Algebraization of Operator Theory

Lia Vaš
University of the Sciences, Philadelphia, USA
John von Neumann’s dream...

... to capture abstractly the concept of an algebra of observables in quantum mechanics.

Non-commutative measure \leftrightarrow trace \rightarrow dimension function.
Algebraization of Operator Theory

”Von Neumann algebras are blessed with an excess of structure – algebraic, geometric, topological – so much, that one can easily obscure, through proof by overkill, what makes a particular theorem work.”

”If all the functional analysis is stripped away ... what remains should (be) completely accessible through algebraic avenues”.

The overkill that Berberian is referring to:

- a mosquito
- a machine gun
What structure do we need?

- With $+$ and $\cdot \rightarrow$ a ring.

- With an involution, an additive map $*$ with $(xy)^* = y^*x^*$ and $(x^*)^* = x \rightarrow$ a $*$-ring.
Traditional candidate – a Baer \ast-ring

A (left) **annihilator** of a set $X = \text{set of all elements } a \text{ such that } ax = 0.$

A **projection** $= \text{a self-adjoint } (p^* = p) \text{ idempotent } (pp = p).$

A **Baer \ast-ring** $= \text{every annihilator is generated by a projection}.$

So annihilator \leftrightarrow closed subspace.

Kaplansky’s dream: to axiomatize (at least part of) the theory of VNAs.

Followed similar path as von Neumann (looked at projections, idempotents, annihilators) and ended up defining **Baer \ast-rings.**
Examples and traces

<table>
<thead>
<tr>
<th>Finite matrices</th>
<th>(\mathcal{B}(H), \dim(H) = n) with the usual trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M_n(\mathbb{C}))</td>
<td></td>
</tr>
<tr>
<td>Infinite matrices</td>
<td>(\mathcal{B}(H), \dim(H) = \infty,) usual trace, not finite</td>
</tr>
<tr>
<td>Group VNAs (\mathcal{N}(G))</td>
<td>(G)-invariant operators on Hilbert space (l^2(G)) i.e. (f(xg) = f(x)g). Kaplansky trace on (l^2(G)) (\text{tr}(\sum a_g g) = a_1) produces (\text{tr}(f) = \text{tr}(f(1))).</td>
</tr>
</tbody>
</table>

First and thirds are examples of finite von Neumann algebras. Finite means

\[xx^* = 1 \implies x^*x = 1. \]
Trace to a dimension

- A finite VNA \mathcal{A} has a finite, normal and faithful **trace** $\text{tr}_\mathcal{A} : \mathcal{A} \to \mathbb{C}$.
- The trace extends to matrices: $\text{tr}([a_{ij}]) = \sum_{i=1}^{n} \text{tr}(a_{ii})$.

[Lück] Trace \rightarrow dimension.

1. If P is a fin. gen. proj.,

$$\dim_\mathcal{A}(P) = \text{tr}(f) \in [0, \infty).$$

where $f : \mathcal{A}^n \to \mathcal{A}^n$ is a projection with image P.

2. If M is any module,

$$\dim_\mathcal{A}(M) = \sup \{\dim_\mathcal{A}(P) \mid P \leq M \text{ fin. gen. proj.}\} \in [0, \infty].$$
What kind of rings have this type of dimension

2005 Baer *-rings satisfying certain nine eight ([2006]) axioms. If R is such, then $M_n(R)$ is Baer for every n.

2012 Strongly semihereditary rings = every fin. gen. nonsingular is projective. If such R also has $\star \Rightarrow M_n(R)$ is Baer for every n.

Examples: Finite \mathcal{AW}^*-algebras ($\mathcal{AW}^* = C^* +$ Baer).
Many ways to bridge the fields

Group Von Neumann algebras ↔ Group rings

AW^*-algebras ↔ Baer $*$-rings

Graph C^*-algebras ↔ Leavitt Path Algebras
Graph algebra evolution

1. **1950s**: Leavitt algebras as examples of rings with $R^m \cong R^n$.

2. **1970s**: Cuntz’s algebras – C^*-algebras defined by analogous identities.

4. **1990s**: Graph C^*-algebras.

5. **2000s**: Leavitt path algebras as algebraic analog of 4. and generalization of 1.

Recall: $C^* = \text{complete normed and } \ast\text{-algebra}$,
\[
\cdot \text{ and } \ast \text{ agree with } \| \|.
\]
Graph C^*-algebra: The graph encodes the structure \rightarrow easy to work with and classify. Encompasses many important examples of C^*-algebras.

Leavitt path algebra: no operator theory. Axiomatic approach.
Graphs and paths

1. Start with a graph: vertices, edges, and source and range map, s and r

2. Form paths, multiply them by concatenation.

 pq is \begin{align*}
 &\bullet \quad \bullet \\
 \quad \quad \quad &\text{ if } r(p) = s(q) \text{ and 0 otherwise.}
 \end{align*}

3. Add the set of ghost edges...

 ... and consider ghost paths too.
Leavitt path and graph C^*-algebras

Can also do this by **axioms**:

V $vv = v$ and $vw = 0$ if $v \neq w$,

$E1$ $e = s(e)e = er(e)$

$E2$ $e^* = e^*s(e) = r(e)e^*$ Add two more.

$CK1$ $e^*e = r(e)$, and $e^*f = 0$ if $e \neq f$

$CK2$ $v = \sum_{e \in s^{-1}(v)} ee^*$ if v regular ($0 < |s^{-1}(v)| < \infty$).

$K = \text{field}$. The **Leavitt path algebra** $L_K(E)$ of E is a free K-algebra (on v, e and e^*) satisfying these axioms.

If $K = \mathbb{C}$. The **graph C^*-algebra** $C^*(E)$ of E is the completion of $L_K(E)$. Universal C^*-algebra with

- vertices = generating projections
- edges = partial isometries and $CK1$ and $CK2$.
Some basic properties

1. Element in a Leavitt path algebra $L_K(E)$

\[
\sum k_{p,q}pq^* \quad p, q \text{ are paths, } r(p) = r(q) \\
k_{p,q} \in K
\]

2. $L_K(E)$ has **involution** \ast.

For involution $k \mapsto \bar{k}$ in K (can always take it to be identity), define

\[
(\sum kpq^*)^* = \sum \bar{k}qp^*
\]
Basic properties continued

3. If \{\text{vertices}\} is finite, \(L_K(E)\) is unital:

\[
1 = \sum \text{all vertices}
\]

4. If \{\text{vertices}\} is not finite, \(L_K(E)\) has \textbf{local units}:

for every \(x_i, i = 1, \ldots, n\) there is idempotent \(u\),

\[
x_i u = ux_i = x_i.
\]

\((u \text{ is the sum of sources of paths in representation of } x_i)\)
Example 1

Paths: v, w, e. Representation:

\[
\begin{align*}
 v &= \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} & w &= \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} & e &= \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}
\end{align*}
\]

Path algebra: triangular 2×2 matrices $T_2(K) = \begin{bmatrix} K & K \\ 0 & K \end{bmatrix}$

Ghost edge e^*. Representation:

\[
e^* = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}
\]

Leavitt path algebra: all 2×2 matrices $M_2(K) = \begin{bmatrix} K & K \\ K & K \end{bmatrix}$

Graph C^*-algebra: all 2×2 matrices $M_2(\mathbb{C})$
Example class 1 – Matrices

\[u \xrightarrow{e} v \xrightarrow{f} w \]

Representation via 3x3 matrices.

Generalizes to \(n \)-line.

\[\bullet \xrightarrow{e_1} \bullet \xrightarrow{e_2} \bullet \ldots \xrightarrow{e_{n-1}} \bullet \]

Path algebra: triangular \(nxn \) matrices \(T_n(K) \)

Leavitt path algebra: all \(nxn \) matrices \(M_n(K) \)

Graph C*-algebra: all \(nxn \) matrices \(M_n(\mathbb{C}) \)
Example 2 – Loop

Paths: \(v = 1, e, e^2, e^3 \ldots \)
Representation: \(e = x \)

Path algebra: Polynomials \(K[x] \).

Ghost edge: \(e^* = x^{-1} \)

Leavitt path algebra: Laurent polynomials \(K[x, x^{-1}] \).

Graph C*-algebra: continuous functions on a circle \(C(S^1) \).
Example 3 – Rose

Paths: \(v = 1, e, f, ef, e^2, f^2, \ldots\)
Representation: \(e = x, f = y\)

Path algebra: \(K\langle x, y \rangle\). Ghost edges \(e^*, f^*\).

Leavitt path algebra: \(L(1, 2)\) (universal \(R\) with \(R^2 \cong R\)).

Graph \(C^*\)-algebra: Cuntz algebra \(\mathcal{O}_2\).

Generalizes to \(n\)-rose.

Path algebra: \(K[x_1, \ldots, x_n]\).

Leavitt path algebra: \(L(1, n)\)

Graph \(C^*\)-algebra: Cuntz algebra \(\mathcal{O}_n\)
Traces on graph algebras

1. The usual trace on $M_n(K)$.
2. Kaplansky trace on $K[x, x^{-1}]$.
 $\text{tr}(\sum k_n x^n) = k_0$.

▶ Traces on graph C^*algebras?
▶ On Leavitt path algebras?
So, let us look at a trace...

... in the most general way. Let R and T be rings. A **T-valued trace on R**

is a map $\text{tr} : R \rightarrow T$ which is

- **additive** and
- **central** i.e. $\text{tr}(xy) = \text{tr}(yx)$

for all $x, y \in R$

If R and T are K-algebras, we also want it to be

- **K-linear** i.e. $\text{tr}(kx) = k\text{tr}(x)$

for all $x \in R$ and $k \in K$.
Additional requirements if $*$ is around

x in $*$-ring is **positive** ($x \geq 0$) if

$$x = \text{finite sum of } yy^*.$$

Comes from complex conjugation:

$$(a + ib)(a - ib) = a^2 + b^2 \geq 0.$$

R, T $*$-rings, $\text{tr} : R \rightarrow T$ trace.

- tr is **positive** if $x \geq 0$ implies $\text{tr}(x) \geq 0$.
- tr is **faithful** if $x > 0$ implies $\text{tr}(x) > 0$.

It should all depend on the vertices...

... but not just any map on vertices agrees with CK2.

A central map tr agrees with CK2 iff

$$
\text{tr}(v) = \text{tr}\left(\sum ee^*\right) = \sum \text{tr}(ee^*) = \sum \text{tr}(e^*e) = \sum \text{tr}(r(e))
$$

for v regular with $e \in s^{-1}(v)$.

Example.

$$
\bullet^1 \leftarrow \bullet^3 \rightarrow \bullet^1
$$

This does not agree with CK2 since $3 \neq 1 + 1$.
Graph traces

Tomforde 2002. A graph trace is a map \(t \) on the set of vertices such that

\[
\begin{align*}
t(v) &= \sum_{e \in I} t(r(e)) \\
I &= s^{-1}(v), \text{ and } v \text{ regular.}
\end{align*}
\]

It is

- **positive** if
 \[
 (P) \quad t(v) \geq \sum_{e \in I} t(r(e))
 \]
 for all \(v \), and finite \(I \subseteq s^{-1}(v) \).

- **faithful** if positive and
 \[
 (F) \quad t(v) > 0
 \]
 for all \(v \).
Desirable properties

1. **Graph traces** ⇔ Traces.

2. (P) ⇔ positive, (F) ⇔ faithful.

Both fail. The \mathbb{C}-valued tr on $\mathbb{C}[x, x^{-1}]$ (=LPA of a loop) given by

\[
\begin{align*}
\text{tr}(x^n) &= i^n, \\
\text{tr}(x^{-n}) &= i^n
\end{align*}
\]

has (P) and (F) but is not positive since

\[\text{tr}((1 + x)(1 + x^{-1})) = 2 + 2i. \]

Also, the graph trace with $\text{tr}(1) = 1$ extends to a different trace.
Fixing this – Canonical traces

\[\text{tr} = \text{trace on } L_K(E), \ p, q = \text{paths.} \]

tr is **canonical** if \(\text{tr}(\text{“nondiagonal”}) = 0 \) and \(\text{tr}(\text{“diagonal”}) = \text{tr}(\text{vertex}). \)

\[\text{tr}(pq^*) = 0, \text{ for } p \neq q \text{ and } \text{tr}(pp^*) = \text{tr}(r(p)). \]
Harmony

Theorem [2016].

<table>
<thead>
<tr>
<th>canonical trace on $L_K(E)$</th>
<th>\iff</th>
<th>graph trace on E</th>
</tr>
</thead>
</table>

- canonical tr is positive \iff (P) holds.

- canonical tr is faithful \iff (F) holds.
Instead of going over 6 pages of proof...

... let me tell you what my **driving force** was.

2. Results on traces of graph C^*-algebras.
Connecting with the C^*-algebra world

Theorem [Pask-Rennie, 2006]. E row-finite and countable. All maps are \mathbb{C}-valued.

faithful, semifinite, lower semicontinuous
gauge-invariant \leftrightarrow faithful
trace on $C^*(E)$ \leftrightarrow graph trace on E

semifinite $= \{ x \in C^*(E)^+ | \text{tr}(x) < \infty \}$ is norm dense in $C^*(E)^+$.

lower semicontinuous $= \text{tr}(\lim_{n \to \infty} a_n) \leq \lim \inf_{n \to \infty} \text{tr}(a_n)$ for all $a_n \in C^*(E)^+$ norm convergent.
Operator theory trace

Defined on the positive cone.

\[\text{tr}(xx^*) = \text{tr}(x^*x) \]

Faithful if

\[\text{tr}(xx^*) = 0 \implies x = 0. \]

Algebra trace

Defined everywhere.

Central.

Faithful if positive and

\[\text{tr} \left(\sum xx^* \right) = 0 \implies \sum xx^* = 0. \]
Corollary [2016]. E countable.

semifinite,
lower semicont.,
faithful,
gauge-invariant
trace \leftrightarrow trace \leftrightarrow graph trace
on $C^*(E)$ on $L_{\mathbb{C}}(E)$ on E
Where to next with this?

My **driving force:**

A **von Neumann** algebra is **finite**
iff there is a finite, normal, faithful trace.

I wandered:

A **Leavitt path** algebra $L_K(E)$ is **finite**
iff there is a K-valued canonical, faithful trace (?)
iff the graph is ____________.

Recall that a \ast-ring is **finite** if

\[xx^* = 1 \implies x^*x = 1. \]

Easy: the existence of a faithful trace implies finiteness.

\[
xx^* = 1 \implies 1 - x^*x \geq 0 \text{ and } \text{tr}(1 - xx^*) = 0 \text{ so } \\
\text{tr}(1 - x^*x) = \text{tr}(1 - xx^*) = 0 \implies 1 - x^*x = 0 \implies x^*x = 1.
\]
Houston, we have a problem

finite iff \(xx^* = 1 \Rightarrow x^*x = 1 \).

What is “1” if \(E \) is not finite?

There are still local units: for every finite set of elements, there is an idempotent acting like a unit.

A \(*\)-ring with local units \(R \) is finite if for every \(x \) and an idempotent \(u \) with \(xu = ux = x \),

\[
xx^* = u \quad \text{implies} \quad x^*x = u.
\]

In this case \(u \) is a projection (selfadjoint idempotent).
LPAs is finite iff E has “no exits”

If a cycle p has an exit, then a LPA is not finite.

Let $x = p + w$, and $u = v + w$.

Then $ux = ux = x$ and $x^*x = u$. If $xx^* = u$, then $pp^* = v \Rightarrow 0 = pp^*e = ve = e$ contradiction.

If $v = w$, take $x = p$, $u = v$ and arrive to contradiction too.
Where will the trace take us next?

Idea of “localizing”: more general than just for finiteness.

$L_K(E)$ is finite \iff E is no-exit \iff $L_K(E)$ has a faithful trace \iff E is no-exit and _____?

No exits here.

No trace since value of $\text{tr}(v) \geq n \text{tr}(w)$ for all n.
Localizing