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Multivariable Calculus students often complain that the for-
mula for computing the cross product of vectors is not
revealing enough: the geometric nature of the formula is
not readily apparent from its algebraic representation. We
present a way to overcome this impediment and deepen stu-
dents’ understanding of the cross product. Our approach also
enables students to understand how the cross product can
be generalized to higher dimensions. In particular, this can
inspire students to learn such concepts as the wedge prod-
uct of exterior algebra without any mathematical knowledge
above a Multivariable Calculus course.

One of the central ideas in a Multivariable Calculus
course is the generalization from two to three dimensions.
Every semester that Lia Vas, Associate Professor at the Uni-
versity of the Sciences in Philadelphia, teaches a
Multivariable Calculus course, she makes this idea the uni-
fying theme of the course. Her experience is that students
can better grasp the three dimensional concepts of Multi-
variable Calculus if they can see how the concepts originate
by adding an extra dimension to the familiar two dimen-
sional concepts in earlier calculus courses. As a conse-
quence, Lia’s Multivariable Calculus students are often
intrigued by the generalization from two or three to higher
dimensions. In Spring 2008, one of Lia’s students, Timothy
P. Enright, a chemistry major, was especially attracted to
the idea of higher dimensions, in particular, the generaliza-
tion of the cross product.

It all started with the formula for the cross product of two
three-dimensional vectors. Being a highly visual learner,
Timothy was looking for a way to “see” why the formula
for the cross product of two three-dimensional vectors 
a =⟨a1, a2, a3⟩ and b =⟨b1, b2, b3⟩ works:

a × b =⟨a2b3 – a3b2, a3b1 – a1b3, a1b2 – a2b1⟩

Timothy learned in class that the formula produces a vector
of magnitude equal to the area of the parallelogram spanned
by a and b. To “see” why this is true, he began to investi-
gate projections of a and b onto the different coordinate
planes and obtained images as those in Figures 1 and 2. He
denoted the projections of a onto the unit orthogonal basis
vectors in coordinate planes by ahor and aver and used simi-
lar notation for projections of b. While examining Figure 1,
Timothy noticed that the area of the parallelogram spanned
by a and b can be obtained as

(ahor + bhor)(aver + bver) – 2 ·    ahoraver – 2 ·   bhorbver – 2 ahorbver =

= averbhor – ahorbver

In Figure 2, Timothy noticed that (ahor + bhor)(aver – bver) – 
2 ·   ahoraver + 2 ·   bhorbver = aver bhor – ahor bver. Similarly, Tim-
othy checked all the possible cases depending on posi-

tion of the two vectors and, in each case, obtained 
averbhor – ahorbver, the coordinate of the cross product of a and
b. This convinced Timothy that the formula for the vector
product is indeed true.

Then, Timothy started wondering if there is a similar con-
nection between the volume and the cross product in four
dimensions. Namely, in the coordinates of the cross product
in three dimensions, Timothy recognized the formula for 
2 × 2 determinants:

In class, he also learned that the formula for the volume
spanned by three vectors a, b and c is

To direct him further, Lia suggested considering the follow-
ing fact:
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and trying to find the formula for the product of three four-
dimensional vectors. With further input from Lia about 
the signs of determinants, Timothy developed the following
formula for the cross product of a = ⟨a1, a2, a3, a4⟩, 
b = ⟨b1, b2, b3, b4⟩ and c =⟨c1, c2, c3, c4⟩.

It was evident to Timothy that this formula would generalize
the three-dimensional case in the sense that the coordinates
would compute the volume of the projections. However,
Lia wanted Timothy to see that this formula retains some
further properties of the cross product:

1. It produces a vector orthogonal to the initial vec-
tors. Note that the dot product and the concept of
orthogonality are much easier to generalize to
higher dimensions than the cross product. It 
was clear to Timothy that Lia meant the following:
the two four-dimensional vectors ⟨x1, x2, x3, x4⟩ 

and ⟨y1, y2, y3, y4⟩ are orthogonal if their dot product
x1y1 + x2y2 + x3y3 + x4y4 is zero.

2. The cross product is zero if and only if any of the
initial vectors are collinear (for 3 dimensions) or
coplanar (for 4 dimensions). Note that this fact eas-
ily follows from the geometric representation.

Elated by his findings, Timothy wondered if this could be
generalized to higher dimensions. Without knowledge of lin-
ear algebra and how to evaluate an n × n determinant when
n > 3, Timothy could not understand every detail of Lia’s
explanation but he could get a very good sense of the basic
idea of a wedge product in an exterior algebra. [1] Lia men-
tioned that in higher dimensions wedge ^ is used instead of
cross × and led Timothy to the formula for the product of 
n – 1 n-dimensional vectors ai = ⟨ai1, ai2, … ain⟩, i = 1, …,
n – 1 to be a1 ^ a2 ^ … an-1 = ⟨A1, A2, …, An⟩ where Ai, i =
1, …, n – 1, is defined as:

Lia pointed out that this product would retain two basic
properties of the two and three dimensional products:

1. The wedge product produces a vector orthogonal to
initial vectors.

2. If vectors are such that they all lie in a “plane” of
smaller dimension than the space itself (Lia did not
use the term “linearly dependent” since Timothy
did not take Linear Algebra yet), then the wedge
product is zero.

Timothy and Lia decided to share some of these findings
with Timothy’s classmates. They had a poster presentation
on Research Day at the University of the Sciences in
Philadelphia, held in the spring semester each year. A good
number of Timothy’s classmates, non-mathematics majors
just like Timothy himself, attended the poster presentation
and followed Timothy’s arguments leading them to the def-
inition of a wedge product in an exterior algebra. Timothy
and Lia presented the poster without using any, in the words
of students attending the presentation, “fancy math lan-
guage”. Instead, mathematical concepts were presented
using simple language combined with plenty of illustrations,
enabling some students to more easily adopt advanced math-
ematical symbols and concepts.

Following Bruner’s (1986, 1990) approach, this Multi-
variable Calculus topic was extended and adapted for
non-mathematics majors. This group of students demon-
strated they could appreciate the visual approach to abstract
concepts in the curriculum. Using “reflective practices” (see
Driscoll, 2005), students can create their own perception of
more advanced mathematical theories that are usually in the
realm of experts only. This can be applied to various other
topics in standard calculus textbooks such as Ellis and
Gulick (1994) or Stewart (1999).

Note
[1] Students with more background than a basic Multivariable Calculus
course can be directed to Bourbaki (1989) or MacLane and Birkhoff (1999).
Wikipedia also has a good introduction to the wedge product and exterior
algebras.
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