
Fundamentals of Mathematics
Lia Vas

Review for Exam 3

1. Show that the following pairs of sets have the same cardinality by explicitly producing a bijec-
tion between them.

(a) The set of all positive integers and the set of even positive integers.

(b) The interval (5, 9) and the interval (1, 7).

(c) The interval [5, 9] and the interval [1, 7].

2. Consider the following sets.

P(A), P(B), A×B, P(A×B), P(A)×B, A× P(B), and P(A)× P(B)

Determine the cardinality of the above sets given the cardinalities of A and B. Express your
answers in terms of the given cardinalities of A and B.

(a) |A| = 3 and |B| = 2.

(b) |A| = ℵ0 and |B| = 2.

3. Let An = ω − {0, 1, 2, . . . , n} for n ∈ ω. Determine the cardinality of the following sets.

An, An − An+1, ω − An,
⋂
n∈ω

An ,
⋃
n∈ω

An

4. Show that the relation ≈ (given by A ≈ B ⇔ (∃f : A → B)f is a bijection) is reflexive,
symmetric and transitive.

5. If A,B,C, and D are sets such that |A| = |C| and |B| = |D|, show that |A| · |B| = |C| · |D|.

6. Show the following properties of the cardinal addition and multiplication.

(a) |A|+ 0 = 0 + |A| = |A|
(b) |A|+ |B| = |B|+ |A|
(c) |A| · 1 = 1 · |A| = |A|
(d) |A| · |B| = |B| · |A|

7. Use induction to show that the following formulas hold for every natural number.

(a)

0 + 1 + 2 + . . . + n =
n(n + 1)

2

(b)
1 + 3 + 5 + . . . + (2n + 1) = (n + 1)2
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(c) For every real number x 6= 1,

1 + x + x2 + . . . + xn =
1− xn+1

1− x

8. Show the following statements on divisibility using induction.

(a) n3 + 2n is divisible by 3 for any natural number n.

(b) 6n − 1 is divisible by 5 for any natural number n > 0.

9. Use induction to show that the inequality

n! > 2n

holds for all n ≥ 4.

10. If m and n are natural numbers, let P (m,n) be the statement below.

If m ≤ n, then there is k such that m + k = n.

Show that P (m,n) is true for any m and n.

11. Show that the given formulas of the form an = f(n) are closed forms of the given recursive
sequences.

(a) Recursive definition: an+1 = an + 5, a1 = 3. Closed form: an = 5n− 2.

(b) Recursive definition: an+1 = 2an − an−1, a0 = 2, a1 = 5. Closed form: an = 3n + 2.

(c) Recursive definition: an+1 = 4an − 4an−1, a0 = 0, a1 = 2. Closed form: an = n2n.

Solutions

1. (a) Let A = {1, 2, 3, . . .} and B = {2, 4, 6, . . .} be the two sets as required. Then f : A → B
mapping n onto 2n is a function. Its inverse g : B → A can be defined by mapping an even
positive integer of the form 2n onto n. Then for any n, we have that g(f(n)) = g(2n) = n
so g ◦f is the identity on A and f(g(2n)) = f(n) = 2n, so f ◦g is the identity on B. Thus,
f is invertible and, hence, a bijection.

(b) Any linear function mapping the endpoints of the interval onto the endpoints of the interval
can be used. For example, we can take the linear function with the slope 7−1

9−5 = 6
4

= 3
2

such

that y = 1 when x = 5. Thus, y−1 = 3
2
(x−5)⇒ y = 3

2
x− 13

2
. Thus, let f : (5, 9)→ (7, 1)

be given by f(x) = 3
2
x − 13

2
. The formula for the inverse can be obtained by solving
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y = 3
2
x − 13

2
for x : y + 13

2
= 3

2
x ⇒ x = 2

3
y + 13

3
, so let g : (7, 1) → (5, 9) be given by

g(x) = 2
3
x + 13

3
. Both compositions g ◦ f and f ◦ g are identity maps:

g(f(x)) = g

(
3

2
x− 13

2

)
=

2

3

(
3

2
x− 13

2

)
+

13

3
= x− 13

3
+

13

3
= x and

f(g(x)) = f

(
2

3
x +

13

3

)
=

3

2

(
2

3
x +

13

3

)
− 13

2
= x +

13

2
− 13

2
= x

(c) Since f and g from the previous solution map the endpoints of the intervals onto the
endpoints of the intervals, the same functions can be used.

2. (a) If |A| = 3 and |B| = 2, then |P(A)| = 23 = 8, |P(B)| = 22 = 4, |A × B| = 3 · 2 =
6, |P(A × B)| = 26 = 64, |P(A) × B| = 8 · 2 = 16, |A × P(B)| = 3 · 4 = 12, and
|P(A)× P(B)| = 8 · 4 = 32.

(b) If |A| = ℵ0 and |B| = 2, then |P(A)| = 2ℵ0 , |P(B)| = 22 = 4, |A × B| = ℵ0 · 2 =
ℵ0, |P(A × B)| = 2ℵ0 , |P(A) × B| = 2ℵ0 · 2 = 2ℵ0 , |A × P(B)| = ℵ0 · 4 = ℵ0, and
|P(A)× P(B)| = 2ℵ0 · 4 = 2ℵ0 .

3. If An = ω−{0, 1, 2, . . . , n} = {n+1, n+2, . . .}, then |An| = ℵ0. An−An+1 = {n+1, n+2, . . .}−
{n+2, n+3, . . .}) = {n+1} so |An−An+1| = 1. ω−An = ω−{n+1, n+2, . . .} = {0, 1, . . . , n},
so |ω − An| = n + 1.

Note that A0 = {1, 2, . . .}, A1 = {2, 3, . . .}, A2 = {3, 4, . . .} . . ., so
⋂

n∈ω An = ∅ and |
⋂

n∈ω An| =
0. We also have that

⋃
n∈ω An = {1, 2, 3, . . .} so |

⋃
n∈ω An| = |ω| = ℵ0.

4. Since idA is a bijection A→ A, we have that A ≈ A, so ≈ is reflexive.

If A ≈ B, then there is a bijection f : A → B. As f is a bijection, there is the inverse
f−1 : B → A which is also a bijection. This shows that B ≈ A and so ≈ is symmetric.

If A ≈ B and B ≈ C, then there are bijections f : A→ B and g : B → C. By a problem from
the previous review sheet, g ◦ f : A→ C is a bijection, so A ≈ C. Thus, ≈ is transitive.

5. As |A| = |C| and |B| = |D|, there are bijections f : A→ C and g : B → D.

Since |A| · |B| is defined as |A × B| and |C| · |D| is defined as |C ×D|, we need to show that
|A × B| = |C × D|. This means that we need to define a function F : A × B → C × D
which will turn out to be a bijection. Let us define such a function F : A × B → C × D by
(a, b) 7→ (f(a), g(b)). If f−1 and g−1 are the inverses of f and g respectively, then let us also
define G : C ×D → A×B by (c, d) 7→ (f−1(c), g−1(d)). Check that both G ◦ F and F ◦G are
the identities.

(G ◦ F )(a, b) = G(F (a, b)) = G(f(a), g(b)) = (f−1(f(a)), g−1(g(b))) = (a, b) and

(F ◦G)(c, d) = F (G(c, d)) = F (f−1(c), g−1(d)) = (f(f−1(c)), g(g−1(d))) = (c, d).

Thus, F and G are bijections, so |A×B| = |C ×D| holds.

6. (a) Note that |A|+ 0 is the cardinality of the set (A× {�})∪ (∅ × {4}). Since ∅ × {4} = ∅,
the above union is A × {�}. This set has the same cardinality as A since the function
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f : A → A × {�} given by a 7→ (a,�) is one-to-one ((a1,�) = (a2,�) implies a1 = a2)
and onto (a is the original of (a,�)).

One can show 0 + |A| = |A| similarly or, after having part (b), this relation follows from
(b) and |A|+ 0 = |A.|

(b) The function f : (A×{�})∪(B×{4})→ (B×{�})∪(A×{4}) given by (a,�) 7→ (a,4)
and (b,4) 7→ (b,�) is inverse to itself (check that f(f(a,�) = (a,�) and f(f(b,4)) =
(b,4)), so this shows that it is a bijection

(c) Let us use {0} to represent 1. Checking that the function f : A → A × {0} given by
a 7→ (a, 0) is a bijection since (a1, 0) = (a2, 0) implies a1 = a2 and a is the original of
(a, 0). This shows that |A| · 1 = |A|. The relation 1 · |A| = |A| can be shown analogously.
Alternatively, it follows from part (b) and the relation |A| · 1 = |A|.

(d) The function f : A×B → B × A given by (a, b) 7→ (b, a) is inverse to itself since

f(f(a, b)) = f(b, a) = (a, b).

So, it is invertible and, hence, a bijection. This shows that |A × B| = |B × A| and so
|A| · |B| = |B| · |A|.

7. (a) The formula holds for n = 0 since the left side consists of a single term 0 and the right side

is 0(0+1)
2

= 0. Assume the formula holds for n and let us show it for n + 1. By induction
hypothesis, the first equality below holds.

0 + 1 + 2 + . . . + n + (n + 1) =
n(n + 1)

2
+ (n + 1) =

n(n + 1)

2
+

2(n + 1)

2
=

n(n + 1) + 2(n + 1)

2
=

(n + 1)(n + 2)

2
.

(b) The formula holds for n = 0 since the left side consists of a single term 2(0) + 1 = 1 and
the right side is (0 + 1)2 = 1. Assume the formula holds for n and let us show it for n+ 1.
By induction hypothesis, the first equality below holds.

1 + 3 + 5 + . . . + (2n + 1) + 2(n + 1) + 1 = (n + 1)2 + 2(n + 1) + 1 =

n2 + 2n + 1 + 2n + 2 + 1 = n2 + 4n + 4 = (n + 2)(n + 2) = (n + 2)2.

(c) Let x be a real number x 6= 1. The formula holds for n = 0 since the left side consists of a
single term 1 and the right side is 1−x0+1

1−x = 1−x
1−x = 1. Assume the formula holds for n and

let us show it for n + 1. By induction hypothesis, the first equality below holds.

1 + x + x2 + . . . + xn + xn+1 =
1− xn+1

1− x
+ xn+1 =

1− xn+1

1− x
+

xn+1(1− x)

1− x
=

1− xn+1 + xn+11− xn+2

1− x
=

1− xn+2

1− x
.

8. (a) If n = 0, then n3 + 2n = 0 and 0 is divisible by 3. Assume that n3 + 2n is divisible by 3.
Recall that this means that n3 + 2n = 3k for some natural number k. Let us show that
(n + 1)3 + 2(n + 1) is also divisible by 3. Try to write this last expression as a sum of
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n3+2n, so that we can use the induction hypothesis, and another term which is a multiple
of 3 and, hence, divisible by 3. Foil (n + 1)3 to get n3 + 3n2 + 3n + 1 so that we have the
following.

(n + 1)3 + 2(n + 1) = n3 + 3n2 + 3n + 1 + 2n + 2 = n3 + 2n + 3n2 + 3n + 3 =

(n3 + 2n) + 3(n2 + n + 1) = 3k + 3(n2 + n + 1) = 3(k + n2 + n + 1)

The last expression is divisible by 3 since it is a multiple of 3.

(b) Since n > 0, we start the induction at n = 1. For n = 1, 6n − 1 = 6 − 1 = 5 and it is
divisible by 5. Assume that 6n−1 is divisible by 5 and write 6n−1 = 5k for some natural
number k. Let us show that 6n+1 − 1 is divisible by 5. Note that 6n+1 − 1 = 6 · 6n − 1.
From the induction hypothesis 6n− 1 = 5k, we have that 6n = 5k+ 1. Substituting 5k+ 1
for 6n in the inductive step, we have the following.

6n+1 − 1 = 6 · 6n − 1 = 6(5k + 1)− 1 = 30k + 6− 1 = 30k + 5 = 5(6k + 1)

This last expression is divisible by 5 since it is a multiple of 5.

9. Use the limited induction starting with n = 4. The formula n! > 2n holds for n = 4 since it
becomes 4! = 24 > 16 = 24. Assume the formula to be true for n and let us show it for n + 1.
Note that n + 1 > 2 for any n ≥ 4 because n + 1 is taking values 5, 6, 7, . . . and they are all
larger than 2. So, we have that

(n + 1)! = n! · (n + 1) > 2n · (n + 1) > 2n · 2 = 2n+1

where the first relation holds by the recursive definition of the factorial, the second relation
holds by the inductive hypothesis and the third relation holds by the observation that n+1 > 2
for n ≥ 4.

10. When m = n = 0, the statement reduces to a true implication since the premise 0 ≤ 0 is true
and the conclusion is true for k = 0.

Assuming that P (0, n) holds, let us show that P (0, n + 1) holds. So, assume that the premise
0 ≤ n + 1 of P (0, n + 1) holds. Taking n + 1 for k, we have that 0 + k = k = n + 1. This
concludes the proof of the first step.

To show the second step, assume that P (m,n) holds and let us show P (m+ 1, n). Assume that
the assumption m+1 ≤ n of P (m+1, n) holds. Hence m < m+1 ≤ n holds so the assumption
m ≤ n of P (m,n) also holds. So, there is unique l such that m + l = n. Since m < n, such l is
strictly larger than zero (assuming otherwise l = 0 leads to a contradiction m = m + 0 = n).
As l > 0, l is a successor of its predecessor, so l = k + 1 for some natural number k. We have
that (m + 1) + k = m + (k + 1) by associativity and commutativity of +, so

(m + 1) + k = m + (k + 1) = m + l = n

where the last equality holds by the induction hypothesis.

11. (a) As the initial term is given with n = 1, use limited induction and show the claim for
all n ≥ 1. The closed form matches the recursive equation for n = 1 since a1 = 3 and
5(1) − 2 = 3. Assuming the closed form and the recursive formula to agree for n, let us
show that they agree for n+ 1. On one hand, an+1 = an + 5 = 5n− 2 + 5 = 5n+ 3. On the
other hand, an+1 = 5(n + 1)− 2 = 5n + 5− 2 = 5n + 3. Thus, the two formulas match.
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(b) The closed form matches the recursive equation for n = 0 since a0 = 2 and 3(0) + 2 = 2.
Use complete induction, so assume the two formulas to match for all k ≤ n and show that
an+1 = 3(n + 1) + 2 = 3n + 5 using the recursive formula. This holds by the argument
below.

an+1 = 2an − an−1 = 2(3n + 2)− (3(n− 1) + 2) = 6n + 4− 3n + 3− 2 = 3n + 5.

(c) The closed form matches the recursive equation for n = 0 since a0 = 0 and (0)20 = 0.
Use complete induction, so assume the two formulas to agree for all k ≤ n and show that
an+1 = (n + 1)2n+1.

an+1 = 4an − 4an−1 = 4n2n − 4(n− 1)2n−1 = 4 · 2n−1(n · 2− (n− 1)) =

22 · 2n−1(2n− n + 1) = 2n+1(n + 1) = (n + 1)2n+1.
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