
Calculus 1
Lia Vas

Absolute Extrema and Constrained Optimization

Recall that a function f(x) is said to have a
relative maximum at x = c if f(c) ≥ f(x) for
all values of x in some open interval containing c.
However, that does not mean that the value f(c)
is absolutely the largest value on entire domain
of f. If f(c) ≥ f(x) for all the values x in the
domain of f , then f is said to have an absolute
maximum at x = c.

Similarly, f(x) has a relative minimum at
x = c if f(c) ≤ f(x) for all values of x in some
open interval containing c. If f(c) is the abso-
lutely smallest value on entire domain of f, that
is if f(c) ≤ f(x) for all the values x in the do-
main of f , then f is said to have an absolute
minimum at x = c.

Even if having a relative extrema, a function
does not have to have an absolute extrema. For
example, the function on the figure on the right
defined on (−∞, 2) has both relative minimum
and a relative maximum but has neither an abso-
lute minimum nor an absolute maximum.

However, if the domain of a continuous func-
tion f(x) is a closed interval, then f achieves both
the absolute maximum and absolute minimum on
the interval.

This statement is known as the Extreme Value Theorem. The proof of this statement requires
more sophisticated arguments than those we cover in this course (see Wikipedia for several proofs),
but we illustrate this theorem by the following figures.
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In the figure above, we can see that the absolute extreme value is either at a critical point or at
the end point of the interval. When one finds all the critical points and the endpoints and plugs them
in the function, the largest value obtained is the absolute maximum and the lowest is the absolute
minimum. Thus we have the following.

The Closed Interval Method. To find the absolute maximum and minimum values
of a continuous function f(x) on a closed interval [a, b]:

1. Find f ′(x) and the critical points in (a, b).
2. Evaluate f(x) at the critical values in [a, b] and the endpoints a and b. Then

- the largest value you obtain is the absolute maximum and
- the smallest value you obtain is the absolute minimum.

Example 1. Find the absolute minimum and maximum of f(x) = 3x4 + 4x3 − 36x2 + 1 on the
interval [−1, 4].

Solutions. Find derivative f ′(x) = 12x3 + 12x2 − 72x = 12x(x2 + x − 6) = 12x(x − 2)(x + 3).
Thus the critical values are 0, 2 and −3. Note that −3 is not in the interval [−1, 4], so it is not
relevant for this problem.

Evaluate the function at the critical points 0
and 2 and at the endpoints −1 and 4. Obtain
that

f(0) = 1 f(2) = −63
f(−1) = −36 f(4) = 449

As 449 is the largest of these four values, (4, 449)
is the absolute maximum and, as−63 is the small-
est, (2,−63) is the absolute minimum.

Constrained Optimization
Finding optimal conditions under which a certain event occurs is one of the most important

applications of calculus. The term optimization problem refers to a problem of finding such optimal
conditions. The quantity which needs to be optimized is referred to as the objective. The objective
can depend on more than one variable. In this case, an equation that relates the variables is called
the constraint.

To solve an applied optimization problem follow the steps below.
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1. Read the problem carefully. Sketch a diagram if possible in order to visualize the relevant
information.

2. List the relevant quantities in the problem and assign them appropriate variables.

3. Determine the quantity to be maximized or minimized and write down how it depends on the
independent variables. This gives you the objective. Look for the key words in the problem
(the largest, the smallest, the shortest, the quickest, the cheapest and so on) indicating the
quantity that is to be optimized.

4. Determine how the independent variables are related. This gives you the constraint equation.
The constraint often involves the numerical value given in the problem.

5. Using the constraint, express one independent variable in terms of the other. Using this,
eliminate a variable from the objective equation making it a function of single variable.

6. Find the extreme values of the objective simplified by the previous step. If the domain of the
objective is a closed interval, use The Closed Interval Method. If not, you need to use either the
First or the Second Derivative Test to determine whether there is a minimum or a maximum
at each of the relevant critical points.

When you have found the needed value of the first independent variable, use the constraint to
find the value of the other independent variable.

7. Interpret the solution. Write a sentence that answers the question posed in the problem.

We illustrate this method with examples below.

Example 1. Find the dimensions of the rectangular garden of the greatest area that can be
fenced off with 400 feet of fencing.

Solution. The problem is asking for optimal dimensions of the rectangular region so let us start
by graphing a rectangular region and denoting the length and width by x and y.

Determine the objective. Note the words
“the greatest area”. This means that the
area of the rectangular region is the objective. If
we denote the area by A, the objective is A = xy.

Determine the constraint. The numerical ref-
erence “400 feet of fencing” indicates the con-
straint. The length of the fence corresponds to
the perimeter of the rectangle 2x+ 2y.

Thus the perimeter being 400 is the constraint equation. So, 2x+2y = 400, or simplified x+y =
200 is the constraint.

Eliminate a variable. Solve the constraint for either x or y. For example, with y = 200 − x the
objective becomes

A = xy = x(200− x) = 200x− x2.
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Find the maximum. The derivative of the area is A′(x) = 200− 2x and the only critical point is
200− 2x = 0⇒ x = 100. At this point we know only that this is a critical point – we cannot assume
that it maximizes the function. So, to check whether it really maximizes A, you need to do one of
the following: the First Derivative Test, the Second Derivative Test, or the Closed Interval Method.

1. Choosing the First Derivative Test. Perform the line test for A′. Obtain
A′

A
+ –
↗ 100 ↘

Conclude that there is a maximum at x = 100.

2. Choosing the Second Derivative Test. Find the second derivative A′′(x) = −2. Since it is less
than zero at any point, including the critical point x = 100, we conclude that the function is
concave down at x = 100, so there is a maximum at 100.

3. Choosing the Closed Interval Method. Note that x and y are nonnegative numbers so the
domain of A(x) is bounded below by x = 0. When y = 0, x is the largest possible x = 200.
So the domain of A is [0, 200]. Plug the endpoints 0, and 200, and the critical point 100 into
the objective to determine the absolute extremes. A(0) = A(200) = 0 is the minimum and
A(100) = 10, 000 is the maximum.

When x = 100, y = 200− x = 200− 100 = 100.
Make a conclusion. The dimensions of 100 ft with 100 ft produce the largest area of 10, 000 ft2.

Example 2. An open top box is made with a square base and should have a volume of 6000 cubic
inches. If the material for the sides costs $.20 per square inch and the material for the base costs
$.30 per square inch, determine the dimensions of the box that minimize the cost of the materials.

Solution. The problem is asking for the dimensions that minimize the cost. You can start by
graphing a open top box with a square base and denoting the sides of the base by one variable and
the height with the other. For example, x and y.

Determine the objective. With the require-
ment that the cost needs to be minimized, the
cost of the material is the objective. The total
cost is the sum of the cost for the bottom and
the cost for the sides. We are given the prices
in dollars per square inch so these prices need to
be multiplied with corresponding areas in square
inch to produce the cost in dollars. If we denote
the cost by C, we have that

Total cost C = cost for the base + cost for the sides
= 0.3 (area of the base) + 0.2 (area of the four sides)
= 0.3 (x2) + 0.2 (4 times xy)
= 0.3x2 + 0.8xy.

Determine the constraint. The numerical reference “6000 cubic inches” indicates the constraint.
It refers to the volume of the box and so the volume being 6000 is the constraint equation. Since the
volume is the product of the area of the base x2 and the height y, we obtain the constraint

x2y = 6000.
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Eliminate a variable. Note that it is easier to solve the constraint for y instead of x. So y = 6000
x2

and the objective becomes

C = 0.3x2 + 0.8xy = 0.3x2 + 0.8x
6000

x2
= 0.3x2 +

4800

x
Find the minimum. Find the derivative C ′(x) = 0.6x − 4800

x2
and the critical points 0 and the

solution of 0.6x− 4800
x2

= 0⇒ 0.6x3 = 4800⇒ x3 = 8000⇒ x = 3
√

8000 = 20.

Using the First Derivative Test, obtain
C ′

C
– +
↘ 20 ↗ . Thus, there is an absolute minimum

at 20. Alternatively, you can plug 20 in the second derivative C ′′(x) = 0.6 + 9600
x3

and, since C ′′(20) =
1.8 > 0, conclude that there is a minimum at 20 using the Second Derivative Test.

When x = 20, determine that the height is y = 6000
x2

= 6000
400

= 15.
Make a conclusion. To obtain the minimal cost of 360 dollars for making the box, the base needs

to have a side of 20 inches and the height should be 15 inches.

Minimizing the distance from a curve to
a point. Assume that the equation F (x, y) = 0
defines an implicit function and consider a point
(x0, y0) and the optimization problem of finding
the point on the curve F (x, y) = 0 which is the
closest to (x0, y0). The problem is asking for the
values x and y which minimize the distance D
and are related by F (x, y) = 0.

In this case, the equation F (x, y) = 0 is the constraint and the objective is the distance function
D. Recall that the formula for the distance from (x, y) to (x0, y0) is given by

D =
√

(x− x0)2 + (y − y0)2.

Finding the critical points of D may become rather tricky especially if the function F (x, y) is
complex. This may be simplified by considering D2 instead of D as the objective. This is justified
by the fact that the minimum/maximum of D occurs exactly where the minimum/maximum of D2

occurs. This always happens with strictly increasing functions: the minimum occurs at the beginning
and the maximum at the end of the interval considered. Thus, you can consider the objective to be
the function

D2 = (x− x0)2 + (y − y0)2.

We illustrate this method by the following example.

Example 3. Find the point on the parabola 2x− 2y2 = 7 which is closest to the point (4, 16).

Solution. With x0 = 4 and y0 = 16, the ob-
jective becomes D2 = (x−4)2 +(y−16)2 and the
constraint is 2x−2y2 = 7. In this case, eliminating
x is easier than eliminating y since it is easier to
solve the constrain for x. Thus x = y2+ 7

2
and the

objective becomes D2 = (y2+ 7
2
−4)2+(y−16)2 =

(y2− 1
2
)2+(y−16)2 = y4−y2+ 1

4
+y2−32y+256 =

y4 − 32y + 256.25. The derivative is 4y3 − 32 and
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the critical point is 4y3 − 32 = 0⇒ y3 − 8 = 0⇒ y = 3
√

8 = 2. The second derivative 12y2 is always
non negative and, in particular, it is positive at y = 2 so that D2 has a minimum at y = 2 by the
Second Derivative Test.

When y = 2, x = 22 + 7
2

= 15
2
. Thus, we conclude that the point (15

2
, 2) on parabola 2x− 2y2 = 7

is the closest to (4, 16).

Inscribing an object of largest area (or volume) into a given object. Assume that the
object O1 needs to be inscribed in the given object O2 in such a way that the area (in case the objects
are two dimensional) or the volume (in case the objects are three dimensional) is the largest possible.
In this case, consider the area (or volume) of O1 to be the objective and obtain the constraint from
the conditions relating the dimensions of O1 and O2. We illustrate this method in the following
example.

Example 4. Consider an isosceles triangle with base 6 cm and height 4cm. Find the dimensions
of the rectangle of the largest area that can be inscribed in a triangle on such a way that one side of
the rectangle lies on the base of the triangle and that the opposite two vertices are on the two equal
length sides of the triangle.

Solution. Make a sketch of the triangle and
rectangle first. The problem is asking to maxi-
mize the area of the rectangle, so the area is the
objective. To discover how the sides of the rectan-
gle are related, note that the height of the triangle
halves the figure creating two pairs of similar tri-
angles. Consider the right half for example. The
larger triangle has sides 3 and 4. If we denote the
base of the rectangle by 2x and the height by y,
the smaller triangle has the sides 3− x and y.

Thus the constraint emerges from the fact that the ratio of the corresponding sides of similar
triangles are equal. In this case,

3− x
3

=
y

4
⇒ 12− 4x = 3y ⇒ y = 4− 4

3
x.

The area of the rectangle with sides 2x and y is A = 2xy. Since y = 4 − 4
3
x, A = 2x(4 − 4

3
x) =

8x− 8
3
x2.

Find the derivative A′ = 8− 16
3
x and the critical point 8− 16

3
x = 0⇒ x = 3

2
. Since A′′ = −16

3
< 0,

there is a maximum at x = 3
2
.

When x = 3
2
, y = 4− 4

3
3
2

= 4− 2 = 2. Thus, the rectangle of the largest area has the base 3 cm
and the height 2 cm.

Example 5. Find the dimensions of the cylinder of the largest volume which can be inscribed in
the cone of height 4 cm and radius of the base 3 cm in such a way that the base of the cylinder lies
on the base of the cone. The previous problem may be relevant when determining the constraint.

Solution. Make a sketch as on the figure below. Let us denote the radius of the cylinder by r
and the height by h. The problem is asking to maximize the volume of the cylinder so the volume
V = r2πh the objective. Note that the r and h relate to the height and the radius of the cone on
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exactly the same way as x and y from the previous problem related to half of the base and the height
of the triangle. Thus the constraint is

3− r
3

=
h

4
⇒ h = 4− 4

3
r.

With the constraint, the objective becomes
V = r2π(4− 4

3
r) = π(4r2− 4

3
r3). The derivative is

V ′ = π(8r− 4r2) = 4rπ(2− r) and so the critical
points are 0 and 2. Either using the First or the
Second Derivative Test, obtain that the function
has a minimum at 0 and a maximum at 2.

When r = 2, h = 4 − 8
3

= 4
3
. Thus, the cylin-

der of the largest volume has the radius 2 cm and
the height 4

3
cm.

It is interesting to note that, although the constraint was the same in Examples 4 and 5, the
critical point was different. This is because the objective in Example 4 was a quadratic while in
Example 5 was a cubic function.

Practice Problems.

1. Find the absolute minimum and maximum of the function f(x) = x3 − 3x2 − 12x+ 24 on the
indicated interval. (a) [0, 6] (b) [−3, 6]

2. The function B(t) = 5 − 1
9

3

√
(8− 3t)5 models the biomass (total mass of the members of the

population) in kilograms of a mice population after t months. Determine when the population
is smallest and when it is the largest between 3 and 6 months after it started being monitored.

3. In a physics experiment, temperature T (in Fahrenheit) and pressure P (in kilo Pascals) have
a constant product of 5000 and the function F = T 2 + 50P is being monitored. Determine the
temperature T and pressure P that minimize the function F.

4. A fence must be built in a large field to enclose a rectangular area of 400 square meters. One
side of the area is bounded by existing fence; no fence is needed there. Material for the fence
cost $ 8 per meter for the two ends, and $ 4 per meter for the side opposite the existing fence.
Find the cost for the least expensive fence.

5. Consider a box with a square base. Find the dimensions of the box with the surface area 96
square inches, such that the volume is as large as possible.

6. A company wishes to manufacture a box with a volume of 36 cubic feet that is open on the top
and is twice as long as it is wide. Find the dimensions of the box produced from the minimal
amount of the material.

7. A soup manufacturer intents to sell the product in a cylindrical can that should contain half a
liter of soup. Determine the dimensions of the can which minimize the amount of the material
used. Recall that a liter corresponds to decimeter cubic and express your answer in centimeters.

8. Find the point on the parabola y2 = 2x− 2 which is closest to the point (2, 4).
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9. Find the dimensions of a rectangle of the largest area which has the base on x-axis and the
opposite two vertices on the parabola y = 12− x2.

10. Find the dimensions of the cylinder of the largest volume which can be inscribed in a sphere
of radius a.

11. If p denotes the frequency of the dominant allele and q the frequency of recessive allele so that
p+ q = 1, the Hardy - Weinberg Law states that the proportion of individuals in a population
who are heterozygous is 2pq and the proportion of individuals who are homozygous is p2 + q2.

(a) Find the maximal and minimal percentage of people that are heterozygous.

(b) Find the maximal and minimal percentage of people that are homozygous.

Solutions.

1. f(x) = x3− 3x2− 12x+ 24⇒ f ′(x) = 3x2− 6x− 12 = 3(x2− 2x− 4) = 3(x− 4)(x+ 2). Thus,
the critical points are at x = 4 and at x = −2.

For part (a) only x = 4 is relevant since −2 is outside of [0,6]. Evaluate the function f(x)
at the critical point 4 and at the endpoints 0 and 6. Obtain that f(0) = 24, f(6) = 60, and
f(4) = −8. Hence, the maximum is 60 at x = 6 and the minimum is −8 at x = 4.

For part (b), both critical points are in the given interval [−3, 6]. Evaluate the function f(x)
at both critical points and at both endpoints. In addition to f(6) = 60 and f(4) = −8, obtain
that f(−2) = 28 and f(−3) = 6. So, the absolute maximum is still 60 at x = 6 and the absolute
minimum is still −8 at x = 4.

2. B(t) = 5− 1
9

3

√
(8− 3t)5 ⇒ B′(t) = −5

27
(8− 3t)2/3(−3) = 5

9
(8− 3t)2/3. The only critical point is

8 − 3t = 0 ⇒ t = 8
3

and it is not in the interval. Evaluate function at the endpoints 3 and 6.
Since B(3) ≈ 5.11 and B(6) ≈ 10.16, the absolute maximum is 10.16 kg at t = 6 months and
the absolute minimum is 5.11 kg at t = 3 months.

3. The objective is F = T 2 + 50P and the constraint is PT = 5000. Solving for P for example, we
have that P = 5000

T
and so F = T 2 + 250000

T
. Then F ′ = 2T − 250000

T 2 = 2T 3−250000
T 2 . The critical

points are the solutions of 2T 3 − 250000 = 0 ⇒ 2T 3 = 250000 ⇒ T 3 = 125000 ⇒ T = 50 and
T 2 = 0⇒ T = 0. Use the First or the Second Derivative Test. With the latter, F ′′ = 2 + 500000

T 3

and F ′′(50) = 2 + 4 = 6 > 0, so there is a minimum at T = 50. F is not defined at 0, so there
is no extreme value at 0. When T = 50, P = 5000

50
= 100. Thus, the pressure of 100 kPa and

the temperature of 50 degrees Fahrenheit minimize the function F .

4. Using x for the length of the side opposite to the existing fence and y for the other side, the
objective, the cost function, is C = 4x + 8 · 2y = 4x + 16y. The constraint is xy = 400.
Solving for y, for example, you obtain that y = 400

x
so that C = 4x+ 16400

x
= 4x+ 6400

x
. Thus,

C ′ = 4− 6400
x2

= 4x2−6400
x2

. The critical points are the solutions of 4x2−6400 = 0⇒ x2 = 1600⇒
x = ±40 and x2 = 0 ⇒ x = 0. Thus, the only relevant critical point is x = 40. To check that
there is a minimum at x = 40, use the First or the Second Derivative Test. Using the latter,
C ′′(x) = 12800

x3
and so C ′′(40) = 12800

403
= 0.2 > 0. Hence there is a minimum at x = 40. When

x = 40, y = 400
40

= 10. Hence, 40 and 10 are dimensions that minimize the cost which becomes
$ 320 in that case.
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5. The objective is the volume V = x2y. The constraint is the surface area being 96 in2. Hence,
2x2 + 4xy = 96⇒ x2 + 2xy = 48. Solving the constraint for y produces 2xy = 48− x2 ⇒ y =
48−x2
2x

. The volume becomes V = x2 48−x
2

2x
= 1

2
x(48−x2) = 1

2
(48x−x3). Hence, V ′ = 1

2
(48−3x2)

and the critical points are 48−3x2 = 0⇒ 48 = 3x2 ⇒ 16 = x2 ⇒ x = ±4. Since negative values
are not relevant, x = 4 is the only feasible critical point. To check that there is a minimum at
x = 4, use the First or the Second Derivative Test. Using the latter, V ′′(x) = 1

2
(−6x) = −3x so

V ′′(4) = −12 < 0. Hence, the volume is maximal when x = 4 in which case y = 48−42
2(4)

= 32
8

= 4.
Thus, the box with the maximal volume is a cube with the side of 4 inches.

6. Using x for the length of the shorter side of the base and y for the height, the dimensions of the
box are x, 2x and y. The objective is the surface area function S = 2x2+2xy+4xy = 2x2+6xy.
The constraint is the volume being 36, so 2x2y = 36. Solve for y to get y = 18

x2
and substitute

into the objective S = 2x2 + 6x 18
x2

= 2x2 + 108
x
. As S ′ = 4x− 108

x2
= 4x3−108

x2
, the critical points

are x = 0 and 4x3 − 108 = 0 ⇒ 4x3 = 108 ⇒ x3 = 27 ⇒ x = 3. To check that there is a
minimum at x = 3, use the First or the Second Derivative Test. Using the latter, S ′′ = 4 + 216

x3

and S ′′(3) = 4 + 216
27

= 12 > 0, so x = 3 minimizes S. When x = 3, y = 18
32

= 2. So, 3, 6 and 2
feet are the dimensions that minimize the amount of the material for the box.

7. Using r for the radius of the base and h for the height, the total surface area is the sum of
the surface area of the base r2π, the top r2π and the side which is a rectangular sheet of sides
2πr and h rolled into a cylinder. Thus S = 2r2π + 2rπh is the objective. The constraint is
that the volume r2πh = 1

2
. The critical value of the function S = 2r2π + 2rπ 1

2r2π
= 2r2π + 1

r
is

4r3π = 1⇒ r = 1
3√4π ≈ 0.43 S ′′ is positive for r > 0 and so there is a minimum at 0.43. When

r = 0.43, h = 0.86 so the radius of the base of 4.3 cm and the height of 8.6 cm minimize the
amount of the material for the can.

8. Use the square of the distance D2 as the objective. Thus D2 = (x−2)2+(y−4)2. The constraint
is y2 = 2x−2. Eliminating x = 1

2
y2+1, D2 = (1

2
y2−1)2+(y−4)2 = 1

4
y4−8y+17⇒ d

dy
D2 = y3−8

so the critical point is y = 2. The second derivative 3y2 is positive at y = 2 so that D2 has a
minimum at y = 2. When y = 2, x = 3. Thus, we conclude that the point (3, 2) on parabola
y2 = 2x− 2 is the closest to (2,4).

9. Graph the parabola and make a sketch of one such possible the rectangle. If (x, y) is the
upper right vertex of the rectangle on the parabola, then the dimensions of the rectangle are
2x and y. Thus the area is A = 2xy. With the constraint y = 12− x2, the objective becomes
A = 2x(12− x2) = 24x− 2x3. As A′ = 24− 6x2, the critical points are 24− 6x2 = 0⇒

6(4 − x2) = 0 ⇒ 6(2 − x)(2 + x) ⇒ x = 2
and x = −2. As x denotes a positive distance,
only x = 2 is relevant. There is a maximum at
x = 2 since A′′ = −12x so A′′(2) = −24 < 0.
When x = 2, y = 12 − 22 = 8, so the rectan-
gle of the largest area has the base 4 and the
height 8.

10. Make a sketch of the sphere and a cylinder first.
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If r denotes the radius of the base and h the
height, note that 2r, h and the diameter 2a
constitute a right triangle as on the figure on
the right.

Thus the constraint is (2r)2 + h2 = (2a)2. The
objective is the volume V = r2πh.

It is the simplest to solve the constraint for r2 and substitute in the objective which gives you
r2 = 1

4
(4a2−h2)⇒ V = 1

4
(4a2−h2)πh = π

4
(4a2h−h3)⇒ V ′ = π

4
(4a2−3h2). The positive critical

point is h = 2a√
3

(negative solution is not relevant). V ′′ is negative for positive values of h and

so there is a maximum at the critical point. When h = 2a√
3
, r =

√
1
4
(4a2 − 4a2

3
) =

√
2a2

3
=
√
2a√
3
.

11. (a) The objective is F = 2pq and the constraint is p + q = 1. Thus q = 1 − p and F =
2p(1 − p) = 2p − 2p2. The only critical point is F ′ = 2 − 4p = 0 ⇒ p = 1

2
. Since p is the

frequency (probability), we have that the domain of F is the closed interval [0,1] so that we can
use the Closed Interval Method to find both minimum and maximum. Since F (1

2
) = 1

2
= 50%

and F (0) = F (1) = 0% we conclude that the percent of heterozygous individuals in a population
varies from 0 to 50 percent.

(b) Work out the details on your own using F = p2 + q2 as the objective. Conclude that the
percent of homozygous individuals in a population varies from 50 to 100 percent.
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