Fundamentals of Mathematics Lia Vas

Formulas for Exam 3

1. Cardinality.

 $A \approx B \iff (\exists f : A \to B) f$ is a bijection.

In this case, |A| = |B|. Cardinal adition:

$$|A| + |B| = |(A \times \{\Box\}) \cup (B \times \{\Delta\})|$$

If $A \cap B = \emptyset$, then

$$|A| + |B| = |A \cup B|$$

Cardinal multiplication:

$$|A| \cdot |B| = |A \times B|.$$

Some cardinal identities. $n \in \omega$ is a finite cardinal and α is an infinite cardinal.

$$\alpha + n = \alpha$$
$$\alpha + \alpha = \alpha$$
$$\alpha \cdot n = \alpha$$
$$\alpha \cdot \alpha = \alpha$$

2. Mathematical Induction.

"Basic" Induction for showing that P(n) holds for any $n \in \omega$.

- 1. P(0) holds.
- 2. If P(n) holds, then P(n+1) holds.

Double Induction for showing that P(m, n) holds for all $m, n \in \omega$.

1. Show that P(0, n) holds by showing

1a. P(0, 0) holds.

1b. If P(0, n), then P(0, n + 1) holds.

2. Assuming that P(m, n) holds, show that P(m + 1, n) holds.

Limited Induction for showing that P(n) holds for any $n \in \omega, n \geq k$.

- 1. P(k) holds.
- 2. If P(n) holds for $n \ge k$, then P(n+1) holds.

Complete induction for showing that P(n) holds for any $n \in \omega$

- 1. P(0) holds.
- 2. If P(k) holds for all $k \le n$, then P(n+1) holds.

For $n \in \omega$, factorial function is given by $n! = 1 \cdot 2 \cdot 3 \cdot \ldots \cdot n$, or, recursively, by

$$0! = 1, \qquad (n+1)! = n! \cdot (n+1).$$