Calculus 3

Lia Vas

Review for Exam 3

1. Parametric Surfaces. Surface Area.

(a) Find the equation of the tangent plane to the parametric surface $x=u+v, y=3 u^{2}$, $z=u-v$ at the point $(2,3,0)$.
(b) Find the surface area of the part of the cone $z=\sqrt{x^{2}+y^{2}}$ that lies between the cylinders $x^{2}+y^{2}=4$ and $x^{2}+y^{2}=9$. Write down the parametric equations of the cone first. Then find the surface area using the parametric equations.
(c) Using the parametric equations and formula for the surface area for parametric curves, show that the surface area of the cylinder $x^{2}+z^{2}=4$ for $0 \leq y \leq 5$ is 20π.

2. Triple Integrals and volume.

(a) $\iiint_{E} x y d x d y d z$ where E is the solid tetrahedron with vertices $(0,0,0),(1,0,0),(0,2$, $0)$ and $(0,0,3)$.
(b) $\iiint_{E} \sqrt{x^{2}+y^{2}} d x d y d z$ where E is the region that lies between the cylinders $x^{2}+y^{2}=1$ and $x^{2}+y^{2}=4$ and between the $x y$-plane and the plane $z=x+3$.
(c) $\iiint_{E} x^{2}+y^{2}+z^{2} d x d y d z$ where E is the unit ball $x^{2}+y^{2}+z^{2} \leq 1$.
(d) $\iiint_{E} z d x d y d z$ where E is the region between the spheres $x^{2}+y^{2}+z^{2}=1$ and $x^{2}+y^{2}+z^{2}=4$ in the first octant.
(e) Find the average value of the function $f(x, y, z)=x y z$ over the cube of side-length 4 , in the first octant with one vertex in the origin and edges parallel to the coordinate axes.
(f) Find the volume of the ellipsoid $\frac{x^{2}}{4}+\frac{y^{2}}{9}+\frac{z^{2}}{25}=1$ by using the transformation $x=2 u$, $y=3 v z=5 w$.
(g) Determine the bounds (in spherical coordinates) for the following regions between the spheres $x^{2}+y^{2}+z^{2}=1$ and $x^{2}+y^{2}+z^{2}=4$.
i. The region between the two spheres and above the $x y$-plane.
ii. The region between the two spheres and to the right of the $x z$-plane.
iii. The region between the two spheres and in front of the $y z$-plane.

3. Line Integrals.

(a) $\int_{C} x y^{4} d s, \quad C$ is the right half of the circle $x^{2}+y^{2}=16$.
(b) $\int_{C} x e^{y z} d s, \quad C$ is the line segment from $(0,0,0)$ to $(1,2,3)$.
(c) $\int_{C} x y d x+(x-y) d y, \quad C$ consists of the three line segments on the figure on the right.

(d) $\int_{C}(x y+\ln x) d y, C$ is the parabola $y=x^{2}$ from $(1,1)$ to $(3,9)$.
(e) $\int_{C} z^{2} d x+y d y+2 y d z$, where C consists of two parts C_{1} and $C_{2} . C_{1}$ is the intersection of the cylinder $x^{2}+y^{2}=16$ and the plane $z=3$ from $(0,4,3)$ to $(-4,0,3) . C_{2}$ is the line segment from $(-4,0,3)$ to $(0,1,5)$.
(f) Find the work done by the force field $\vec{F}(x, y, z)=\left(x+y^{2}, y+z^{2}, z+x^{2}\right)$ in moving an object along the curve C which is the positively oriented intersection of the plane $x+y+z=1$ and the coordinate planes.
(g) Find the work done by the force field $\vec{F}=\left(-y^{2}, x, z^{2}\right)$ in moving an object along the curve C which is is the positively oriented intersection of the plane $y+z=2$ and the cylinder $x^{2}+y^{2}=1$.

4. Potential. Independence of Path.

(a) Check that $\vec{f}=\langle y, x+z, y\rangle$ is conservative, find its potential function and use it to evaluate $\int_{C} \vec{f} d \vec{r}$ where C is any path from $(2,1,4)$ to $(8,3,-1)$.
(b) Check that $\vec{f}=\left\langle 2 x z+\sin y, x \cos y+3 y^{2} z, x^{2}+y^{3}+6 z\right\rangle$ is conservative, find its potential function and use it to evaluate $\int_{C} \vec{f} d \vec{r}$ where C is the helix $x=\cos t, y=\sin t, z=t$ for $0 \leq t \leq 2 \pi$.
(c) Show that the line integral $\int_{C}\left(2 x y+z^{2}\right) d x+\left(x^{2}+2 y z+2\right) d y+\left(y^{2}+2 x z+3\right) d z$ where C is any path from $(1,0,2)$ to $(0,1,4)$, is independent of path and evaluate it.
5. Green's Theorem. Evaluate the following integrals using Green's theorem. All the given curves are positively oriented.
(a) $\oint_{C} x^{4} d x+x y d y$ where C is the triangle with vertices $(0,0),(0,1)$, and $(1,0)$. Compute the integral also without using Green's Theorem.
(b) $\oint_{C} y^{2} d x+3 x y d y$ where C is the boundary of the region between the circles $x^{2}+y^{2}=1$ and $x^{2}+y^{2}=4$ above x-axis.
(c) $\oint_{C} x y d x+2 x^{2} d y$ where C is the line segment from $(-2,0)$ to $(2,0)$ and the upper half of the circle $x^{2}+y^{2}=4$.
(d) Use Green's Theorem to find the work done by the force $\vec{f}(x, y)=x(x+y) \vec{i}+x y^{2} \vec{j}$ in moving a particle along the triangle with vertices $(0,0),(1,0)$ and $(0,1)$ starting at the origin.
6. Curl and Divergence. Find curl and divergence of the following vector fields.
(a) $\vec{f}=\left\langle x z, x y z,-y^{2}\right\rangle$
(b) $\vec{f}=\left\langle e^{x} \sin y, e^{x} \cos y, z\right\rangle$
(c) $\vec{f}=\left\langle\frac{x}{z}, \frac{y}{z}, \frac{-1}{z}\right\rangle$

Solutions

More detailed solutions of the problems can be found on the class handouts.

1. Surface Area. Parametric Surfaces.
(a) Plane $3 x-y+3 z=3$
(b) Parameterization: $x=r \cos t, y=r \sin t, z=\sqrt{x^{2}+y^{2}}=\sqrt{r^{2}}=r$. The length of the cross product is $\sqrt{2} r$. The surface area is $5 \pi \sqrt{2}$.
(c) Parameterization: $x=2 \cos t, y=y, z=2 \sin t$. Bounds: $0 \leq t \leq 2 \pi, 0 \leq y \leq 5$. Length of the cross product is 2 . Thus the double integral is $2 \pi \cdot 5 \cdot 2=20 \pi$.
2. Triple Integrals and volume. (a) $\frac{1}{10}$ (b) 14π (c) $\frac{4 \pi}{5}$ (d) $\frac{15 \pi}{16}$ (e) 8 (f) 40π (g) Since the radius of the first sphere is 1 and the radius of the second sphere is 2 , the r-bounds are $1 \leq r \leq 2$ for all three parts.
i. The values of θ are 0 to 2π because the projection in the $x y$ plane is entire region between two circles. The bounds for ϕ are 0 to $\frac{\pi}{2}$ as the figure in the related handout illustrates.
ii. The right side of the $x z$-plane $y=0$ corresponds to $y>0$. Hence, the projection in $x y$ plane is above the x-axis. So, the values of θ are 0 to π. The bounds for ϕ are 0 to π as the figure in the related handout illustrates.
iii. The front of the $y z$-plane $x=0$ corresponds to $x>0$. Hence, the projection in $x y$-plane is to the right of the y-axis. So, the values of θ are $\frac{-\pi}{2}$ to $\frac{\pi}{2}$. The bounds for ϕ are 0 to π as the figure in the related handout illustrates.
3. Line Integrals.
(a) 1638.4
(b) 125.48
(c) $0+0+\frac{32}{3}=\frac{32}{3}$
(d) 102.68
(e) $\int_{C_{1}}=-44, \int_{C_{2}}=67.83$. So, $\int_{C}=67.83-44=23.83$
(f) Let C_{1} be a line from $(1,0,0)$ to $(0,1,0), C_{2}$ a line from $(0,1,0)$ to $(0,0,1)$ and C_{3} a line from $(0,0,1)$ to $(1,0,0)$. Find that $\int_{C_{1}}=\frac{-1}{3}, \int_{C_{2}}=\frac{-1}{3}$, and $\int_{C_{3}}=\frac{-1}{3}$. Thus $\int_{C}=\int_{C_{1}}+\int_{C_{2}}+\int_{C_{3}}=-1$.
(g) C has parametrization $x=\cos t, y=\sin t, z=2-y=2-\sin t, 0 \leq t \leq 2 \pi$. $\int_{C}=$ $\int_{C}-y^{2} d x+x d y+z^{2} d z=\int_{0}^{2 \pi} \sin ^{3} t d t+\cos ^{2} t d t+(2-\sin t)^{2} \cos t d t=\pi$.
4. Potential. Independence of Path. (a) $F=x y+y z+c, \int_{C} \vec{f} d \vec{r}=F(8,3,-1)-F(2,1,4)=$ $21-6=15 \quad$ (b) $F=x^{2} z+x \sin y+y^{3} z+3 z^{2}+c, t=0 \Rightarrow(x, y, z)=(1,0,0)$ and $t=2 \pi \Rightarrow$ $(x, y, z)=(1,0,2 \pi)$. So, $\int_{C} \vec{f} d \vec{r}=F(1,0,2 \pi)-F(1,0,0)=2 \pi+12 \pi^{2}-0 \approx 124.72$. $F=x^{2} y+z^{2} x+y^{2} z+2 y+3 z+c, \int_{C}=F(0,1,4)-F(1,0,2)=8$.
5. Green's Theorem. (a) $\frac{1}{6}$
(b) $\frac{14}{3}$
(c) 0
(d) $\frac{-1}{12}$
6. Curl and Divergence. (a) $\operatorname{div} \vec{f}=z+x z, \operatorname{curl} \vec{f}=\langle-y(x+2), x, y z\rangle \quad$ (b) $\operatorname{div} \vec{f}=1$, $\operatorname{curl} \vec{f}=\langle 0,0,0\rangle \quad$ (c) $\operatorname{div} \vec{f}=\frac{2}{z}+\frac{1}{z^{2}}, \operatorname{curl} \vec{f}=\left\langle\frac{y}{z^{2}}, \frac{-x}{z^{2}}, 0\right\rangle$.
