Fundamentals of Mathematics
Lia Vas

Review for Exam 3

1. Show that the following pairs of sets have the same cardinality by explicitly producing a bijec-
tion between them.

(a) The set of all positive integers and the set of even positive integers.
(b) The interval (5,9) and the interval (1, 7).
(c) The interval [5,9] and the interval [1,7].

2. Consider the following sets.
P(A), P(B), AxB, P(AxB), P(A)x B, AxP(B), and P(A) x P(B)

Determine the cardinality of the above sets given the cardinalities of A and B. Express your
answers in terms of the given cardinalities of A and B.

(a) |A| =3 and |B| = 2.
(b) |A| =Ry and |B| = 2.
3. Let A, =w —{0,1,2,...,n} for n € w. Determine the cardinality of the following sets.

Auy Ap—Ap,  w—A, (A A

new new

4. Show that the relation ~ (given by A ~ B < (3f : A — B)f is a bijection) is reflexive,
symmetric and transitive.

5. If A, B,C, and D are sets such that |A| = |C| and |B| = |D|, show that |A| - |B| = |C| - |D|.
6. Show the following properties of the cardinal addition and multiplication.

(a) [A[+0=0+[A]=[4]

(b) [A]l+[B] = [B[ + |4]

(c) [Al-1=1-]A] = |A]

(d) [Al-|B| = |B] - |A]

7. Use induction to show that the following formulas hold for every natural number.

(a)
n(n+1)

O+14+2+...+n= 5

(b)
1+3+5+...+2n+1)=(n+1)>
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(c) For every real number z # 1,

1 — $n+1

l4+z+22+... +2"=
1—=x

8. Show the following statements on divisibility using induction.

(a) n® + 2n is divisible by 3 for any natural number n.

(b) 6™ — 1 is divisible by 5 for any natural number n > 0.

9. Use induction to show that the inequality
n! > 2"
holds for all n > 4.

10. If m and n are natural numbers, let P(m,n) be the statement below.
If m < n, then there is k£ such that m + k = n.

Show that P(m,n) is true for any m and n.

11. Show that the given formulas of the form a, = f(n) are closed forms of the given recursive
sequences.
(a) Recursive definition: a,1 = a, + 5,a; = 3. Closed form: a,, = 5n — 2.
(b) Recursive definition: a,.1 = 2a,, — a,_1,a0 = 2,a; = 5. Closed form: a,, = 3n + 2.

(c¢) Recursive definition: a,1 = 4a, — 4a,_1,a9 = 0,a; = 2. Closed form: a,, = n2".

Solutions

1. (a) Let A=1{1,2,3,...} and B = {2,4,6,...} be the two sets as required. Then f: A — B
mapping n onto 2n is a function. Its inverse g : B — A can be defined by mapping an even
positive integer of the form 2n onto n. Then for any n, we have that g(f(n)) = g(2n) =n
so go f is the identity on A and f(g(2n)) = f(n) = 2n, so fog is the identity on B. Thus,
f is invertible and, hence, a bijection.

(b) Any linear function mapping the endpoints of the interval onto the endpoints of the interval

can be used. For example, we can take the linear function with the slope % = g = % such
that y = 1 when # = 5. Thus, y—1 = 3(z —5) = y = 2z — 3. Thus, let f: (5,9) — (7,1)
be given by f(z) = 3z — . The formula for the inverse can be obtained by solving



y=3r—2forz:y+3 =3r=2=3y+2 solet g:(7,1) = (5,9) be given by

g(x) = %x + 1—;’ Both compositions g o f and f o g are identity maps:

3 13 2 (3 13 13 13 13
g(f(x))-g(yv—;) —§<§x—5>+§—x—§+€—xand

2 13 3 /2 13 13 13 13
roen=1(3e+2) =3 (Zar B)-Bonr BB,

(c) Since f and g from the previous solution map the endpoints of the intervals onto the
endpoints of the intervals, the same functions can be used.

2. (a) If |[A| = 3 and |B| = 2, then |P(A)| =28 =8, |P(B)| =22=4, |[AxB|=3-2=
6, |[P(Ax B)|=20=64, |P(A)xB|=8-2=16, |AxP(B)] =3 -4 =12, and
IP(A) x P(B)| =8 -4 =32.
(b) If |A] = Rg and |B| = 2, then |[P(A)| = 2%, |P(B)| =22 =4, |[AXB|=R8-2=
Ny, |P(Ax B)| =2%, |P(A) x B =2%.2=2%|AxP(B)| =N-4 =R and
IP(A) x P(B)| = 2% . 4 = 2%,

3. IfA, =w—{0,1,2,...,n} ={n+1,n+2,...}, then |A,| =Ng. A, —Ap1 ={n+1,n+2,...} —
{n+2,n+3,..})={n+1}so A, —Ap| =1 w—A, =w—{n+1,n+2,...} ={0,1,...,n},
so lw—A,|=n+1.

Note that Ag = {1,2,...}, A4 ={2,3,.. .}, A, = {3,4,...} ..., 50 ,c, An = D and | N
0. We also have that (J,,., An = {1,2,3,...} 50 [U,c., Anl = |w| = Ro.

A, =

new

4. Since id4 is a bijection A — A, we have that A =~ A, so & is reflexive.

If A ~ B, then there is a bijection f : A — B. As f is a bijection, there is the inverse
f~': B — A which is also a bijection. This shows that B ~ A and so ~ is symmetric.

If A~ B and B ~ (|, then there are bijections f : A — B and g : B — C. By a problem from
the previous review sheet, go f : A — C'is a bijection, so A &~ C. Thus, & is transitive.

5. As |A| = |C| and |B| = |D|, there are bijections f: A — C and g: B — D.

Since |A| - |B| is defined as |A x B| and |C| - | D] is defined as |C' x D|, we need to show that
|A x B| = |C x D|. This means that we need to define a function F : A x B — C x D
which will turn out to be a bijection. Let us define such a function F': A x B — C x D by

(a,b) = (f(a),g(b)). If f~ and g~! are the inverses of f and g respectively, then let us also
define G : C' x D — A x B by (¢,d) — (f7*(c),g7(d)). Check that both G o F and F o G are
the identities.

(G o F)(a,b) = G(F(a,b)) = G(f(a),g(b)) = (f " (f(a)), 57" (9(b))) = (a,b) and

(FoG)(e,d) =F(G(e,d) = F(f(c),g () = (f(f(c)), 9(g™ () = (c. ).
Thus, F' and G are bijections, so |A x B| = |C' x D] holds.

6. (a) Note that |A| + 0 is the cardinality of the set (A x {O0}) U (0 x {A}). Since @ x {A} =0,
the above union is A x {{J}. This set has the same cardinality as A since the function



f:A— Ax {0} given by a — (a,0) is one-to-one ((a1,d) = (ag, ) implies a; = ay)
and onto (a is the original of (a,)).
One can show 0 + |A| = |A| similarly or, after having part (b), this relation follows from
(b) and |[A| 4+ 0= |A.|

(b) The function f : (Ax{O})U(Bx{A}) = (Bx{O})U(Ax{A}) given by (a,0) — (a, A
and (b, A) — (b,0) is inverse to itself (check that f(f(a,d) = (a,0) and f(f(b,A)) =
(b, A\)), so this shows that it is a bijection

(c) Let us use {0} to represent 1. Checking that the function f : A — A x {0} given by
a +— (a,0) is a bijection since (a;,0) = (a2,0) implies a; = ay and a is the original of
(a,0). This shows that |A] - 1 = |A|. The relation 1 -|A| = |A| can be shown analogously.
Alternatively, it follows from part (b) and the relation |A] - 1 = |A].

(d) The function f: A x B — B x A given by (a,b) — (b, a) is inverse to itself since

f(f(a?b)) = f(b> a) = (a? b)

So, it is invertible and, hence, a bijection. This shows that |A x B| = |B x A| and so
Al -1B] = |B| - [Al.

7. (a) The formula holds for n = 0 since the left side consists of a single term 0 and the right side

@ = 0. Assume the formula holds for n and let us show it for n 4+ 1. By induction

hypothesis, the first equality below holds.

0+1+2+.“+n+(n+1):@4_@—}—1):n(n2+1)+2(n2—|—1) —
nn+1)+2n+1)  (n+1)(n+2)
> - 2 '

(b) The formula holds for n = 0 since the left side consists of a single term 2(0) + 1 = 1 and
the right side is (0+ 1)? = 1. Assume the formula holds for n and let us show it for n + 1.
By induction hypothesis, the first equality below holds.

14+34+5+...+2n+ D) +2n+D)+1=n+1)>*+2n+1)+1=

n4+2n+1+2n+2+1=n>+4n+4=n+2)(n+2)=(n+2)>~

(c) Let x be a real number = # 1. The formula holds for n = 0 since the left side consists of a
1—g0tt 1oz _

single term 1 and the right side is =*— = 1> = 1. Assume the formula holds for n and

let us show it for n + 1. By induction hypothesis, the first equality below holds.

1 — n+1 1— n+1 n+11_
1+x+x2—|—...—|—x”—|—x”+1:—x+xn+1: € _|_93 ( 55):
l—x l—x 1—x

1 — g gntl] — g2 ] — g2

1—=zx 11—z

8. (a) If n =0, then n® + 2n = 0 and 0 is divisible by 3. Assume that n® + 2n is divisible by 3
Recall that this means that n® + 2n = 3k for some natural number k. Let us show that
(n +1)> 4+ 2(n + 1) is also divisible by 3. Try to write this last expression as a sum of
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9.

10.

11.

n3+2n, so that we can use the induction hypothesis, and another term which is a multiple
of 3 and, hence, divisible by 3. Foil (n+ 1)® to get n® + 3n? + 3n + 1 so that we have the
following.

n+1)P+2n+1)=n*+3n*+3n+1+2n+2=n"+2n+3n*+3n+3 =
(n*+2n)+3n*+n+1)=3k+3n*+n+1)=3k+n*+n+1)

The last expression is divisible by 3 since it is a multiple of 3.

(b) Since n > 0, we start the induction at n = 1. Forn = 1,6" —1=6—1 =5 and it is
divisible by 5. Assume that 6™ — 1 is divisible by 5 and write 6" — 1 = 5k for some natural
number k. Let us show that 6" — 1 is divisible by 5. Note that 6" —1 =6-6" — 1.
From the induction hypothesis 6™ — 1 = 5k, we have that 6" = 5k + 1. Substituting 5k + 1
for 6™ in the inductive step, we have the following.

6" —1=6-6"-1=6(k+1)—1=30k+6—1=230k+5=>5(6k+1)
This last expression is divisible by 5 since it is a multiple of 5.

Use the limited induction starting with n = 4. The formula n! > 2" holds for n = 4 since it
becomes 4! = 24 > 16 = 2*. Assume the formula to be true for n and let us show it for n + 1.
Note that n +1 > 2 for any n > 4 because n + 1 is taking values 5,6,7,... and they are all
larger than 2. So, we have that

n+'=n-(n+1)>2" - (n+1)>2".2=2""

where the first relation holds by the recursive definition of the factorial, the second relation
holds by the inductive hypothesis and the third relation holds by the observation that n+1 > 2
for n > 4.

When m = n = 0, the statement reduces to a true implication since the premise 0 < 0 is true
and the conclusion is true for k = 0.

Assuming that P(0,n) holds, let us show that P(0,n + 1) holds. So, assume that the premise
0 <n+1of P(O,n+ 1) holds. Taking n + 1 for k, we have that 0+ k = k = n + 1. This
concludes the proof of the first step.

To show the second step, assume that P(m,n) holds and let us show P(m+1,n). Assume that
the assumption m+1 < n of P(m+1,n) holds. Hence m < m+1 < n holds so the assumption
m < n of P(m,n) also holds. So, there is unique [ such that m + [ = n. Since m < n, such [ is
strictly larger than zero (assuming otherwise [ = 0 leads to a contradiction m = m + 0 = n).
As [ > 0, [ is a successor of its predecessor, so [ = k + 1 for some natural number k. We have
that (m + 1) + kK =m+ (k + 1) by associativity and commutativity of +, so

(m+1)+k=m+(k+1)=m+l=n
where the last equality holds by the induction hypothesis.

(a) As the initial term is given with n = 1, use limited induction and show the claim for
all n > 1. The closed form matches the recursive equation for n = 1 since a; = 3 and
5(1) — 2 = 3. Assuming the closed form and the recursive formula to agree for n, let us
show that they agree for n+ 1. On one hand, a,.1 = a,+5 =5n—2+5 =5n+3. On the
other hand, a,+1 =5(n+1) —2 =5n+5—2 = 5n+ 3. Thus, the two formulas match.
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(b) The closed form matches the recursive equation for n = 0 since ap = 2 and 3(0) + 2 = 2.
Use complete induction, so assume the two formulas to match for all £ < n and show that
an+1 = 3(n + 1) + 2 = 3n + 5 using the recursive formula. This holds by the argument
below.

U1 = 20p, — ape1 =2B3n+2)—B(n—1)+2)=6n+4—-3n+3—2=3n+5.

(c) The closed form matches the recursive equation for n = 0 since ag = 0 and (0)2° = 0.
Use complete induction, so assume the two formulas to agree for all £ < n and show that
ani1 = (n+1)27+L

Uny1 = 4a, —4a, 1 =4n2" —4(n —1)2" 1 =4.2""Yn-2 - (n—1)) =

22.2" 1 2n —n4+ 1) =2"" (n+1) = (n+ 1)2".



