Derivatives and Integrals of Trigonometric and Inverse Trigonometric Functions

Trigonometric Functions.

Recall that

\[
\begin{align*}
\text{if } y &= \sin x, \text{ then } y' = \cos x \quad \text{and} \\
\text{if } y &= \cos x, \text{ then } y' = -\sin x.
\end{align*}
\]

Thus,

\[
\begin{align*}
\int \sin x \, dx &= -\cos x + c \quad \text{and} \\
\int \cos x \, dx &= \sin x + c.
\end{align*}
\]

The derivatives and integrals of the remaining trigonometric functions can be obtained by expressing these functions in terms of sine or cosine using the following identities:

\[
\begin{align*}
\tan x &= \frac{\sin x}{\cos x}, \\
\cot x &= \frac{\cos x}{\sin x}, \\
\sec x &= \frac{1}{\cos x}, \\
\csc x &= \frac{1}{\sin x}.
\end{align*}
\]

Example 1. Find derivative of \(\tan x\). Simplify your answer.

Solution. Using the formula \(\tan x = \frac{\sin x}{\cos x}\) and the quotient rule, obtain

\[
\frac{d}{dx} \tan x = \frac{\cos x \cos x - (-\sin x) \sin x}{\cos^2 x} = \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = \frac{1}{\cos^2 x} \quad \text{or} \quad \sec^2 x.
\]

Inverse Trigonometric Functions. The function \(\sin x\) passes horizontal line test for \(-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}\) so it has an inverse. The inverse function is denoted by \(\sin^{-1} x\) or \(\arcsin x\). Since the range of \(\sin x\) on \([-\frac{\pi}{2}, \frac{\pi}{2}]\) is \([-1,1]\), the interval \([-1,1]\) is the domain of \(\sin^{-1} x\). We also have the following cancellation rule.

\[
\sin(\sin^{-1} x) = x \quad \text{for} \quad -1 \leq x \leq 1 \quad \text{and} \quad \sin^{-1}(\sin x) = x \quad \text{for} \quad -\frac{\pi}{2} \leq x \leq \frac{\pi}{2}.
\]

Similarly, one obtains \(\cos^{-1} x\) on \([-1,1]\) is the inverse of \(\cos x\) for \(0 \leq x \leq \pi\) and the analogous cancellation rule holds. The function \(\tan^{-1} x\) on \((\infty, \infty)\) has the inverse \(\tan x\) for \(-\frac{\pi}{2} < x < \frac{\pi}{2}\). The inverses of other trigonometric functions can be obtained similarly.

Careful: when using notation \(\sin^{-1} x\) do not mix this function up with \((\sin x)^{-1} = \frac{1}{\sin x}\).

When solving an equation of the form \(\sin x = a\) for \(x\) where \(a\) is a number in \([-1,1]\), the second cancellation formula implies that \(x = \sin^{-1} a\) is one solution of this equation and that this value is in the interval \([-\frac{\pi}{2}, \frac{\pi}{2}]\). In many cases, we need more than this one solution, in particular, the second solution in interval \([0, 2\pi]\).

Using the trigonometric circle (or the graph of sine function) we can see that if

\[
x_1 = \sin^{-1} a,
\]

the second solution can be obtained as

\[
x_2 = \pi - x_1 = \pi - \sin^{-1} a.
\]
Similarly, when solving \(\cos x = a \), in interval \([0, 2\pi]\) the first solution can be found as

\[x_1 = \cos^{-1} a \]

and the second solution can be obtained as

\[x_2 = -x_1 = -\cos^{-1} a. \]

For the equation \(\tan x = a \), on \([0, 2\pi]\), the first solution can be found as

\[x_1 = \tan^{-1} a \]

and the second solution can be obtained as

\[x_2 = \pi + x_1 = \pi + \tan^{-1} a. \]

Derivatives of the Inverse Trigonometric Functions.

The formula for the derivative of \(y = \sin^{-1} x \) can be obtained using the fact that the derivative of the inverse function \(y = f^{-1}(x) \) is the reciprocal of the derivative \(x = f(y) \).

\[
y = \sin^{-1} x \Rightarrow x = \sin y \Rightarrow x' = \cos y \Rightarrow y' = \frac{1}{x'} = \frac{1}{\cos y} = \frac{1}{\cos(\sin^{-1} x)}.
\]

To be able to simplify this last expression, one needs to represent \(\cos y \) in terms of \(\sin y \). This can be done using the trigonometric identity

\[
\sin^2 y + \cos^2 y = 1 \Rightarrow \cos y = \sqrt{1 - \sin^2 y} \Rightarrow \cos(\sin^{-1} x) = \sqrt{1 - (\sin(\sin^{-1} x))^2} = \sqrt{1 - x^2}.
\]

Thus, we obtain the formula for the derivative of \(y = \sin^{-1} x \) to be

\[
y' = \frac{1}{\sqrt{1 - x^2}}
\]

Similarly, one obtains the following formulas.

\[
\frac{d}{dx}(\tan^{-1} x) = \frac{1}{x^2 + 1} \quad \frac{d}{dx}(\sec^{-1} x) = \frac{1}{x\sqrt{x^2 - 1}}
\]

Differentiating the trigonometric identities \(\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2} \), \(\tan^{-1} x + \cot^{-1} x = \frac{\pi}{2} \), and \(\sec^{-1} x + \csc^{-1} x = \frac{\pi}{2} \), we obtain that the derivatives of \(\cos^{-1} x \), \(\cot^{-1} x \), and \(\csc^{-1} x \) are negative of the derivatives of \(\sin^{-1} x \), \(\tan^{-1} x \), and \(\sec^{-1} x \) respectively.

Example 2. Find the derivatives of the following functions.

(a) \(y = \sin^{-1}(2x) \)
(b) \(y = x \tan^{-1} \sqrt{x} \)
(c) \(y = \sin^{-1} x^2 + \sqrt{1 - x^2} \)
Solution. (a) Use the chain rule with $2x$ as the inner function and $\sin^{-1} x$ as the outer. The derivative of the outer with the inner function kept unchanged is $\frac{1}{\sqrt{1-(2x)^2}} = \frac{1}{\sqrt{1-4x^2}}$. The derivative of the inner function is 2 so the derivative of $y = \sin^{-1}(2x)$ is

$$y' = \frac{2}{\sqrt{1-4x^2}}.$$

(b) The function is a product of $f = x$ and $g = \tan^{-1}\sqrt{x}$. Use the chain rule for the derivative of g. Obtain that $f' = 1$ and $g' = \frac{1}{1+(\sqrt{x})^2} \cdot \frac{1}{2} x^{-1/2} = \frac{1}{2\sqrt{x}(1+x)}$. Hence the derivative of $y = x \tan^{-1}\sqrt{x}$ is

$$y' = f'g + g'f = 1 \cdot \tan^{-1}\sqrt{x} + \frac{1}{2\sqrt{x}(1+x)} \cdot x = \tan^{-1}\sqrt{x} + \frac{\sqrt{x}}{2(1+x)}.$$

(c) The function is a sum of two terms and you can differentiate term by term. Use the chain rule for the first term to get

$$\frac{2x}{\sqrt{1-x^2}} \cdot \frac{1}{\sqrt{1-9x^2}} = \frac{2x}{\sqrt{1-x^2}}.$$

The derivative of the second term is

$$\frac{1}{2}(1-x^2)^{-1/2} \cdot (-2x) = -\frac{x}{\sqrt{1-x^2}}.$$

Hence the derivative of the function $y = \sin^{-1} x^2 + \sqrt{1-x^2}$ is

$$y' = \frac{2x}{\sqrt{1-x^2}} - \frac{x}{\sqrt{1-x^2}}.$$

Integrals producing inverse trigonometric functions. The above formulas for the the derivatives imply the following formulas for the integrals.

$$\int \frac{1}{\sqrt{1-x^2}} \, dx = \sin^{-1} x + c$$

$$\int \frac{1}{x^2 + 1} \, dx = \tan^{-1} x + c$$

$$\int \frac{1}{x\sqrt{x^2 - 1}} \, dx = \sec^{-1} x + c$$

Example 3. Evaluate the following integrals.

(a) $\int \frac{1}{\sqrt{1-9x^2}} \, dx$

(b) $\int \frac{1}{9x^2 + 1} \, dx$

Solution. (a) Note that the integrand matches the form $\frac{1}{\sqrt{1-u^2}}$ with $u^2 = 9x^2$. This produces the desired substitution $u^2 = 9x^2 \Rightarrow u = 3x$. Hence $du = 3dx \Rightarrow dx = \frac{du}{3}$. Thus we have that

$$\int \frac{1}{\sqrt{1-9x^2}} \, dx = \int \frac{1}{\sqrt{1-u^2}} \, \frac{du}{3} = \frac{1}{3} \int \frac{1}{\sqrt{1-u^2}} \, du = \frac{1}{3} \sin^{-1}(u) + c = \frac{1}{3} \sin^{-1}(3x) + c.$$

(b) Note that the integrand matches the form $\frac{1}{1+u^2}$ with $u^2 = 9x^2$. This produces the desired substitution $u^2 = 9x^2 \Rightarrow u = 3x$. Hence $du = 3dx \Rightarrow dx = \frac{du}{3}$. Thus we have that

$$\int \frac{1}{9x^2 + 1} \, dx = \int \frac{1}{u^2 + 1} \, \frac{du}{3} = \frac{1}{3} \int \frac{1}{1+u^2} \, du = \frac{1}{3} \tan^{-1}(u) + c = \frac{1}{3} \tan^{-1}(3x) + c.$$
Example 4. Compare the methods for evaluating the following integrals.

(a) \(\int \frac{x}{\sqrt{1 - 9x^2}} \, dx \)
(b) \(\int \frac{1}{\sqrt{1 - 9x^2}} \, dx \)

Use your conclusion to determine the method for evaluating the integral

(c) \(\int \frac{x + 1}{\sqrt{1 - 9x^2}} \, dx \)

Solution. (a) Although the denominator matches the one from the previous problem, the substitution \(u = 3x \) would not work because of the \(x \) in the numerator. However, the substitution \(u = 1 - 9x^2 \) has \(du = -18x \, dx \Rightarrow dx = -\frac{du}{18x} \), so the \(x \) term from \(du \) can cancel the \(x \) in the numerator after the substitution. So, you can evaluate this integral using the “standard” i.e. following the reasoning like on the handout “The Indefinite Integral – Review”. Thus we have that

\[
\int \frac{x}{\sqrt{1 - 9x^2}} \, dx = \int \frac{x}{\sqrt{u}} \, \frac{du}{-18x} = \frac{-1}{18} \int u^{-1/2} \, du = \frac{-2}{18} u^{1/2} + c = \frac{-1}{9} \sqrt{1 - 9x^2} + c.
\]

(b) This problem is the same as part (a) of Example 3.

(c) Separate the integral into a sum of two. The first matches part (a) and the second part (b). Thus we have that

\[
\int \frac{x + 1}{\sqrt{1 - 9x^2}} \, dx = \int \frac{x}{\sqrt{1 - 9x^2}} \, dx + \int \frac{1}{\sqrt{1 - 9x^2}} \, dx = \frac{-1}{9} \sqrt{1 - 9x^2} + \frac{1}{3} \tan^{-1}(3x) + c.
\]

Example 5. Evaluate the following integrals.

(a) \(\int \frac{1}{9 + x^2} \, dx \)
(b) \(\int \frac{1}{\sqrt{9 - x^2}} \, dx \)

Solution. (a) To obtain the form \(\frac{1}{1 + u^2} \), factor 9 out of the denominator first. \(\int \frac{1}{9 + x^2} \, dx = \int \frac{1}{9(1 + \frac{x^2}{9})} \, dx = \frac{1}{9} \int \frac{1}{1 + \frac{x^2}{9}} \, dx \). Note that the integrand is of the form \(\frac{1}{1 + u^2} \), with \(u^2 = \frac{x^2}{9} \). So, you can take \(u = \frac{x}{3} \). Thus, \(du = \frac{dx}{3} \Rightarrow 3du = dx \). Substitute and obtain \(\frac{1}{9} \int \frac{1}{1 + u^2} \, 3du = \frac{1}{3} \tan^{-1} u + c = \frac{1}{3} \tan^{-1}(\frac{x}{3}) + c \).

(b) Follow the same approach as in the previous problem: start by factoring 9 out of \(9 - x^2 \). Obtain \(\sqrt{9(1 - \frac{x^2}{9})} = 3 \sqrt{1 - \frac{x^2}{9}} \). Thus the integral becomes \(\int \frac{1}{\sqrt{1 - \frac{x^2}{9}}} \, dx = \frac{1}{3} \int \frac{1}{\sqrt{1 - u^2}} \, du \). Take \(u^2 = \frac{x^2}{9} \) so that \(u = \frac{x}{3} \). Thus, \(du = \frac{dx}{3} \Rightarrow 3du = dx \). Substitute and obtain \(\frac{1}{3} \int \frac{1}{\sqrt{1 - u^2}} \, 3du = \sin^{-1} u + c = \sin^{-1}(\frac{x}{3}) + c \).

Example 6. Evaluate the integral

\[
\int \frac{7}{5 + 3x^2} \, dx.
\]

Solution. Follow the methods used in the previous problems: factor 7 out of the integral and then 5 out of the denominator.

\[
\int \frac{7}{5 + 3x^2} \, dx = 7 \int \frac{1}{5(1 + \frac{3x^2}{5})} \, dx = \frac{7}{5} \int \frac{1}{1 + \frac{3x^2}{5}} \, dx.
\]
The last integrand indicates that \(u^2 = \frac{3x^2}{5} \) so that \(u = \frac{\sqrt{3x}}{\sqrt{5}} \). Thus, \(du = \frac{\sqrt{3}}{\sqrt{5}} \) \(dx \Rightarrow \frac{\sqrt{5}}{\sqrt{3}} du = dx \). Substitute and obtain \(\frac{7}{5} \int \frac{1}{1+u^2} \frac{\sqrt{7}}{\sqrt{3}} du = \frac{7\sqrt{5}}{5\sqrt{3}} \int \frac{1}{1+u^2} du = \frac{7\sqrt{5}}{5\sqrt{3}} \tan^{-1} u + c = \frac{7\sqrt{5}}{5\sqrt{3}} \tan^{-1} \frac{\sqrt{3x}}{\sqrt{5}} + c \).

Practice Problems:

1. Find all solutions of the following equations on interval \([0, 2\pi]\).

 (a) \(\sin x = \frac{2}{5} \)

 (b) \(\cos^2 x = \frac{1}{4} \)

 (c) \(2 \tan x + 3 = 9 \)

 (d) \(2 \cos^2 x + \cos x - 1 = 0 \)

 (e) \(\sin x \cos x = \sin x \)

 (f) \(\sin x = \cos x \)

2. Find the derivatives of the following functions.

 (a) \(y = \cot x^2 \)

 (b) \(y = x^2 \cos x \)

 (c) \(y = \sin(3x + 2) \cos(2x - 3) \)

 (d) \(y = \sin^{-1}(2x) \)

 (e) \(y = \sin(ax) \cos(bx) \) where \(a \) and \(b \) are arbitrary constants.

 (f) \(y = \sin^{-1}(x^4) \)

 (g) \(y = x^2 \cos^{-1} x \)

 (h) \(y = \tan^{-1}(e^x) \)

 (i) \(y = e^{\tan^{-1} x} \)

3. Evaluate the following integrals.

 (a) \(\int \cos(3x + 1) \) \(dx \)

 (b) \(\int x \sin x^2 \) \(dx \)

 (c) \(\int (9 + 2 \sin \frac{x}{5}) \) \(dx \)

 (d) \(\int_0^1 \frac{1}{\sqrt{1-x^2}} \) \(dx \)

 (e) \(\int \frac{1}{\sqrt{1-4x^2}} \) \(dx \)

 (f) \(\int \frac{1}{4x^2+1} \) \(dx \)

 (g) \(\int \frac{1}{x^2+4} \) \(dx \)

 (h) \(\int \frac{x+1}{x^2+4} \) \(dx \)

 (i) \(\int \frac{3}{5x^2+8} \) \(dx \)

 (j) \(\int \frac{x+3}{5x^2+8} \) \(dx \)

 (k) (Extra credit level) \(\int \frac{x+6}{x^2+4x+13} \) \(dx \)

4. Find the area of the region between \(y = \sin x \) and \(y = \cos x \) for \(x \) in \([0, 2\pi]\).

Solutions.

1. (a) \(\sin x = \frac{2}{5} \Rightarrow x = \sin^{-1} \frac{2}{5} \) and \(x = \pi - \sin^{-1} \frac{2}{5} \Rightarrow x \approx .411 \) and \(x \approx 2.73 \) radians or 23.57 and 156.42 degrees.

 (b) \(\cos^2 x = \frac{1}{4} \Rightarrow \cos x = \pm \frac{1}{2} \Rightarrow x = \pm \cos^{-1} \frac{1}{2} \Rightarrow x = \pm \frac{\pi}{3}, x = \pm \frac{2\pi}{3}. \)

 Converted to values in the interval \([0, 2\pi]\), the four solutions are \(\frac{\pi}{3}, \frac{2\pi}{3}, \frac{4\pi}{3} \) and \(\frac{5\pi}{3} \) or 60, 120, 240, and 300 degrees.

 (c) \(2 \tan x + 3 = 9 \Rightarrow 2 \tan x = 6 \Rightarrow \tan x = 3 \Rightarrow x = \tan^{-1}(3) \) and \(x = \pi + \tan^{-1}(3) \Rightarrow x \approx 1.25 \) and \(x \approx 4.39 \) radians or 71.56 and 251.57 degrees.

 (d) \(2 \cos^2 x + \cos x - 1 = 0 \Rightarrow (2 \cos x - 1)(\cos x + 1) = 0 \Rightarrow \cos x = \frac{1}{2}, \cos x = -1 \Rightarrow x = \pm \cos^{-1} \frac{1}{2} = \pm \frac{\pi}{3}, x = \pm \cos^{-1}(-1) = \pm \pi. \)

 Converted to values in the interval \([0, 2\pi]\), the solutions are \(\frac{\pi}{3}, \pi, \) and \(\frac{5\pi}{3} \) or 60, 180, and 300 degrees.

 (e) \(\sin x \cos x = \sin x \Rightarrow \sin x \cos x - \sin x = \sin x (\cos x - 1) = 0 \Rightarrow \sin x = 0, \cos x = 1. \) The first equation has solutions 0 and \(\pi \) and the second just 0. Thus 0 and \(\pi \) are the solutions.
2. (a) Representing the function as \(y = \cot x^2 = \frac{\cos x^2}{\sin x^2} \) and using the quotient rule with \(f(x) = \cos x^2 \) and \(g(x) = \sin x^2 \) and the chain for \(f'(x) = -\sin x^2(2x) \) and \(g'(x) = \cos x^2(2x) \) obtain that \(y' = -\frac{\sin x^2(2x) \sin x^2 \cos x^2 - \cos x^2(2x) \sin x^2}{\sin^2 x^2} \) or \(y' = \frac{-2x^4 \tan^2 x^2 + \cos x^2}{\sin^2 x^2} \).

(b) The product rule with \(f(x) = x^2 \) and \(g(x) = \cos x^2 \) and the chain for \(g'(x) = -\sin x^2(2x) \) so that \(y' = 2x \cos x^2 - \sin x^2(2x)(2x) = 2x \cos x^2 - 2x^3 \sin x^2 \).

(c) Product and chain: \(y' = 3 \cos(3x + 2) \cos(2x - 3) - 2 \sin(2x - 3) \sin(3x + 2) \).

(d) Use the chain rule with the outer \(\sin^{-1}(u) \) and the inner \(2x \). The derivative of the outer with the inner unchanged is \(\frac{1}{\sqrt{1-(2x)^2}} \) and the derivative of the inner is \(2 \). Thus \(y' = \frac{2}{\sqrt{1-4x^2}} \).

(e) Product and chain: \(y' = a \cos(ax) \cos(bx) - b \sin(bx) \sin(ax) \).

(f) Use the chain rule with the outer \(\sin^{-1}(u) \) and the inner \(x^4 \). The derivative of the outer with the inner unchanged is \(\frac{1}{\sqrt{1-(x^4)^2}} \) and the derivative of the inner is \(4x^3 \). Thus \(y' = \frac{4x^3}{\sqrt{1-x^8}} \).

(g) Use the product rule. \(y' = 2x \cos^{-1} x - \frac{x^2}{\sqrt{1-x^2}} \).

(h) Use the chain rule with the outer \(\tan^{-1}(u) \) and the inner \(e^x \). The derivative of the outer with the inner unchanged is \(\frac{1}{1+(e^x)^2} \) and the derivative of the inner is \(e^x \). Thus \(y' = \frac{e^x}{1+e^{2x}} \).

(i) Use the chain rule with the outer \(e^u \) and the inner \(\tan^{-1} x \). The derivative of the outer with the inner unchanged is \(e^{-\tan^{-1} x} \) and the derivative of the inner is \(\frac{1}{1+x^2} \). Thus \(y' = \frac{e^{-\tan^{-1} x}}{1+x^2} \).

3. (a) Use the substitution \(u = 3x + 1 \). The integral is \(\frac{1}{3} \sin(3x + 1) + c \).

(b) Use the substitution \(u = x^2 \). The integral is \(\frac{1}{2} \cos(x^2) + c \).

(c) Use the substitution \(u = \frac{\pi x}{5} \Rightarrow du = \frac{\pi}{5} dx \Rightarrow \frac{5}{\pi} du = dx \). The integral becomes \(\int (9 + 2 \sin u) \frac{5}{\pi} du = \frac{5}{\pi} \int (9u - 2 \cos u) + c = \frac{5}{\pi} (9u + 2 \cos \frac{\pi u}{5}) + c = 9x - \frac{10}{\pi} \cos \frac{\pi u}{5} + c \).

(d) An antiderivative is \(-\sin^{-1} x \). Substituting the bounds, you obtain \(\sin^{-1}(1) - \sin^{-1}(0) = \frac{\pi}{2} \).

(e) The integrand has the form \(\frac{1}{\sqrt{1-u^2}} \) that yields \(\sin^{-1} u \) with \(4x^2 \) being \(u^2 \). This tells you that \(4x^2 = u^2 \) (careful: not \(u \) but \(u^2 \)). With \(u^2 = 4x^2 \), you can have \(u = 2x \). Thus, \(du = 2dx \Rightarrow \frac{du}{2} = dx \). Substitute and obtain \(\int \frac{1}{\sqrt{1-u^2}} \frac{du}{2} = \frac{1}{2} \sin^{-1} u + c = \frac{1}{2} \sin^{-1}(2x) + c \).

(f) The integrand has the form \(\frac{1}{1+u^2} \) that yields \(\tan^{-1} x \) with \(4x^2 \) being \(u^2 \). This tells you that \(4x^2 = u^2 \). So, you can take \(u = 2x \). Thus, \(du = 2dx \Rightarrow \frac{du}{2} = dx \). Substitute and obtain \(\int \frac{1}{1+u^2} \frac{du}{2} = \frac{1}{2} \tan^{-1} u + c = \frac{1}{2} \tan^{-1}(2x) + c \).

(g) To obtain the form \(\frac{1}{1+u^2} \), factor 4 out of the denominator first. \(\int \frac{1}{x^2+4} dx = \int \frac{1}{4 \left(\frac{x^2}{4} + 1 \right)} dx = \frac{1}{4} \int \frac{1}{\left(\frac{x^2}{4} + 1 \right)} dx \). Note that the integrand is of the form \(\frac{1}{1+u^2} \), with \(u^2 = \frac{x^2}{4} \). So, you can take \(u = \frac{x}{2} \). Thus, \(du = \frac{dx}{2} \Rightarrow 2du = dx \). Substitute and obtain \(\int \frac{1}{u^2+1} 2du = \frac{1}{2} \tan^{-1} u + c = \frac{1}{2} \tan^{-1}(\frac{x}{2}) + c \).
(h) Note that the function \(\frac{x+1}{x^2+4} \) is the sum \(\frac{x}{x^2+4} + \frac{1}{x^2+4} \). Integrate both terms. The first integral can be evaluated using the substitution \(u = x^2 + 4 \Rightarrow du = 2xdx \Rightarrow \frac{du}{2x} = dx \). Thus, \(\int \frac{x}{x^2+4} \, dx = \int \frac{1}{8(x^2+1)} \, dx = \frac{1}{2} \ln|u| = \frac{1}{2} \ln(x^2 + 4) \). The second integral reduces to the previous problem with substitution \(u = \frac{x}{2} \) and solution \(\frac{1}{2} \tan^{-1}(\frac{x}{2}) \). Thus, the final answer is \(\frac{1}{2} \ln(x^2 + 4) + \frac{1}{2} \tan^{-1}(\frac{x}{2}) + c \).

(i) \[\int \frac{3}{5x^2+8} \, dx = 3 \int \frac{1}{5x^2+8} \, dx = 3 \int \frac{1}{8(\frac{5x^2}{8}+1)} \, dx = \frac{3}{8} \int \frac{1}{\frac{5x^2}{8}+1} \, dx. \]

Thus, \(du = \frac{\sqrt{5}}{\sqrt{8}} \, dx \Rightarrow \frac{\sqrt{5}}{\sqrt{8}} \, du = dx \). Substitute and obtain \(\frac{3}{8} \int \frac{1}{u^2+1} \, \frac{\sqrt{5}}{\sqrt{8}} \, du = \frac{3\sqrt{5}}{8\sqrt{8}} \int \frac{1}{u^2+1} \, du = \frac{3\sqrt{5}}{8\sqrt{8}} \tan^{-1} \frac{\sqrt{5}x}{\sqrt{8}} + c \).

(j) The function \(\frac{x^3}{5x^2+8} \) is the sum \(\frac{x}{5x^2+8} + \frac{3}{5x^2+8} \). Integrate both terms. The first integral can be evaluated using the substitution \(u = 5x^2 + 8 \Rightarrow du = 10x \, dx \Rightarrow \frac{du}{10x} = dx \). Thus, \(\int \frac{x}{5x^2+8} \, dx = \int \frac{du}{10x} = \frac{1}{10} \ln|u| = \frac{1}{10} \ln(5x^2 + 8) \).

The second integral is the same as the integral in part (i). We determined that it is equal to \(\frac{3\sqrt{5}}{8\sqrt{8}} \tan^{-1} \frac{\sqrt{5}x}{\sqrt{8}} + c \). Thus, the final answer is \(\frac{1}{10} \ln(5x^2 + 8) + \frac{3\sqrt{5}}{8\sqrt{8}} \tan^{-1} \frac{\sqrt{5}x}{\sqrt{8}} + c \).

(k) To apply the ideas for solving previous problems to this one, you want to complete the denominator to squares first (that is: to write the quadratic of the form \(ax^2 + bx + c \) in the form \((px + q)^2 + r^2 \)). The denominator \(x^2 + 4x + 13 \) is equal to \(x^2 + 2(2)x + 2^2 + 9 \). Note that the first three terms are equal to \((x + 2)^2 \). Thus, the denominator is equal to \((x + 2)^2 + 9 \).

This tells you that you want to evaluate the integral \(\int \frac{x+6}{x^2+4x+13} \, dx \) as the sum of two integrals. For the first you can take the whole denominator \((x+2)^2+9 \) for \(u \). This indicates how to decompose the numerator so that \(du = 2(x+2) \, dx \Rightarrow \frac{du}{2(x+2)} = dx \) cancels the \(x \)-terms in the numerator. Thus \(\int \frac{x+6}{x^2+4x+13} \, dx = \int \frac{\frac{x+2}{(x+2)^2+9}}{(x+2)^2+9} \, dx + \int \frac{4}{(x+2)^2+9} \, dx \).

For the first integral you obtain \(\int \frac{1}{u^2+1} \, du = \frac{1}{2} \ln u = \frac{1}{2} \ln((x+2)^2 + 9) \). Reduce the second integral to formula \(\frac{1}{u^2+1} \) that yields \(\tan^{-1}(u) \). Note that the denominator \((x + 2)^2 + 9 \) is equal to \(9\left(\frac{(x+2)^2}{9} + 1\right) \). So, for the second integral, you can use the substitution \(u = \frac{x+2}{3} \Rightarrow du = \frac{dx}{3} \Rightarrow 3ru = dx \). This integral becomes \(\frac{4}{9} \, 3 \int \frac{1}{u^2+1} \, du = \frac{4}{3} \, \tan^{-1} \frac{x+2}{3} \). Thus, the final answer is \(\frac{1}{2} \ln((x + 2)^2 + 9) + \frac{4}{3} \tan^{-1} \frac{x+2}{3} + c \).

4. Find intersections. The equation \(\sin x = \cos x \) has solutions \(x = \frac{\pi}{4} \) and \(x = \frac{5\pi}{4} \) by problem 1 (f). Graph the functions and note that the area consists of 3 regions as in the graph on the right. \(A = A_1 + A_2 + A_3 = \int_{0}^{\pi/4} (\cos x - \sin x) \, dx + \int_{\pi/4}^{5\pi/4} (\sin x - \cos x) \, dx + \int_{5\pi/4}^{2\pi} (\cos x - \sin x) \, dx = (\sin x + \cos x)_{0}^{\pi/4} + (\cos x - \sin x)_{5\pi/4}^{2\pi} + (\sin x + \cos x)_{5\pi/4}^{2\pi} = 4\sqrt{2} \approx 5.657 \).