Calculus 3 Lia Vas

Review for Exam 3

1. Parametric Surfaces. Surface Area.

- (a) Find the equation of the tangent plane to the parametric surface x = u + v, $y = 3u^2$, z = u v at the point (2, 3, 0).
- (b) Find the surface area of the part of the cone $z = \sqrt{x^2 + y^2}$ that lies between the cylinders $x^2 + y^2 = 4$ and $x^2 + y^2 = 9$. Write down the parametric equations of the cone first. Then find the surface area using the parametric equations.
- (c) Using the parametric equations and formula for the surface area for parametric curves, show that the surface area of the cylinder $x^2 + z^2 = 4$ for $0 \le y \le 5$ is 20π .

2. Triple Integrals and volume.

- (a) $\int \int \int_E xy \, dx \, dy \, dz$ where E is the solid tetrahedron with vertices (0,0,0), (1, 0, 0), (0, 2, 0) and (0, 0, 3).
- (b) $\int \int \int_E \sqrt{x^2 + y^2} \, dx \, dy \, dz$ where *E* is the region that lies between the cylinders $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$ and between the *xy*-plane and the plane z = x + 3.
- (c) $\int \int \int_E x^2 + y^2 + z^2 dx dy dz$ where E is the unit ball $x^2 + y^2 + z^2 \le 1$.
- (d) $\int \int \int_E z \, dx \, dy \, dz$ where *E* is the region between the spheres $x^2 + y^2 + z^2 = 1$ and $x^2 + y^2 + z^2 = 4$ in the first octant.
- (e) Find the average value of the function f(x, y, z) = xyz over the cube of side-length 4, in the first octant with one vertex in the origin and edges parallel to the coordinate axes.
- (f) Find the volume of the ellipsoid $\frac{x^2}{4} + \frac{y^2}{9} + \frac{z^2}{25} = 1$ by using the transformation x = 2u, $y = 3v \ z = 5w$.
- (g) Determine the bounds (in spherical coordinates) for the following regions between the spheres $x^2 + y^2 + z^2 = 1$ and $x^2 + y^2 + z^2 = 4$.
 - i. The region between the two spheres and above the xy-plane.
 - ii. The region between the two spheres and to the right of the xz-plane.
 - iii. The region between the two spheres and in front of the yz-plane.

3. Line Integrals.

- (a) $\int_C x y^4 ds$, C is the right half of the circle $x^2 + y^2 = 16$.
- (b) $\int_C x e^{yz} ds$, C is the line segment from (0,0,0) to (1, 2, 3).
- (c) $\int_C xy \, dx + (x y) \, dy$, C consists of the three line segments on the figure on the right.

- (d) $\int_C (xy + \ln x) dy$, C is the parabola $y = x^2$ from (1,1) to (3,9).
- (e) $\int_C z^2 dx + y dy + 2y dz$, where C consists of two parts C_1 and C_2 . C_1 is the intersection of the cylinder $x^2 + y^2 = 16$ and the plane z = 3 from (0, 4, 3) to (-4, 0, 3). C_2 is the line segment from (-4, 0, 3) to (0, 1, 5).
- (f) Find the work done by the force field $\overrightarrow{F}(x, y, z) = (x+y^2, y+z^2, z+x^2)$ in moving an object along the curve C which is the positively oriented intersection of the plane x + y + z = 1 and the coordinate planes.
- (g) Find the work done by the force field $\overrightarrow{F} = (-y^2, x, z^2)$ in moving an object along the curve C which is is the positively oriented intersection of the plane y + z = 2 and the cylinder $x^2 + y^2 = 1$.

4. Potential. Independence of Path.

- (a) Check that $\vec{f} = \langle y, x+z, y \rangle$ is conservative, find its potential function and use it to evaluate $\int_C \vec{f} d\vec{r}$ where C is any path from (2, 1, 4) to (8, 3, -1).
- (b) Check that $\vec{f} = \langle 2xz + \sin y, x \cos y + 3y^2z, x^2 + y^3 + 6z \rangle$ is conservative, find its potential function and use it to evaluate $\int_C \vec{f} d\vec{r}$ where C is the helix $x = \cos t, y = \sin t, z = t$ for $0 \le t \le 2\pi$.
- (c) Show that the line integral $\int_C (2xy+z^2)dx + (x^2+2yz+2)dy + (y^2+2xz+3)dz$ where C is any path from (1, 0, 2) to (0, 1, 4), is independent of path and evaluate it.
- 5. Green's Theorem. Evaluate the following integrals using Green's theorem. All the given curves are positively oriented.
 - (a) $\oint_C x^4 dx + xy dy$ where C is the triangle with vertices (0, 0), (0, 1), and (1, 0). Compute the integral also without using Green's Theorem.
 - (b) $\oint_C y^2 dx + 3xy dy$ where C is the boundary of the region between the circles $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$ above x-axis.
 - (c) $\oint_C xydx + 2x^2dy$ where C is the line segment from (-2, 0) to (2, 0) and the upper half of the circle $x^2 + y^2 = 4$.
 - (d) Use Green's Theorem to find the work done by the force $\vec{f}(x,y) = x(x+y)\vec{i} + xy^2\vec{j}$ in moving a particle along the triangle with vertices (0,0), (1,0) and (0,1) starting at the origin.
- 6. Curl and Divergence. Find curl and divergence of the following vector fields.

(a)
$$\vec{f} = \langle xz, xyz, -y^2 \rangle$$
 (b) $\vec{f} = \langle e^x \sin y, e^x \cos y, z \rangle$ (c) $\vec{f} = \langle \frac{x}{z}, \frac{y}{z}, \frac{-1}{z} \rangle$

Solutions

More detailed solutions of the problems can be found on the class handouts.

1. Surface Area. Parametric Surfaces.

- (a) Plane 3x y + 3z = 3
- (b) Parameterization: $x = r \cos t$, $y = r \sin t$, $z = \sqrt{x^2 + y^2} = \sqrt{r^2} = r$. The length of the cross product is $\sqrt{2}r$. The surface area is $5\pi\sqrt{2}$.
- (c) Parameterization: $x = 2 \cos t$, y = y, $z = 2 \sin t$. Bounds: $0 \le t \le 2\pi$, $0 \le y \le 5$. Length of the cross product is 2. Thus the double integral is $2\pi \cdot 5 \cdot 2 = 20\pi$.
- 2. Triple Integrals and volume. (a) $\frac{1}{10}$ (b) 14π (c) $\frac{4\pi}{5}$ (d) $\frac{15\pi}{16}$ (e) 8 (f) 40π (g) Since the radius of the first sphere is 1 and the radius of the second sphere is 2, the *r*-bounds are $1 \le r \le 2$ for all three parts.
 - i. The values of θ are 0 to 2π because the projection in the xy plane is entire region between two circles. The bounds for ϕ are 0 to $\frac{\pi}{2}$ as the figure in the related handout illustrates.
 - ii. The right side of the xz-plane y = 0 corresponds to y > 0. Hence, the projection in xyplane is *above* the x-axis. So, the values of θ are 0 to π . The bounds for ϕ are 0 to π as the figure in the related handout illustrates.
 - iii. The front of the *yz*-plane x = 0 corresponds to x > 0. Hence, the projection in *xy*-plane is to the right of the *y*-axis. So, the values of θ are $\frac{-\pi}{2}$ to $\frac{\pi}{2}$. The bounds for ϕ are 0 to π as the figure in the related handout illustrates.
- 3. Line Integrals.
 - (a) 1638.4
 - (b) 125.48
 - (c) $0 + 0 + \frac{32}{3} = \frac{32}{3}$
 - (d) 102.68
 - (e) $\int_{C_1} = -44$, $\int_{C_2} = 67.83$. So, $\int_C = 67.83 44 = 23.83$
 - (f) Let C_1 be a line from (1,0,0) to (0,1,0), C_2 a line from (0,1,0) to (0,0,1) and C_3 a line from (0,0,1) to (1,0,0). Find that $\int_{C_1} = \frac{-1}{3}$, $\int_{C_2} = \frac{-1}{3}$, and $\int_{C_3} = \frac{-1}{3}$. Thus $\int_C = \int_{C_1} + \int_{C_2} + \int_{C_3} = -1$.
 - (g) C has parametrization $x = \cos t$, $y = \sin t$, $z = 2 y = 2 \sin t$, $0 \le t \le 2\pi$. $\int_C -y^2 dx + x dy + z^2 dz = \int_0^{2\pi} \sin^3 t dt + \cos^2 t dt + (2 \sin t)^2 \cos t dt = \pi$.
- 4. Potential. Independence of Path. (a) F = xy + yz + c, $\int_C \vec{f} d\vec{r} = F(8,3,-1) F(2,1,4) = 21 6 = 15$ (b) $F = x^2 z + x \sin y + y^3 z + 3z^2 + c$, $t = 0 \Rightarrow (x, y, z) = (1,0,0)$ and $t = 2\pi \Rightarrow (x, y, z) = (1,0,2\pi)$. So, $\int_C \vec{f} d\vec{r} = F(1,0,2\pi) F(1,0,0) = 2\pi + 12\pi^2 0 \approx 124.72$. (c) $F = x^2 y + z^2 x + y^2 z + 2y + 3z + c$, $\int_C = F(0,1,4) F(1,0,2) = 8$.
- 5. Green's Theorem. (a) $\frac{1}{6}$ (b) $\frac{14}{3}$ (c) 0 (d) $\frac{-1}{12}$
- 6. Curl and Divergence. (a) $\operatorname{div} \vec{f} = z + xz$, $\operatorname{curl} \vec{f} = \langle -y(x+2), x, yz \rangle$ (b) $\operatorname{div} \vec{f} = 1$, $\operatorname{curl} \vec{f} = \langle 0, 0, 0 \rangle$ (c) $\operatorname{div} \vec{f} = \frac{2}{z} + \frac{1}{z^2}$, $\operatorname{curl} \vec{f} = \langle \frac{y}{z^2}, \frac{-x}{z^2}, 0 \rangle$.