Substitution for Triple Integrals. Cylindrical and Spherical Coordinates

General substitution for triple integrals. Just as for double integrals, a region over which a triple integral is being taken may have easier representation in another coordinate system, say in \(uvw \)-space, than in \(xyz \)-space. In cases like that, one can transform the region in \(xyz \)-space to a region in \(uvw \)-space by the substitution

\[
x = x(u, v, w), \quad y = y(u, v, w), \quad \text{and} \quad z = z(u, v, w).
\]

When evaluating the integral \(\int \int \int_E f(x, y, z) \, dx \, dy \, dz \) using substitution, the volume element \(dV = dx \, dy \, dz \) becomes \(|J| \, du \, dv \, dw \) where the Jacobian determinant \(J \) is given by

\[
J = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w} \end{vmatrix} = \begin{vmatrix} x_u & x_v & x_w \\ y_u & y_v & y_w \\ z_u & z_v & z_w \end{vmatrix}
\]

Thus,

\[
\int \int \int_E f(x, y, z) \, dx \, dy \, dz = \int \int \int_E f(x(u, v, w), y(u, v, w), z(u, v, w)) \, |J| \, du \, dv \, dw
\]

Two main examples of such substitution are **cylindrical** and **spherical coordinates**.

Cylindrical coordinates.

Recall that the cylinder \(x^2 + y^2 = a^2 \) can be parametrized by \(x = a \cos \theta, \quad y = a \sin \theta \) and \(z = z \). Assuming now that the radius \(a \) is not constant and using the variable \(r \) to denote it just as in polar coordinates, we obtain the cylindrical coordinates

\[
x = r \cos \theta \\
y = r \sin \theta \\
z = z
\]
The Jacobian of cylindrical coordinates is

\[
J = \begin{vmatrix}
 x_r & x_{\theta} & x_z \\
 y_r & y_{\theta} & y_z \\
 z_r & z_{\theta} & z_z
\end{vmatrix} = \begin{vmatrix}
 \cos \theta & -r \sin \theta & 0 \\
 \sin \theta & r \cos \theta & 0 \\
 0 & 0 & 1
\end{vmatrix} = r \cos^2 \theta + r \sin^2 \theta = r.
\]

Thus, when using cylindrical coordinates to evaluate a triple integral of a function \(f(x, y, z) \) defined over a solid region \(E \) above the surface \(z = g(x, y) \) and below the surface \(z = h(x, y) \) with the projection \(D \) in the \(xy \)-plane. If the projection \(D \) has a representation in the polar coordinates \(D = \{ (r, \theta) \mid \alpha \leq \theta \leq \beta, \ r_1(\theta) \leq r \leq r_2(\theta) \} \), then the triple integral

\[
\int \int \int_E f(x, y, z) \, dx \, dy \, dz = \int_{\alpha}^{\beta} \left(\int_{r_1(\theta)}^{r_2(\theta)} \left(\int_{g(r,\theta)}^{h(r,\theta)} f(r \cos \theta, r \sin \theta, z) \, dz \right) \, r \, dr \right) \, d\theta.
\]

It is also good to keep in mind that in cylindrical coordinates \(x, y \) and \(r \) are related in the same way as in polar coordinates by

\[x^2 + y^2 = r^2. \]

Spherical coordinates.

Besides cylindrical coordinates, another frequently used coordinates for triple integrals are spherical coordinates. Spherical coordinates are mostly used for the integrals over a solid whose definition involves spheres.

If \(P = (x, y, z) \) is a point in space and \(O \) denotes the origin, let

- \(r \) denote the length of the vector \(\overrightarrow{OP} = \langle x, y, z \rangle \), i.e. the distance of the point \(P = (x, y, z) \) from the origin \(O \). Thus,

\[x^2 + y^2 + z^2 = r^2; \]

- \(\theta \) be the angle between the projection of vector \(\overrightarrow{OP} = \langle x, y, z \rangle \) on the \(xy \)-plane and the vector \(\overrightarrow{i} \) (positive \(x \)-axis); and

- \(\phi \) be the angle between the vector \(\overrightarrow{OP} \) and the vector \(\overrightarrow{k} \) (positive \(z \)-axis).

The conversion equations are

\[x = r \cos \theta \sin \phi, \quad y = r \sin \theta \sin \phi, \quad z = r \cos \phi. \]

The Jacobian determinant can be computed to be \(J = r^2 \sin \phi. \) Thus,

\[dx \, dy \, dz = r^2 \sin \phi \, dr \, d\phi \, d\theta. \]

Note that the angle \(\theta \) is the same in cylindrical and spherical coordinates.

It is important to remember that the distance \(r \) is different in cylindrical and in spherical coordinates.

<table>
<thead>
<tr>
<th></th>
<th>Meaning of (r)</th>
<th>Relation to (x, y, z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cylindrical</td>
<td>distance from ((x, y, z)) to (z)-axis</td>
<td>(x^2 + y^2 = r^2)</td>
</tr>
<tr>
<td>Spherical</td>
<td>distance from ((x, y, z)) to the origin</td>
<td>(x^2 + y^2 + z^2 = r^2)</td>
</tr>
</tbody>
</table>
Spherical coordinates parametrization of a sphere. If \(a \) is a positive constant and a point \((x, y, z)\) is on the sphere centered at the origin of radius \(a \), then the coordinates satisfy the equation
\[
x^2 + y^2 + z^2 = a^2.
\]
So, the distance from the origin \(r \) is exactly \(a \) for every such point. In other words, \(r \) is constant and equal to \(a \). Thus, the equation of the sphere in spherical coordinates become simple and short
\[
r = a.
\]

The equations
\[
x = a \cos \theta \sin \phi, \quad y = a \sin \theta \sin \phi, \quad z = a \cos \phi
\]
parametrize the sphere. When these equations are substituted in the expression \(x^2 + y^2 + z^2 \), it simplifies to \(a^2 \) (you should convince yourself of this fact).

Practice problems.

1. Evaluate the triple integral
 a) \(\int \int \int_E \sqrt{x^2 + y^2} \, dx \, dy \, dz \) where \(E \) is the region that lies inside the cylinder \(x^2 + y^2 = 16 \) and between the planes \(z = -3 \) and \(z = 4 \).
 b) \(\int \int \int_E 2 \, dx \, dy \, dz \) where \(E \) is the solid that lies between the cylinders \(x^2 + y^2 = 1 \) \(x^2 + y^2 = 4 \) and between the \(xy \)-plane and the plane \(z = x + 2 \).
 c) \(\int \int \int_E (x^2 + y^2 + z^2) \, dx \, dy \, dz \) where \(E \) is the unit ball \(x^2 + y^2 + z^2 \leq 1 \).
 d) \(\int \int \int_E z \, dx \, dy \, dz \) where \(E \) is the region between the spheres \(x^2 + y^2 + z^2 = 1 \) and \(x^2 + y^2 + z^2 = 4 \) in the first octant.

2. Find the volume of the solid enclosed by the paraboloids \(z = x^2 + y^2 \) and \(z = 36 - 3x^2 - 3y^2 \).

3. Find the volume of the solid enclosed by the paraboloids \(z = x^2 + y^2 \) and \(z = 18 - x^2 - y^2 \).

4. Find the volume of the ellipsoid \(\frac{x^2}{4} + \frac{y^2}{9} + \frac{z^2}{25} = 1 \) by using the transformation \(x = 2u, \ y = 3v \) \(z = 5w \).

Solutions.

1. a) Use cylindrical coordinates. The interior of the circle \(x^2 + y^2 = 16 \) can be described by \(0 \leq \theta \leq 2\pi \) and \(0 \leq r \leq 4 \). The bounds for \(z \) are given by \(z = -5 \) and \(z = 4 \). \(\int \int \int_E \sqrt{x^2 + y^2} \, dx \, dy \, dz = \int_0^{2\pi} \int_0^4 \int_{-5}^4 \sqrt{r^2 + z^2} \, dr \, d\theta \, dz = \int_0^{2\pi} \int_0^4 r \, dr \, d\theta \, \int_{-5}^4 dz = 2\pi \frac{64}{3} (4 + 5) = 384\pi. \)

 b) The region between the circles \(x^2 + y^2 = 1 \) \(x^2 + y^2 = 4 \) has \(0 \leq \theta \leq 2\pi \) and \(1 \leq r \leq 2 \). The bounds for \(z \) are \(xy \)-plane \(z = 0 \) and the plane \(z = x + 2 \) which in polar coordinates has the equation \(z = r \cos \theta + 2 \). Thus, using the cylindrical coordinates, \(\int \int \int_E 2 \, dx \, dy \, dz = \int_0^{2\pi} \int_1^2 \int_0^{r \cos \theta + 2} 2r \, dr \, d\theta \, dz = \int_0^{2\pi} 2r \, d\theta \int_1^2 2r \, dr \left(r \cos \theta + 2 \right) = \int_0^{2\pi} \left(\frac{14}{3} \cos \theta + 6 \right) \, d\theta = 12\pi. \)
c) Using spherical coordinates, \(0 \leq \theta \leq 2\pi, 0 \leq \phi \leq \pi, \) and \(0 \leq r \leq 1. \) The integral is:

\[
\int \int \int_E x^2 + y^2 + z^2 \, dx \, dy \, dz = \int_0^{2\pi} \int_0^\pi \int_0^1 r^2 \sin \phi \, dr \, d\phi \, d\theta = \int_0^{2\pi} \int_0^\pi r^2 \sin \phi \, d\phi \int_0^1 r^4 \, dr = 2\pi (-\cos \phi)|_0^\pi r^3 |_0^1 = 2\pi (2)^\frac{1}{3} = \frac{4\pi}{3}.
\]

d) Use spherical coordinates. Since the region is in the first octant, \(0 \leq \theta \leq \frac{\pi}{2} \) and \(0 \leq \phi \leq \frac{\pi}{2}. \) The bounds for \(r \) are determined by the radii of the spheres, so \(1 \leq r \leq 2. \) The integral is:

\[
\int \int \int_E \rho \, d\rho \, d\phi \, d\theta = \int_0^{2\pi} \int_0^\pi \int_1^2 \rho^2 \, d\rho \, d\phi \, d\theta = \int_0^{2\pi} \int_0^\pi r^2 \cos \phi \, d\phi \, d\theta = \int_0^{2\pi} r^2 \, d\theta \int_0^\pi \rho^2 \cos \phi \, d\phi = \frac{\pi}{2} \left(\frac{r^4}{4} \right) |_1^2 = \frac{15\pi}{16}.
\]

2. Use cylindrical coordinates. The paraboloids have the equations \(z = x^2 + y^2 = r^2 \) and \(z = 36 - 3x^2 - 3y^2 = 36 - 3r^2. \) The first is the lower \(z \)-bound and the second is the upper. The bounds for \(\theta \) are \(0 \leq \theta \leq 2\pi. \) The paraboloids intersect in a circle. The projection of the circle in the \(xy \)-plane determines the \(r \)-bounds. The integral is:

\[
V = \int \int \int_E \rho^2 \, d\rho \, d\phi \, d\theta = \int_0^{2\pi} \int_0^\pi \int_0^{\sqrt{36 - 3r^2}} r \cos \phi \, r^2 \sin \phi \, d\phi \, dr \, d\theta = \int_0^{2\pi} \int_0^\pi \rho^3 \, d\rho \int_0^{\sqrt{36 - 3r^2}} r^2 \cos \phi \, d\phi = \frac{\pi}{2} \left(\frac{r^4}{4} \right) |_0^3 = \frac{27\pi}{2}.
\]

3. Very similar to the previous problem. The \(z \)-bounds are \(x^2 + y^2 = r^2 \leq z \leq 18 - x^2 - y^2 = 18 - r^2. \) The integral is:

\[
V = \int \int \int_E \rho^2 \, d\rho \, d\phi \, d\theta = \int_0^{2\pi} \int_0^\pi \int_0^{\sqrt{18 - r^2}} r \cos \phi \, r^2 \sin \phi \, d\phi \, dr \, d\theta = \int_0^{2\pi} \int_0^\pi \rho^3 \, d\rho \int_0^{\sqrt{18 - r^2}} r \cos \phi \, d\phi = \frac{\pi}{2} \left(\frac{r^4}{4} \right) |_0^3 = \frac{27\pi}{2}.
\]

4. The substitution \(x = 2u, y = 3v \) and \(z = 5w \) converts the ellipsoid into a sphere of radius \(3. \) The integral is:

1. The Jacobian of the substitution is \(J = \begin{vmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5 \end{vmatrix} = 30. \) Thus, the volume is:

\[
V = \int \int \int_E x^2 + y^2 + z^2 \, dx \, dy \, dz = \int \int \int_{E'} x^2 + y^2 + z^2 \, dx \, dy \, dz = \int \int \int_{E'} (2u)^2 + (3v)^2 + (5w)^2 \, dx \, dy \, dz.
\]

Use the spherical coordinates now. The bounds are \(0 \leq \theta \leq 2\pi, 0 \leq \phi \leq \pi, \) and \(0 \leq r \leq 1 \) and the Jacobian is \(r^2 \sin \phi. \) Thus, the integral is:

\[
V = \int \int \int_{E'} r^2 \sin \phi \, dr \, d\phi \, d\theta = 30 \int_0^{2\pi} \int_0^\pi r^2 \sin \phi \, d\phi \int_0^1 r^2 \, dr = 30 \int_0^{2\pi} \pi (-\cos \phi)|_0^\pi r^3 |_0^1 = 30 \pi r^3 |_0^1 = 120\pi \frac{1}{3} = 40\pi.
\]