Dimension groups with group action and their realization

Lia Vaš

University of the Sciences, Philadelphia

Simplicial group

Some questions related to K_0 -groups

- 1. Why K_0 ?
- 2. When does K_0 classify a class of rings (or algebras)?

 K_0 classifies if

$$R \cong S$$
 if and only if $K_0(R) \cong K_0(S)$.

3. Which groups can be realized by rings (or algebras)?

An abelian group G is **realized** by a ring (or an algebra) R if

$$G\cong K_0(R)$$
.

Some answers

- 1. K_0 is a group of **dimensions**.
- 2. One answer: K_0 classifies

ultramatricial algebras over a field.

$$\underset{n}{\stackrel{\text{lim}}{\longrightarrow}} R_n$$

 R_n = matricial (finite direct sum of matrix algebras).

3. One answer: If G is a **dimension group**, it can be realized by an ultramatricial algebra over a field –

if something looks like a group of dimensions, it $\underline{\mathbf{is}}$ a group of dimensions.

Dimension groups

1. Built up from the building blocks called

simplicial groups

= a finite sum of copies of \mathbb{Z} since $K_0(\mathbb{M}_n(K)) = \mathbb{Z}$.

A dimension group is a direct limit of simplicial groups

$$\varinjlim_{n} G_{n}$$

$$G_1 \rightarrow G_2 \rightarrow \ldots \rightarrow G_n \rightarrow$$

simplicial was matricial, dimension was ultramatricial

Structure of simplicial $\mathbb{Z} \oplus \mathbb{Z} \oplus \ldots \oplus \mathbb{Z}$

There is an **order** \geq

$$x \ge 0$$
 iff $x = \text{sum of non-negative integers}$.

What if there is some

additional structure?

This is the case when **a group** Γ **acts** on the copies of \mathbb{Z} by permuting them.

Think of a group ring $\mathbb{Z}[\Gamma] \cong \mathbb{Z} \oplus \mathbb{Z} \oplus \ldots \oplus \mathbb{Z}$ ordered by

$$x = \sum a_{\gamma} \gamma \ge 0$$
 iff $a_{\gamma} \ge 0$

This happens if the ring is graded

If Γ is a group, a ring R is Γ -graded if

$$R = \bigoplus_{\gamma \in \Gamma} R_{\gamma}$$
 such that $R_{\gamma}R_{\delta} \subseteq R_{\gamma\delta}$.

ring

graded ring

Graded modules and their shifts

A module *M* is **graded** if

$$M=igoplus_{\gamma\in\Gamma}M_{\gamma}$$
 such that $R_{\gamma}M_{\delta}\subseteq M_{\gamma\delta}.$

Every graded module can be shifted to a graded module

$$M(\delta) = \bigoplus_{\gamma \in \Gamma} M_{\gamma \delta}$$
 so that $M(\delta)_{\gamma} = M_{\gamma \delta}$.

A finitely generated **graded free** R-module is of the form

$$R(\gamma_1) \oplus \ldots \oplus R(\gamma_n).$$

Building blocks of K_0^{Γ}

If Γ = trivial, and K is a field, there is just one one-dimensional free module: Κ.

If $\Gamma = \mathbb{Z}$, for example, and R is Γ -graded there can be

many one-dimensional graded free modules:

 $\ldots R(-3), R(-2), R(-1), R(0), R(1), R(2), R(3), \ldots$

K_0^1 of a graded ring

- Formed using finitely generated graded projective modules.
- It has an action of Γ given by

$$\gamma[P] \mapsto [P(\gamma)].$$

The building blocks of $K_0^{\Gamma}(R)$:

$$[R(\gamma)], \ \gamma \in \Gamma.$$

Question: when is

$$[R(\gamma)] = [R(\delta)]$$
?

Two examples

Let
$$\Gamma = \langle x \rangle = \mathbb{Z}$$
 and $R = K[x, x^{-1}] = K[\mathbb{Z}]$.

1. Let us grade *R* trivially, i.e.

$$K[x, x^{-1}]_0 = K[x, x^{-1}]$$

 $K[x, x^{-1}]_n = 0$ $n \neq 0$

Then $R(m) \ncong_{gr} R(n)$ and

$$\mathcal{K}_0^{\Gamma}(R) \cong \mathbb{Z}[x, x^{-1}]$$

 \ldots , R(-3), R(-2), R(-1), R(0), R(1), R(2), R(3), R(4), \ldots

The second example

Let
$$\Gamma = \mathbb{Z}$$
 and $R = K[x, x^{-1}]$.

2. Let us grade R by

$$K[x,x^{-1}]_n = K\{x^n\}$$

Then
$$R(m) \cong_{gr} R(n)$$
 and

$$K_0^{\Gamma}(R) \cong \mathbb{Z}$$

with the trivial action of Γ .

So, it all depends on the size of the support

$$\Gamma_R = \{ \gamma \in \Gamma \mid R_\gamma \neq 0 \}$$

K_0^{Γ} of a graded division ring

If K is a **graded division ring** (i.e. there is invertible for every nonzero $x \in K_{\gamma}$), then

$$[R] \leftrightsquigarrow \Gamma_K$$

$$[R(\gamma_1)^{k_1} \oplus \ldots \oplus R(\gamma_n)^{k_n}] \iff \sum_{i=1}^n k_i \gamma_i \Gamma_K$$

 $K_0^{\Gamma}(K) \cong \mathbb{Z}[\Gamma/\Gamma_K]$

So what is a simplicial Γ-group?

Want: simplicial \longleftrightarrow K_0^{Γ} of matricial algebras.

$$\mathcal{K}_0^{\Gamma}\left(\bigoplus_{i=1}^n \mathbb{M}_{\rho(i)}(\mathcal{K})(\gamma_{i1},\ldots,\gamma_{ip(i)})\right) \cong \bigoplus_{i=1}^n \mathbb{Z}[\Gamma/\Gamma_{\mathcal{K}}]$$

If Γ_K is **normal**, $\mathbb{Z}[\Gamma/\Gamma_K]$ is a ring so:

simplicial = a fin. gen. free
$$\mathbb{Z}[\Gamma/\Gamma_K]$$
-module.

The general case is more intriguing...

Simplicial Γ-group G

- 1. An abelian group with an action of Γ which agrees with +
- 2. G has a finite **simplicial** Γ -basis $\{x_1, \dots, x_n\}$ such that

(Stab) If
$$Stab(x_i) := \{ \gamma \in \Gamma \mid \gamma x_i = x_i \}$$
, then
$$Stab(x_i) = Stab(x_j) \text{ for every } i, j.$$

Let $\Delta = \operatorname{Stab}(x_i)$ and $\pi : \mathbb{Z}[\Gamma] \to \mathbb{Z}[\Gamma/\Delta]$, then

(Pos) $G^+ =$ **positive cone** directs and orders G where

$$G^+ = \{\sum_{i=1}^n a_i x_i \mid a_i \in \mathbb{Z}[\Gamma], \ \pi(a_i) \in \mathbb{Z}^+[\Gamma/\Delta] \ ext{for all} \ i\}$$

(Ind) For $a_i, b_i \in \mathbb{Z}[\Gamma]$ with $\pi(a_i), \pi(b_i) \in \mathbb{Z}^+[\Gamma/\Delta]$,

$$\sum_{i=1}^n a_i x_i = \sum_{i=1}^n b_i x_i$$
 iff $\pi(a_i) = \pi(b_i)$ for all i .

Realization of simplicial \(\Gamma\)-groups

For

$$R = \bigoplus_{i=1}^{n} \mathbb{M}_{p(i)}(K)(\gamma_{i1}, \ldots, \gamma_{ip(i)}),$$

 $K_0^{\Gamma}(R)$ is **simplicial** with a basis $\{\gamma_{11}[e_{11}^1R], \ldots, \gamma_{n1}[e_{11}^nR]\}$ stabilized by Γ_K .

Conversely, if G is <u>any simplicial</u> with a basis $\{x_1, \ldots, x_n\}$ stabilized by Δ , G can be

 $\underline{\text{realized}} \ \text{by a matricial ring} \ R \ \text{over} \ K[\Delta].$

K = any field, K[Δ] is Γ -graded by

Then
$$\Gamma_{K[\Delta]} = \Delta$$
.

Dimension groups – review of the trivial case

G is a dimension group if

- 1. G is directed and ordered.
- 2. *G* has **interpolation**: X, Y finite, $X \leq Y$, then there is interpolant $z, X \leq z \leq Y$.

3. *G* is **unperforated**: if $nx \in G^+$ for $n \in \mathbb{Z}^+$, then $x \in G^+$. Every *G* can be obtained as a direct limit of simplicial.

This is shown using

the Strong Decomposition Property (SDP).

(SDP) If $\sum_{i=1}^n a_i x_i = 0$ for some $a_i \in \mathbb{Z}$ and $x_i \in G^+$, then there are $b_{ij} \in \mathbb{Z}^+$ and $y_j \in G^+$ such that

 $x_i = \sum_{i=1}^m b_{ij} y_j$ for all i and $\sum_{i=1}^n a_i b_{ij} = 0$ for all j.

Defining a dimension Γ -group

Expected:

- 1. G is directed and ordered Γ -group.
- 2. *G* has interpolation (same condition).

3. G is unperforated – first try: if $ax \in G^+$ for $a \in \mathbb{Z}^+[\Gamma]$, then $x \in G^+$

However, if
$$\Gamma = \mathbb{Z}_2$$
, $G = \mathbb{Z}[\Gamma]$, $(1+x)(1-x) = 1-x^2 = 0 \in G^+$, $1+x \in \mathbb{Z}^+[\Gamma]$ and $1-x \notin G^+$.

G is unperforated with respect to Δ

if $ax \in G^+$ for $a \in \mathbb{Z}^+[\Gamma]$ then there are $y_j \in G^+$ and $b_j \in \mathbb{Z}[\Gamma]$, such that

$$x = \sum_{j=1}^{m} b_j y_j$$
 and $\pi(ab_j) \ge 0$ for all j .

The Strong Decomposition Property (SDP $_{\Delta}$)

$$\begin{split} \text{(SDP}_{\Delta}) \ \ \text{If} \ \sum_{i=1}^n a_i x_i &= 0 \\ \text{for} \ a_i \in \mathbb{Z}[\Gamma] \ \text{and} \ x_i \in G^+, \\ \text{then there are} \ b_{ij} \in \mathbb{Z}^+[\Gamma] \\ \text{and} \ y_j \in G^+ \ \text{such that} \end{split}$$

$$x_i = \sum_{j=1}^m b_{ij} y_j$$
 for all i and $\sum_{i=1}^n \pi(a_i b_{ij}) = 0$ for all j .

And now, introducing – her majesty

a dimension Γ-group

▶ $\Delta \subseteq \operatorname{Stab}(G)$.

The last condition ensures that for any $x \in G^+$, $\Delta \mapsto x$ extends to

$$\begin{array}{cccc} \mathbb{Z}[\Gamma/\Delta] & \longrightarrow & G \\ & \longrightarrow & & \end{array}$$

Structure Theorem

Every dimension Γ -group G is a direct limit of simplicial Γ -groups with **normal** stabilizers.

Only assumption: $\mathbb{Z}[\Gamma]$ is **noetherian.**

Question 1. Can we loose this assumption?

Dimension – unperforated and has interpolation

Every **dimension** Γ -**group** G is

- 1. directed and ordered Γ-group,
- 2. has interpolation,
- 3. **unperforated** with respect to Stab(*G*).

Question 2. Does the converse hold?

Realization Theorem

If $\mathbb{Z}[\Gamma]$ is noetherian,

every countable
dimension Γ-group
can be **realized**by a Γ-graded
ultramatricial ring over
a Γ-graded division ring

... and one can require that the order-units and generating intervals are preserved.

The **involutive** versions of the above results also hold.

Actions on K_0

We concentrated on action on K_0 coming from the grading. K_0 can have a group action coming from other structures. For example,

the involution or

the smash product.

Some other structure?

Realization Problem

Which abelian groups are K_0 -groups of (von Neumann) regular rings ($x \in xRx$)?

Γ-Realization Problem:

Which abelian Γ -groups are K_0^{Γ} -groups of Γ -graded regular rings?

What does "graded regular" mean?

If $x \in R_{\gamma}$ for some $\gamma \in \Gamma$, then x is **homogeneous**. In the bizarro world of graded rings, "**element**" is replaced by

"homogeneous element".


```
division ring = ← ← graded division ring =
(\forall x \neq 0) \ x^{-1} \text{ exists} \iff (\forall \text{ homog. } x \neq 0) \ x^{-1} \text{ exists}
                                        graded regular =
     regular =
                                      (\forall \text{ homog. } x) \ x \in xRx
   (\forall x) \ x \in xRx
        free =
                                           graded free =
      has basis
                                          has homog. basis
                                                <ロト <部ト <きト <きト
```

What if a property P is $(\forall x)(\exists y)\phi(x,y)$?

Which of the two below do we choose for the **graded property P**?

$$P_{
m gr}^{
m w} = egin{array}{ll} (orall \ {
m homogeneous} \ x) \ (\exists \ y) & \phi(x,y) \\ {
m or} & \\ P_{
m gr}^{
m s} = \ (orall \ {
m homogeneous} \ x) \ (\exists \ {
m homogeneous} \ y) & \phi(x,y) \end{array}$$

"w" is for weak, "s" is for strong.

Wrestling match

1. If $P \Rightarrow Q$ for non-graded rings, then

$$P_{
m gr}^{
m w} \Rightarrow Q_{
m gr}^{
m w} \quad {
m but} \quad P_{
m gr}^{
m s}
ot \Rightarrow Q_{
m gr}^{
m s}$$

So, if a ring is graded semisimple, for example, it may not be "graded unit-regular". Recall that R is unit-regular if

$$(\forall x)(\exists y)(y \text{ is invertible and } x = xyx).$$

2. R is a graded ring with property P, then

R has $P_{\mathrm{gr}}^{\mathrm{w}}$ while it may fail to have $P_{\mathrm{gr}}^{\mathrm{s}}$.

So, a unit-regular ring which is graded may not be "graded unit-regular".

So far P_{gr}^{w} seems to be winning...

... since $P_{\rm gr}^{\rm s}$ can be **too strong**. However, the module-wise version of $P_{\rm gr}^{\rm w}$ may be

out of the category of graded modules.

And so the **third contender** for "graded unit-regular" emerges:

graded cancellation.

However,

gr. cancellation ⇒ gr. directly finite

so

neither is perfect.

Why was I interested in K_0^{Γ} ?

Because of the **Isomorphism Conjecture** for graph algebras stating that

$$L_{\mathbb{C}}(E)\cong L_{\mathbb{C}}(F)$$
 as rings iff $C^*(E)\cong C^*(F)$ as *-algebras.

Formulated by Gene Abrams and Mark Tomforde. Note that $L_{\mathbb{C}}(E) \cong L_{\mathbb{C}}(F)$ as *-algebras $\Rightarrow C^*(E) \cong C^*(F)$ as *-algebras.

Mark

Gene

Generalized IC and K₀

Generalized IC:

 $L_K(E) \cong L_K(F)$ as rings iff $L_K(E) \cong L_K(F)$ as *-algebras.

One approach:

If $L_K(E) \cong L_K(F)$ as rings, then $K_0(L_K(E)) \cong K_0(L_K(F))$. If K_0 classifies the LPAs, then $L_K(E) \cong L_K(F)$ as *-algebras.

So, the question is:

Does K_0 classify the LPAs?

While K_0 fails miserably, $K_0^{\mathbb{Z}}$ has a chance

$$E=ullet$$
 but $K_0(L_K(E))=K_0(L_K(F))=\mathbb{Z}$ $K_0^\mathbb{Z}(L_K(E))=\mathbb{Z}[x,x^{-1}]$ $K_0^\mathbb{Z}(L_K(F))=\mathbb{Z}$ with $xa=a$

Considering grading generally helps

$$L_{K}(E) \cong \mathbb{M}_{3}(K) \qquad \cong \qquad L_{K}(F) \cong \mathbb{M}_{3}(K)$$

$$L_{K}(E) \cong_{gr} \mathbb{M}_{3}(K)(0,1,2) \qquad \ncong_{gr} \qquad L_{K}(F) \cong_{gr} \mathbb{M}_{3}(K)(0,1,1)$$

F =

4□ → 4□ → 4 = → ■ 900

Does $K_0^{\mathbb{Z}}$ classify LPAs?

Roozbeh Hazrat wondered about that. So he formulated

Graded Classification Conjecture.

$$\begin{array}{c} \text{Is } L_{\mathsf{K}}(\mathsf{E}) \cong_{\mathsf{gr}} L_{\mathsf{K}}(\mathsf{F}) \\ \text{iff} \\ \mathsf{K}_0^{\mathbb{Z}}(\mathsf{L}_{\mathsf{K}}(\mathsf{E})) \cong \mathsf{K}_0^{\mathbb{Z}}(\mathsf{L}_{\mathsf{K}}(\mathsf{F})) \text{?} \end{array}$$

We have our hands full...

Γ-realization problem

Graded classification

Defining graded properties

References: liavas.net.

