integration
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We can use MATLAB for computing both definite and indefinite integrals using the command int. For
the indefinite integrals, start with syms x followed by the command 

int(function)
For example, the command  
>> int(x^2)

evaluates the integral  and gives us the answer ans = 1/3*x^3

For definitive integrals, the command is 

int(function, lower bound, upper bound) 
For example, 
>> int(x^2, 0, 1)
evaluates the integral  The answer is ans = 1/3 

In MATLAB Inf stands for positive infinity. MATLAB can evaluate the (convergent) improper integrals
as well. For example: 
 >> int(1/x^2, 1, Inf) ans =  1
For the divergent integrals, MATLAB gives us the answer infinity. For example: 
>> int(1/x, 0, 1) ans =  inf
 

1.8 Limits

You can use  limit  to compute limits, left and right limits as well as infinite limits. For example, to

evaluate the limit when x → 2 of the function 
x2−4
x−2

, we have: 

>>  syms x
>> limit((x^2-4)/(x-2), x, 2) ans = 4

For left or right limits:
>> limit(abs(x)/x, x, 0, 'left') ans = -1
>> limit(abs(x)/x, x, 0, 'right') ans = 1
Limits at infinity: 
>> limit(exp(-x^2-5)+3, x, Inf) ans =  3

2. Review of the use of Matlab in Calculus 2 and 3

2.1 Parametric Plots

We can use the command ezplot to graph a parametric curve as well. For example, to graph a circle x
= cos t, y = sin t for 0 ≤ t ≤ 2π, we have: 
>> ezplot('cos(t)', 'sin(t)', [0, 2*pi])

2.2 Special effects

You can change the title above the graph by using the command title. For example, 
>> ezplot('x^2+2*x+1')
>> title 'a parabola'
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You can add labels to x and y axis by typing xlabel and ylabel. You can also add text to your picture.
For example, suppose that we want to add a little arrow pointing to the minimum of this function, the
point (-1, 0). We can do that with the command: 
>> text(-1, 0, '(-1, 0) \leftarrow a minimum') 

2.3 Derivatives of Multivariable Functions

The command diff can be used to compute partial derivatives. For example, to find the first partial
derivative with respect to y of the function x²y³, use
>> syms x y 
>> diff(x^2*y^3, y) ans =   3*x^2*y^2
To find the second partial derivative with respect to x, use 
>> diff(x^2*y^3, x, 2) ans =   2*y^3
For the mixed second partial derivative, one can use: 
>> diff( diff(x^2*y^3, x), y) ans =   6*x*y^2

2.4 Graphing in Three-Dimensional Space

The command for drawing 3D curves is  ezplot3. For example, suppose that we need to graph the
helix  x = cos t, y = sin t, z = t, for -10 ≤ t ≤ 10. 
>> ezplot3('cos(t)', 'sin(t)', 't', [-10, 10])

There are two commands for graphing surfaces: ezmesh and ezsurf. The first produces a transparent
wired plot, a mesh surface. The second produces a shaded, nontransparent surface. Both commands
can be used for graphing surfaces that are given in the form z = f(x, y). For example, the graph of the
cone  z  =  x2+y2 over  the  square  -7  ≤  x ≤  7,  -7  ≤  y ≤  7,  can  be  obtained  by
ezmesh('sqrt(x^2+y^2)', [-7, 7], [-7, 7]) or by ezsurf('sqrt(x^2+y^2)', [-7, 7], [-7, 7]).

Ezmesh and ezsurf are also used when graphing the surfaces that are given in parametric form 
x = f(s, t) y = g(s, t) z = h(s, t)

The cone z = x2+y2  can be represented by parametric equations as x = r cos t, y = r sin t, z = r.
Using this representation, we can get the graph by ezmesh('r*cos(t)', 'r*sin(t)', 'r', [0 , 10, 0, 2*pi]) or
by ezsurf('r*cos(t)', 'r*sin(t)', 'r', [0 , 10, 0, 2*pi]).

We can plot the vector field  F(x, y) = P(x, y) i + Q(x, y) j  by using the command quiver(x, y, P(x,y), 
Q(x,y)). For example, we plot the vector field F(x, y) = x i - y j as follows: 
>> [x,y]=meshgrid(-1:.2:1, -1:.2:1); 
>> quiver(x, y, x, -y);
>> axis equal

In 3D, we can also plot the vector field F(x, y, z) = P(x, y, z) i + Q(x, y, z) j + R(x, y, z) k by using the 
command quiver3(x, y, z, P(x,y,z), Q(x,y,z), R(x,y,z)). For example, we plot the field  F(x, y, z) = x i + 
y j + z k as follows: 
>> [x,y,z]=meshgrid(-3:1:3, -3:1:3, -3:1:3);
>> quiver3(x, y, z, x, y, z);
>> axis equal
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3.  Differential Equations

3.1 Basics of Differential Equations

We can use MATLAB to solve differential equations. The command for finding the symbolic solution is
dsolve.  For that command, the derivative of the function y is represented by Dy. The command has
the following form:

dsolve('equation', 'independent variable')

For example, suppose that we want to find the general solution of the equation  x y' - y = 1. You can
do that by:  >> dsolve('x*Dy-y=1', 'x') ans = -1+x*C1
This means that the solution is any function of the form y = -1+ cx, where c is any constant. 

If we have the initial condition, we can get the particular solution on the following way: 

dsolve('equation', 'initial condition', 'independent variable')

For example, to solve x y' - y = 1 with the initial condition y(1)=5, we can use:
>> dsolve('x*Dy-y=1', 'y(1)=5', 'x') ans = -1+6*x
To graph this solution, we can simply type: 
>> ezplot(ans)

We can graph a couple of different solutions on
the same chart by using hold on and hold off
commands. For example, to graph the solutions
of  differential  equation  y'=0.1y(1-y)  for  several
different  initial  conditions,  y(0)=0.1,  y(0)=0.3
y(0)=0.5  and   y(0)=0.7,  first  find  the  four
particular solutions, then graph them using hold
on and  hold  off commands.  To observe  the
limiting  behavior  of  the  solution,  in  examples
below  the  interval  [0,  100]  is  used  as  the
domain. 

Finding the four solutions:
>> dsolve('Dy=0.1*y*(1-y)','y(0)=0.1', 'x') ans
= 1/(1+9*exp(-1/10*x))
>> dsolve('Dy=0.1*y*(1-y)','y(0)=0.3' 'x') ans
= 1/(1+7/3*exp(-1/10*x))
>> dsolve('Dy=0.1*y*(1-y)','y(0)=0.5' 'x') ans = 1/(1+exp(-1/10*x))
>> dsolve('Dy=0.1*y*(1-y)','y(0)=0.7' 'x') ans = 1/(1+3/7*exp(-1/10*x))
Graphing the fours solutions:
>> ezplot('1/(1+9*exp(-1/10*x))',[0,100]) >> hold on
>> ezplot('1/(1+7/3*exp(-1/10*x))',[0,100]) >> ezplot('1/(1+exp(-1/10*x))',[0,100])
>> ezplot('1/(1+3/7*exp(-1/10*x))',[0,100]) >> hold off
>>axis([0,100,0,1])

3.2 Numerical Solutions
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Many differential  equations cannot  be solved explicitly  in  terms of  elementary functions.  for  those
equations,  we will  need the numerical  methods to get  the approximate solution.  The approximate
solutions of the equations can be found by using the command ode45. 

We can illustrate the command ode45 on the initial value problem y' = e−x2 , y(0)=1. The command
ode45 requires that the function on the right side of the equation is represented as a vector. So, we
can start with the command:  >> f=inline(vectorize('exp(-x^2)'),'x','y');

The command ode45 plots the graph of the initial value problem on the specified interval. Suppose
that we want to graph the solution on the interval [0, 2]. We use >> ode45(f, [0 2], 1) Note that 1 at the
end of the command represents the y value at x=0 from the given initial condition y(0)=1. 

We can obtain the numerical values of the solution as well by using >> [x, y] = ode45(f, [0 2], 1). The
values between 0 and 2 at which  ode45  calculates the solution are stored in  x,  and the value of
solution at these values is stored in y. To obtain the graph of these values use >> plot(x, y).

3.3 Second Order Equations 

The second order linear equations can be solved similarly as the first order differential equations by
using dsolve or ode45. For the command dsolve, recall that we represent the first derivative of the
function y with Dy. The second derivative of y is represented with D2y. For example, the command for
solving y''-3y'+2y = sin x. 
>> dsolve('D2y-3*Dy+2*y=sin(x)', 'x')
ans = 3/10*cos(x)+1/10*sin(x)+C1*exp(x)+C2*exp(2*x)

If we have the initial conditions y(0) = 10, y'(0)=-10, we would have: 
>> dsolve('D2y-3*Dy+2*y=sin(x)', 'y(0)=1', 'Dy(0)=-1', 'x')
ans = 3/10*cos(x)+1/10*sin(x)+5/2*exp(x)-9/5*exp(2*x)

Practice problems 1
1. a) Find the general solution of the differential equation y'-2y=6x. 

b) Find the particular solution with initial condition y(0)=3.
c) Plot the particular solution on interval [0,2] and find the value of this solution at 2.   

2. Graph the solutions of the differential equation  y' = x+y   for the y-values of the initial
condition  y(0)  taking  integer  values
between -2 and 4.

3. Find the general solution of the equation
y''-4  y'+4  y=  ex +x². Then  find  the
particular  solution  with  the  initial  values
y(0)=8, y'(0)=3. 

Solutions. 
1. a) General solution: dsolve('Dy-2*y=6*x', 'x') 

ans= (-6x-3)/2+C1*exp(2x)
b) Paticular solution: dsolve('Dy-2*y=6*x',
'y(0)=3', 'x') ans= (-6x-3+9*exp(2x))/2
c) syms x ezplot((-6x-3+9*exp(2x))/2, [0 2]) 
To find the value at 2: f=inline((-6x-
3+9*exp(2x))/2, x) f(2)

ans=238.19
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2. First, find the seven particular solutions of y' = x+y with initial conditions y(0)=-2,-1,0,1,2,3,4.
s1 = dsolve('Dy = x+y', 'y(0)=-2', 'x')
s2 = dsolve('Dy = x+y', 'y(0)=-1', 'x') ... etc .. s7 = dsolve('Dy = x+y', 'y(0)=4', 'x') 
Then plot them on the same graph.  hold on ezplot(s1) ezplot(s2) ...etc... ezplot(s7)
hold off 

3. >> dsolve('D2y-4*Dy+4*y=exp(x)+x^2', 'x')
ans =  exp(x)+1/4*x^2+1/2*x+3/8+C1*exp(2*x)+C2*exp(2*x)*x
>> dsolve('D2y-4*Dy+4*y=exp(x)+x^2','y(0)=8', 'Dy(0)=3', 'x')
ans = exp(x)+1/4*x^2+1/2*x+3/8+53/8*exp(2*x)-47/4*exp(2*x)*x

4. M-files

4.1 Basics on M-files

Suppose that you want to perform the same operation many times for different input values. Matlab
allows you to create a function or a script that you can execute repeatedly with different input values
(i.e. to do programming). Such function or a script is called an M-file. An M-file is an ordinary text file
containing Matlab commands. You can create them using any text editor that can save files as plain
(ASCII) text. You can also create an M-file by using “File” menu and choosing “New M-file” option from
your Matlab command window. An important fact to keep in mind when using M-files is that an M-file
can be executed from the command window just if the "Current Directory" on the top of the command
window is set to be the same directory where the M-file is saved.

Example 1. Suppose that you want to solve the equation ax² + bx + c = 0 using the quadratic formula.
We can create  a function which will  have as input  values  of  a,  b and  c and which will  give the
solution(s) of the quadratic equation.  We can enter the following in an M-file. 
function [x1 x2] = quadratic1(a, b, c)
x1 = (-b+sqrt(b^2-4*a*c))/(2*a);
x2 = (-b-sqrt(b^2-4*a*c))/(2*a);

To execute the M-file and find solutions of x² -3x + 2 = 0, you can use  
>> [x1, x2] = quadratic(1, -3, 2)
The output is x1 =     2 x2 =     1
Note that the semi-column symbol after the commands suppresses display of the results of these
commands.  The values of  x1 and x2 will  still  be displayed since we listed these variables in  the
brackets of the function. 
Alternatively, the following file can be used. 
function [ ] = quadratic2(a, b, c)
x1 = (-b+sqrt(b^2-4*a*c))/(2*a)
x2 = (-b-sqrt(b^2-4*a*c))/(2*a)

Here we do not need to list the variables in the first line since we did not use the semi-column symbols
when computing the values of x1 and x2. Also, you do not need to list x1 and x2 in the first line since
they will be displayed when 2nd and 3rd lines are executed. Also, you can execute this M-file to solve
x² -3x + 2 = 0 simply as quadratic(1, -3, 2) instead of  [x1, x2] = quadratic(1, -3, 2) The output is the
same as for the first version.  
>> quadratic(1, -3, 2)
This means that you want to solve the equation. Matlab gives you the answers: 
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x1 =     2 x2 =     1
These  M-files  produce  the  complex  values  if  the  solutions  of  a  quadratic  equation  are  complex
numbers. For example, to solve x²  + 4 = 0, we can use  
>> quadratic(1, 0, 4)
x1 =        0 + 2.0000i x2 =        0 - 2.0000i

Example 2.  Suppose that we need to write a program that calculates the Cartesian coordinates (x,y) 
of a point given by polar coordinates (r,θ). 
One possible solution is the following M-file. 
function [x, y] = polar(r, theta)
x = r*cos(theta);
y = r*sin(theta);

For example, to calculate (x,y) coordinates of for r=3 and θ = π , we can use the command 
[x,y]=polar(3, pi) and get the answer 
x = -3 y =  3.6739e-016
Note that y is very close to 0. The inaccuracy comes from the fact that using pi for π in Matlab
gives  an  approximation  of  π  not  the  exact  value.  The  exact  representation  of  π  is  obtained  by
sym('pi'). The command [x,y]=polar(3, sym('pi')) gives you the expected answer 
x = -3 y = 0. 

4.2 Branching and Loops

In most cases, the programs cannot be reduced to a simple application of a single formula. In those
cases, we need to use branching or loops. 

Example 3. Consider the following program that calculates the absolute value of a given number.
function y = absval(x)
if x >= 0

y=x;
else

y=-x;
end 
For example, the command y=absval(-5) gives us the answer y =  5.

The previous example exhibits a program where a decision making is involved: in certain case one
sequence of commands is performed, in certain other cases the other sequence of commands is
performed. This  is  called  branching. The simplest  type of  branching is  with commands if  ..  else
(followed by end) just like in the above example.

Another situation that frequently appears in programming is when a sequence of commands should be
repeated several times. 

Example 4. Find a sum of the series ∑n=1

100 1

n2
 

In order to find this sum, it would be impractical to add 100 numbers by hand. The basic idea that 
could be used in order to create a more practical solution involves recursive reasoning: keep adding 
1/n^2 term at each step to the sum computed at previous step. This give us the following informal idea
for a program:

1.  At the zero-th step, the sum is 0.
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2.  For all n's between 1 and 100, compute the sum at n-th step by adding the term 1/n^2 to the 
sum of previous terms. If we denote the sum of n-1 terms by s, the sum of n terms will be 
s+1/n^2.

In Matlab code, this can be executed by using the command  for n = 1:100 meaning that the variable 
n is taking integer values between 1 and 100.  

The Matlab code for this is:  s=0; for n=1:100 s = s+1/n^2; end
To display the final value of s, simply type "s". 

Example 5. Generalize the idea from the previous example to write a program that computes the sum 

of the first n terms of the sum f ∑i=1

n 1

i2
or a given n.  

The main difference is that the value of n has to be specified as input. The idea is the same:
1.  At the zero-th step, the sum is 0.
2.  For all i's between 1 and n, if the sum of previous terms is s, the sum of i terms will be 

s+1/i^2. 
Matlab code for this is:
function s = series(n)
s=0;
for i=1:n

s = s+1/i^2;
end 
For example, the command s = series(20000) produces s =1.6449.

Example 6. Calculate the (convergent) sum ∑i=1

∞ 1

i2
 to first few decimals. 

In this case, the for loop is not convenient to use since we do not know how many terms we need to
add in order to obtain the required accuracy. The informal idea is the following

1. The input of the program is a small number e representing the required accuracy. 
2. While the difference D of the sum of n+1 and the sum of n terms is greater than e, keep 

increasing the number of terms n.
3. D becomes smaller than the given small number, approximate  the infinite sum with the sum of 

n terms. 

Matlab code for this idea is:  
function [s, n] = conv_series(e)
n=1; 
p=0; (zero-th term of sum)
s=p+1; (sum of the zero-th and the first terms)
while abs(s-p)>e
    n=n+1; (number of steps is increased by one)
    p=s; (n-th term of the sum becomes what n+1st term was in previous step)
    s=p+1/n^2; (n+1th term is calculated)
end

The following example is also a good practice for mastering the idea of recursion. 
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Example 7. Write a program computing the factoriel of a given positive integer. 
In order to obtain the algorithm, it is helpful to think of factoriel function 

n!  = 1  times 2 times 3 times ... times n
as of a recursive sequence:

1. Factoriel(1) = 1.
2. Factoriel(n) = Factoriel(n-1) times n

This idea transfers to the following Matlab function that calculates the factoriel of a given positive 
integer. 
function f = factoriel(n)
f=1;
for i=1:n
    f=f*i;
end
For example, the command f = factoriel(6) produces the output f =   720. 

In MATLAB you can reference one program within another. 

Example 8. Approximate the number e by the first n terms of the following series e=∑n=0

∞ 1
n!

Since the formula for the n-th term of the series has factoriel in it, this program requires the use of the 
function factoriel from the previous example. This is one possible realization of this idea.
function e = natural(n)
e=1; 
for i=1:n

e=e+1/factoriel(i);
end
The command e = natural(40) produces the output e =2.7183.

Practice problems 2

1. The number π can be calculated using the following formula: 

Write programs that: 
a) Approximates π with the first 1000 terms of the above sum.
b) Approximates π with the first n terms of the above sum, for given n.
c) Approximates π using the above sum to three decimals.

2. Consider the recursive sequence a(n+1) = √  with an initial condition a(0)=0. 

Write a program that computer the n-th term for a given value of n. Executing the program for
n=100, 1000 and 10,000 compute the limit of this sequence to first few decimals. 

3. For a given n, calculate the n-th term of the sequence a(n+1)= 1/(1+a(n)) with initial condition 
a(1)=1. Use that program to determine the limit of this sequence.

4. To approximate the integral ∫a
b f(x) dx , we can use the left sum with n subintervals. In this case,

we are adding the areas of rectangles of height f(x_i) for i=0,..., n-1 and
of the width h=(b-a)/n. 

L(n) = h times f(x_0) + h times f(x_1) + ... + h times f(x_n-1).
To formalize this idea, it is again useful to think of the above formula for L in a recursive form 

1. L(x_0) = h times f(x_0),
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2. L(i+1) = L(i) + h times f(x_i).
Write a Matlab function that approximates a definite integral using left sum. When executing
the program, you will need to inline the function f first. Test your program by evaluating the
integral from 0 to 1 of x^2 using 1000 subintervals. You should obtain 0.33. Adapt the program
to calculate the Right Sum.

5. Using the if... else command, write a function that calculates the solution of quadratic equation
if real solutions exist and has the text "No real solution" for output otherwise. To display text,
you can use the command disp(’...’) with text that you want displayed between the quotes.

Solutions

1. a) p=1; for n=1:1000 p=p+4*(-1)^n/(2*n+1); end p 
b) function p = series_sum(n) p=1 for i=1:n p= p+4*(-1)^i/(2*i+1); end 
c) function p=series_sum2(e) 

n=1;      p=1;    (zero-th term of sum)   s=p-4/3;   (sum of the zero-th and the first terms)
      while abs(s-p)>e

    n=n+1; (number of steps is increased by one)
    p=s; (n-th term of the sum becomes what n+1st term was in previous step)
    s=p+4*(-1)^n/(2*n+1); (n+1th term is calculated)

end
2. function a = recursive_sequence(n) a=0 for i=1:n a= sqrt(2+a); end 

The limit of this sequence is 2.  
3. function a = recursive_sequence(n) a=1 for i=1:n a= 1/(1+a); end 

The limit of this sequence is 0.62. 
4. function L=left_sum(f,a,b,n)

h=(b-a)/(n);
L=h*f(a);
for i=1:n-1

L=L+h*f(a+h*i);
end
To test the program, use f=inline('x^2', 'x') and L=left_sum(f, 0, 1, 1000). Get L=0.333.
For the right sum, you can use
function R=right_sum(f,a,b,n)
h=(b-a)/(n);
R=h*f(a+h);
for i=2:n

R=R+h*f(a+h*i);
end

5. function [ ] = quadratic(a, b, c)
D=b^2-4*a*c;
if D<0 disp('No real solutions')
else  x1 = (-b+sqrt(D))/(2*a) x2 = (-b-sqrt(D))/(2*a)
end 
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