Fundamentals of Mathematics Lia Vas

Review for Exam 3

- 1. Show that the following pairs of sets have the same cardinality by explicitly producing a bijection between them.
	- (a) The set of all positive integers and the set of even positive integers.
	- (b) The interval $(5, 9)$ and the interval $(1, 7)$.
	- (c) The interval $[5, 9]$ and the interval $[1, 7]$.
- 2. Consider the following sets.

 $\mathcal{P}(A)$, $\mathcal{P}(B)$, $A \times B$, $\mathcal{P}(A \times B)$, $\mathcal{P}(A) \times B$, $A \times \mathcal{P}(B)$, and $\mathcal{P}(A) \times \mathcal{P}(B)$

Determine the cardinality of the above sets given the cardinalities of A and B. Express your answers in terms of the given cardinalities of A and B.

- (a) $|A| = 3$ and $|B| = 2$.
- (b) $|A| = \aleph_0$ and $|B| = 2$.
- 3. Let $A_n = \omega \{0, 1, 2, \ldots, n\}$ for $n \in \omega$. Determine the cardinality of the following sets.

$$
A_n, \quad A_n - A_{n+1}, \quad \omega - A_n, \quad \bigcap_{n \in \omega} A_n \quad , \bigcup_{n \in \omega} A_n
$$

- 4. Show that the relation \approx (given by $A \approx B \Leftrightarrow (\exists f : A \rightarrow B)f$ is a bijection) is reflexive, symmetric and transitive.
- 5. If A, B, C , and D are sets such that $|A| = |C|$ and $|B| = |D|$, show that $|A| \cdot |B| = |C| \cdot |D|$.
- 6. Show the following properties of the cardinal addition and multiplication.
	- (a) $|A| + 0 = 0 + |A| = |A|$
	- (b) $|A| + |B| = |B| + |A|$
	- (c) $|A| \cdot 1 = 1 \cdot |A| = |A|$
	- (d) $|A| \cdot |B| = |B| \cdot |A|$
- 7. Use induction to show that the following formulas hold for every natural number.
	- (a) $0 + 1 + 2 + \ldots + n =$ $n(n+1)$ 2 (b)

$$
1 + 3 + 5 + \ldots + (2n + 1) = (n + 1)^2
$$

(c) For every real number $x \neq 1$,

$$
1 + x + x2 + \ldots + xn = \frac{1 - x^{n+1}}{1 - x}
$$

- 8. Show the following statements on divisibility using induction.
	- (a) $n^3 + 2n$ is divisible by 3 for any natural number n.
	- (b) $6^n 1$ is divisible by 5 for any natural number $n > 0$.
- 9. Use induction to show that the inequality

 $n! > 2^n$

holds for all $n \geq 4$.

10. If m and n are natural numbers, let $P(m, n)$ be the statement below.

If $m \leq n$, then there is k such that $m + k = n$.

Show that $P(m, n)$ is true for any m and n.

- 11. Show that the given formulas of the form $a_n = f(n)$ are closed forms of the given recursive sequences.
	- (a) Recursive definition: $a_{n+1} = a_n + 5$, $a_1 = 3$. Closed form: $a_n = 5n 2$.
	- (b) Recursive definition: $a_{n+1} = 2a_n a_{n-1}$, $a_0 = 2$, $a_1 = 5$. Closed form: $a_n = 3n + 2$.
	- (c) Recursive definition: $a_{n+1} = 4a_n 4a_{n-1}, a_0 = 0, a_1 = 2$. Closed form: $a_n = n2^n$.

Solutions

- 1. (a) Let $A = \{1, 2, 3, \ldots\}$ and $B = \{2, 4, 6, \ldots\}$ be the two sets as required. Then $f : A \rightarrow B$ mapping n onto 2n is a function. Its inverse $g : B \to A$ can be defined by mapping an even positive integer of the form 2n onto n. Then for any n, we have that $g(f(n)) = g(2n) = n$ so $g \circ f$ is the identity on A and $f(g(2n)) = f(n) = 2n$, so $f \circ g$ is the identity on B. Thus, f is invertible and, hence, a bijection.
	- (b) Any linear function mapping the endpoints of the interval onto the endpoints of the interval can be used. For example, we can take the linear function with the slope $\frac{7-1}{9-5} = \frac{6}{4} = \frac{3}{2}$ $\frac{3}{2}$ such that $y = 1$ when $x = 5$. Thus, $y - 1 = \frac{3}{2}(x - 5) \Rightarrow y = \frac{3}{2}$ $\frac{3}{2}x-\frac{13}{2}$ $\frac{13}{2}$. Thus, let $f : (5, 9) \to (7, 1)$ be given by $f(x) = \frac{3}{2}x - \frac{13}{2}$ $\frac{13}{2}$. The formula for the inverse can be obtained by solving

 $y=\frac{3}{2}$ $\frac{3}{2}x-\frac{13}{2}$ $\frac{13}{2}$ for $x : y + \frac{13}{2} = \frac{3}{2}$ $\frac{3}{2}x \Rightarrow x = \frac{2}{3}$ $rac{2}{3}y + \frac{13}{3}$ $\frac{13}{3}$, so let $g: (7,1) \rightarrow (5,9)$ be given by $g(x) = \frac{2}{3}x + \frac{13}{3}$ $\frac{13}{3}$. Both compositions $g \circ f$ and $f \circ g$ are identity maps:

$$
g(f(x)) = g\left(\frac{3}{2}x - \frac{13}{2}\right) = \frac{2}{3}\left(\frac{3}{2}x - \frac{13}{2}\right) + \frac{13}{3} = x - \frac{13}{3} + \frac{13}{3} = x
$$
and

$$
f(g(x)) = f\left(\frac{2}{3}x + \frac{13}{3}\right) = \frac{3}{2}\left(\frac{2}{3}x + \frac{13}{3}\right) - \frac{13}{2} = x + \frac{13}{2} - \frac{13}{2} = x
$$

- (c) Since f and q from the previous solution map the endpoints of the intervals onto the endpoints of the intervals, the same functions can be used.
- 2. (a) If $|A| = 3$ and $|B| = 2$, then $|\mathcal{P}(A)| = 2^3 = 8$, $|\mathcal{P}(B)| = 2^2 = 4$, $|A \times B| = 3 \cdot 2 = 1$ 6, $|\mathcal{P}(A \times B)| = 2^6 = 64$, $|\mathcal{P}(A) \times B| = 8 \cdot 2 = 16$, $|A \times \mathcal{P}(B)| = 3 \cdot 4 = 12$, and $|\mathcal{P}(A) \times \mathcal{P}(B)| = 8 \cdot 4 = 32.$
	- (b) If $|A| = \aleph_0$ and $|B| = 2$, then $|\mathcal{P}(A)| = 2^{\aleph_0}$, $|\mathcal{P}(B)| = 2^2 = 4$, $|A \times B| = \aleph_0 \cdot 2 =$ $\aleph_0, \quad |\mathcal{P}(A \times B)| = 2^{\aleph_0}, \quad |\mathcal{P}(A) \times B| = 2^{\aleph_0} \cdot 2 = 2^{\aleph_0}, \quad |A \times \mathcal{P}(B)| = \aleph_0 \cdot 4 = \aleph_0$, and $|\mathcal{P}(A) \times \mathcal{P}(B)| = 2^{\aleph_0} \cdot 4 = 2^{\aleph_0}.$
- 3. If $A_n = \omega \{0, 1, 2, \ldots, n\} = \{n+1, n+2, \ldots\}$, then $|A_n| = \aleph_0$. $A_n A_{n+1} = \{n+1, n+2, \ldots\}$ ${n+2, n+3,...}$) = {n+1} so |A_n - A_{n+1}| = 1. ω - A_n = ω - {n+1, n+2,...} = {0,1,..., n}, so $|\omega - A_n| = n + 1$.

Note that $A_0 = \{1, 2, \ldots\}, A_1 = \{2, 3, \ldots\}, A_2 = \{3, 4, \ldots\} \ldots$, so $\bigcap_{n \in \omega} A_n = \emptyset$ and $|\bigcap_{n \in \omega} A_n|$ 0. We also have that $\bigcup_{n\in\omega} A_n = \{1, 2, 3, \ldots\}$ so $\big|\bigcup_{n\in\omega} A_n\big| = |\omega| = \aleph_0$.

4. Since id_A is a bijection $A \to A$, we have that $A \approx A$, so \approx is reflexive.

If $A \approx B$, then there is a bijection $f : A \rightarrow B$. As f is a bijection, there is the inverse $f^{-1}: B \to A$ which is also a bijection. This shows that $B \approx A$ and so \approx is symmetric.

If $A \approx B$ and $B \approx C$, then there are bijections $f : A \to B$ and $g : B \to C$. By a problem from the previous review sheet, $g \circ f : A \to C$ is a bijection, so $A \approx C$. Thus, \approx is transitive.

5. As $|A| = |C|$ and $|B| = |D|$, there are bijections $f : A \to C$ and $g : B \to D$.

Since $|A| \cdot |B|$ is defined as $|A \times B|$ and $|C| \cdot |D|$ is defined as $|C \times D|$, we need to show that $|A \times B| = |C \times D|$. This means that we need to define a function $F : A \times B \to C \times D$ which will turn out to be a bijection. Let us define such a function $F : A \times B \to C \times D$ by $(a, b) \mapsto (f(a), g(b))$. If f^{-1} and g^{-1} are the inverses of f and g respectively, then let us also define $G: C \times D \to A \times B$ by $(c,d) \mapsto (f^{-1}(c), g^{-1}(d))$. Check that both $G \circ F$ and $F \circ G$ are the identities.

$$
(G \circ F)(a, b) = G(F(a, b)) = G(f(a), g(b)) = (f^{-1}(f(a)), g^{-1}(g(b))) = (a, b)
$$
 and

$$
(F \circ G)(c, d) = F(G(c, d)) = F(f^{-1}(c), g^{-1}(d)) = (f(f^{-1}(c)), g(g^{-1}(d))) = (c, d).
$$

Thus, F and G are bijections, so $|A \times B| = |C \times D|$ holds.

6. (a) Note that $|A| + 0$ is the cardinality of the set $(A \times {\Box}) \cup (\emptyset \times {\triangle})$. Since $\emptyset \times {\triangle} = \emptyset$, the above union is $A \times \{\Box\}$. This set has the same cardinality as A since the function $f: A \to A \times \{\Box\}$ given by $a \mapsto (a, \Box)$ is one-to-one $((a_1, \Box) = (a_2, \Box)$ implies $a_1 = a_2$) and onto (*a* is the original of (a, \Box)).

One can show $0 + |A| = |A|$ similarly or, after having part (b), this relation follows from (b) and $|A| + 0 = |A|$.

- (b) The function $f : (A \times {\Box}) \cup (B \times {\{\triangle}\}) \rightarrow (B \times {\Box}) \cup (A \times {\{\triangle}\})$ given by $(a, \Box) \mapsto (a, \triangle)$ and $(b, \triangle) \mapsto (b, \square)$ is inverse to itself (check that $f(f(a, \square) = (a, \square)$) and $f(f(b, \triangle)) = (a, \square)$ (b, \triangle) , so this shows that it is a bijection
- (c) Let us use $\{0\}$ to represent 1. Checking that the function $f : A \to A \times \{0\}$ given by $a \mapsto (a, 0)$ is a bijection since $(a_1, 0) = (a_2, 0)$ implies $a_1 = a_2$ and a is the original of $(a, 0)$. This shows that $|A| \cdot 1 = |A|$. The relation $1 \cdot |A| = |A|$ can be shown analogously. Alternatively, it follows from part (b) and the relation $|A| \cdot 1 = |A|$.
- (d) The function $f : A \times B \to B \times A$ given by $(a, b) \mapsto (b, a)$ is inverse to itself since

$$
f(f(a, b)) = f(b, a) = (a, b).
$$

So, it is invertible and, hence, a bijection. This shows that $|A \times B| = |B \times A|$ and so $|A| \cdot |B| = |B| \cdot |A|.$

7. (a) The formula holds for $n = 0$ since the left side consists of a single term 0 and the right side is $\frac{0(0+1)}{2} = 0$. Assume the formula holds for n and let us show it for $n + 1$. By induction hypothesis, the first equality below holds.

$$
0 + 1 + 2 + \ldots + n + (n + 1) = \frac{n(n + 1)}{2} + (n + 1) = \frac{n(n + 1)}{2} + \frac{2(n + 1)}{2} = \frac{n(n + 1) + 2(n + 1)}{2} = \frac{(n + 1)(n + 2)}{2}.
$$

(b) The formula holds for $n = 0$ since the left side consists of a single term $2(0) + 1 = 1$ and the right side is $(0+1)^2 = 1$. Assume the formula holds for n and let us show it for $n+1$. By induction hypothesis, the first equality below holds.

$$
1+3+5+\ldots+(2n+1)+2(n+1)+1=(n+1)^2+2(n+1)+1=n^2+2n+1+2n+2+1=n^2+4n+4=(n+2)(n+2)=(n+2)^2.
$$

(c) Let x be a real number $x \neq 1$. The formula holds for $n = 0$ since the left side consists of a single term 1 and the right side is $\frac{1-x^{0+1}}{1-x} = \frac{1-x}{1-x} = 1$. Assume the formula holds for *n* and let us show it for $n + 1$. By induction hypothesis, the first equality below holds.

$$
1 + x + x^{2} + \ldots + x^{n} + x^{n+1} = \frac{1 - x^{n+1}}{1 - x} + x^{n+1} = \frac{1 - x^{n+1}}{1 - x} + \frac{x^{n+1}(1 - x)}{1 - x} = \frac{1 - x^{n+1} + x^{n+1} - x^{n+2}}{1 - x} = \frac{1 - x^{n+2}}{1 - x}.
$$

8. (a) If $n = 0$, then $n^3 + 2n = 0$ and 0 is divisible by 3. Assume that $n^3 + 2n$ is divisible by 3. Recall that this means that $n^3 + 2n = 3k$ for some natural number k. Let us show that $(n+1)^3 + 2(n+1)$ is also divisible by 3. Try to write this last expression as a sum of

 n^3+2n , so that we can use the induction hypothesis, and another term which is a multiple of 3 and, hence, divisible by 3. Foil $(n+1)^3$ to get $n^3 + 3n^2 + 3n + 1$ so that we have the following.

$$
(n+1)3 + 2(n + 1) = n3 + 3n2 + 3n + 1 + 2n + 2 = n3 + 2n + 3n2 + 3n + 3 =
$$

$$
(n3 + 2n) + 3(n2 + n + 1) = 3k + 3(n2 + n + 1) = 3(k + n2 + n + 1)
$$

The last expression is divisible by 3 since it is a multiple of 3.

(b) Since $n > 0$, we start the induction at $n = 1$. For $n = 1$, $6^n - 1 = 6 - 1 = 5$ and it is divisible by 5. Assume that $6^n - 1$ is divisible by 5 and write $6^n - 1 = 5k$ for some natural number k. Let us show that $6^{n+1} - 1$ is divisible by 5. Note that $6^{n+1} - 1 = 6 \cdot 6^n - 1$. From the induction hypothesis $6^n - 1 = 5k$, we have that $6^n = 5k + 1$. Substituting $5k + 1$ for 6^n in the inductive step, we have the following.

 $6^{n+1} - 1 = 6 \cdot 6^n - 1 = 6(5k + 1) - 1 = 30k + 6 - 1 = 30k + 5 = 5(6k + 1)$

This last expression is divisible by 5 since it is a multiple of 5.

9. Use the limited induction starting with $n = 4$. The formula $n! > 2^n$ holds for $n = 4$ since it becomes $4! = 24 > 16 = 2⁴$. Assume the formula to be true for n and let us show it for $n + 1$. Note that $n + 1 > 2$ for any $n \ge 4$ because $n + 1$ is taking values 5, 6, 7, ... and they are all larger than 2. So, we have that

$$
(n+1)! = n! \cdot (n+1) > 2n \cdot (n+1) > 2n \cdot 2 = 2n+1
$$

where the first relation holds by the recursive definition of the factorial, the second relation holds by the inductive hypothesis and the third relation holds by the observation that $n+1 > 2$ for $n \geq 4$.

10. When $m = n = 0$, the statement reduces to a true implication since the premise $0 \leq 0$ is true and the conclusion is true for $k = 0$.

Assuming that $P(0, n)$ holds, let us show that $P(0, n + 1)$ holds. So, assume that the premise $0 \leq n+1$ of $P(0, n+1)$ holds. Taking $n+1$ for k, we have that $0+k=k=n+1$. This concludes the proof of the first step.

To show the second step, assume that $P(m, n)$ holds and let us show $P(m + 1, n)$. Assume that the assumption $m+1 \leq n$ of $P(m+1, n)$ holds. Hence $m < m+1 \leq n$ holds so the assumption $m \leq n$ of $P(m, n)$ also holds. So, there is unique l such that $m + l = n$. Since $m < n$, such l is strictly larger than zero (assuming otherwise $l = 0$ leads to a contradiction $m = m + 0 = n$). As $l > 0$, l is a successor of its predecessor, so $l = k + 1$ for some natural number k. We have that $(m + 1) + k = m + (k + 1)$ by associativity and commutativity of $+,$ so

$$
(m+1) + k = m + (k+1) = m + l = n
$$

where the last equality holds by the induction hypothesis.

11. (a) As the initial term is given with $n = 1$, use limited induction and show the claim for all $n \geq 1$. The closed form matches the recursive equation for $n = 1$ since $a_1 = 3$ and $5(1) - 2 = 3$. Assuming the closed form and the recursive formula to agree for n, let us show that they agree for $n + 1$. On one hand, $a_{n+1} = a_n + 5 = 5n - 2 + 5 = 5n + 3$. On the other hand, $a_{n+1} = 5(n+1) - 2 = 5n + 5 - 2 = 5n + 3$. Thus, the two formulas match.

(b) The closed form matches the recursive equation for $n = 0$ since $a_0 = 2$ and $3(0) + 2 = 2$. Use complete induction, so assume the two formulas to match for all $k \leq n$ and show that $a_{n+1} = 3(n+1) + 2 = 3n+5$ using the recursive formula. This holds by the argument below.

$$
a_{n+1} = 2a_n - a_{n-1} = 2(3n+2) - (3(n-1)+2) = 6n+4-3n+3-2 = 3n+5.
$$

(c) The closed form matches the recursive equation for $n = 0$ since $a_0 = 0$ and $(0)2^0 = 0$. Use complete induction, so assume the two formulas to agree for all $k \leq n$ and show that $a_{n+1} = (n+1)2^{n+1}.$

$$
a_{n+1} = 4a_n - 4a_{n-1} = 4n2^n - 4(n-1)2^{n-1} = 4 \cdot 2^{n-1}(n \cdot 2 - (n-1)) =
$$

$$
2^2 \cdot 2^{n-1}(2n - n + 1) = 2^{n+1}(n+1) = (n+1)2^{n+1}.
$$