Fundamentals of Mathematics Lia Vas

Formulas for Exam 2

1. **Sets.**

$$A = B \iff (\forall x)(x \in A \Leftrightarrow x \in B)$$
$$A \subseteq B \iff (\forall x)(x \in A \Rightarrow x \in B)$$

Operations on sets.

$$A \cap B = \{x : x \in A \land x \in B\}$$

$$A \cup B = \{x : x \in A \lor x \in B\}$$

$$A - B = \{x : x \in A \land \neg x \in B\}$$

$$\overline{A} = \{x \in U : \neg x \in A\}$$

$$\overline{A} = \{x \in U : \neg x \in A\}$$

$$x \in A \cap B \iff x \in A \land x \in B$$

$$x \in A \cup B \iff x \in A \lor x \in B$$

$$x \in A - B \iff x \in A \land \neg x \in B$$

$$x \in A - B \iff x \in A \land \neg x \in B$$

$$x \in \overline{A} \iff x \in U \land \neg x \in A$$

$$A \times B = \{(a, b) : a \in A \land b \in B\}$$

$$\mathcal{P}(A) = \{B : B \subseteq A\}$$

$$B \in \mathcal{P}(A) \iff B \subseteq A$$

$$A = \emptyset \iff \neg x \in A$$

Generalized union and intersection

$$\bigcap_{i \in I} A_i = \{x : (\forall i \in I) x \in A_i\} \qquad x \in \bigcap_{i \in I} A_i \iff (\forall i \in I) x \in A_i$$
$$\bigcup_{i \in I} A_i = \{x : (\exists i \in I) x \in A_i\} \qquad x \in \bigcap_{i \in I} A_i \iff (\forall i \in I) x \in A_i$$

- 2. Relations. A relation on A is any subset of $A \times A$. A relation \sim on A is an equivalence on A if \sim is
 - **reflexive:** $(\forall a \in A) \ a \sim a$ **symmetric:** $(\forall a, b \in A) \ (a \sim b \Rightarrow b \sim a)$ **transitive:** $(\forall a, b, c \in A) \ (a \sim b \land b \sim c \Rightarrow a \sim c)$

The equivalence class [a] for $a \in A$ is $[a] = \{b \in A : a \sim b\}$. The quotient set A/\sim is the set of equivalence classes $A/\sim = \{[a] : a \in A\}$.

A relation \leq on A is a **partial order** on A if \leq is reflexive (($\forall a \in A$) $a \leq a$), transitive (($\forall a, b, c \in A$) ($a \leq b \land b \leq c \Rightarrow a \leq c$)) and

antisymmetric: $(\forall a, b, c \in A)$ $(a \leq b \land b \leq a \Rightarrow a = b)$

A partial order \leq on A is a **total order** if $(\forall a, b \in A) (a \leq b \lor b \leq a)$.

Let \leq be a partial order on A.

- $a \in A$ is the greatest element if $(\forall b \in A) b \preceq a$. $a \in A$ is the least element if $(\forall b \in A) a \preceq b$.
- $a \in A$ is a maximal element of A if $\neg(\exists b \in A) (a \leq b \land a \neq b)$ (equivalently, $(\forall b \in A)(a \leq b \Rightarrow a = b)).$ $a \in A$ is a minimal element of A if $\neg(\exists b \in A) (b \leq a \land a \neq b)$ (equivalently, $(\forall b \in A)(b \leq a \Rightarrow a = b)).$
- Let B ⊆ A. a ∈ A is an upper bound of B if (∀b ∈ B) b ≤ a, and a ∈ A is a supremum of B if a is the least element of the set of the upper bounds of B.
 a ∈ A is a lower bound of B if (∀b ∈ B) a ≤ b, and a ∈ A is an infimum of B if a is the greatest element of the set of the lower bounds of B.
- 3. Functions. A function $f : A \to B$ is a subset of $A \times B$ for which $(a, b) \in f$ is written by f(a) = b and such that
 - (a) $(\forall a \in A) (\exists b \in B) f(a) = b$
 - (b) $(\forall a_1, a_2 \in A) (a_1 = a_2 \Rightarrow f(a_1) = f(a_2))$

A function $f: A \to B$ is

(a) is **onto** or **surjective** if

$$(\forall b \in B) (\exists a \in A) \ f(a) = b$$

(b) A function $f : A \to B$ is **one-to-one** or **injective** if

 $(\forall a_1, a_2 \in A) \ (f(a_1) = f(a_2) \Rightarrow a_1 = a_2)$

(contrapositive: $(\forall a_1, a_2 \in A) \ (a_1 \neq a_2 \Rightarrow f(a_1) \neq f(a_2))$)

(c) A function $f: A \to B$ is **bijective** if it is one-to-one and onto.

If $f: A \to B$ and $g: B \to C$ are two functions, a **composition** $g \circ f: A \to C$ is the function given by

$$(g \circ f)(a) = g(f(a))$$

for $a \in A$.

The **identity function** on A is $id_A : A \to A$ defined by $id_A(a) = a$ for every $a \in A$. Useful identities for $f : A \to B : f \circ id_A = f$ and $id_B \circ f = f$.

A function $f: A \to B$ has the **inverse** f^{-1} if $f \circ f^{-1} = \mathrm{id}_B$ and $f^{-1} \circ f = \mathrm{id}_A$.

If $f : A \to B$ is a function, $C \subseteq A$ and $D \subseteq B$, the **image of** C is

$$f(C) = \{ b \in B : (\exists c \in C) \ b = f(c) \}.$$
 So, $b \in f(C) \Leftrightarrow (\exists c \in C) \ b = f(c).$

The inverse image of D is

$$f^{-1}(D) = \{a \in A : f(a) \in D\}.$$
 So, $a \in f^{-1}(D) \Leftrightarrow f(a) \in D.$