Review for Exam 4

1. (a) Show that the relation \sim used to define Z and given on N \times N by

$$
(k,l) \sim (m,n) \iff k+n = l+m
$$

is an equivalence relation.

- (b) Show that the integer $[(0, 0)]$ is the identity for addition (i.e. show that $[(m, n)] + [(0, 0)] =$ $[(m, n)]$ and $[(0, 0)] + [(m, n)] = [(m, n)]$.
- (c) For any integer $[(m, n)]$, show that its additive inverse is $[(n, m)]$ (i.e. show that $[(m, n)] +$ $[(n, m)] = [(0, 0)]$ and $[(n, m)] + [(m, n)] = [(0, 0)]$.
- (d) Show that $[(n, m)] = [(0, m n)]$ if $m \ge n$ and $[(n, m)] = [(n m, 0)]$ if $m < n$ for any natural numbers m and n .
- 2. The relation \leq on $\mathbb Z$ matches the familiar order of integers when $[(m, n)]$ is shortened to $m-n$. Rearrange the integer numbers below, if needed, so that the elements in the new list are nondecreasing.

 $[(6, 3)], \quad [(1000, 1005)], \quad [(6, 8)], \quad [(57, 56)], \quad [(56, 58)]$

- 3. If $[(m, n)] \in \mathbb{Q}$ is such that $m \neq 0$, show that $[(m, n)] \cdot [(n, m)] = [(1, 1)]$ and $[(n, m)] \cdot [(m, n)] =$ $[(1, 1)]).$
- 4. The relation \leq on $\mathbb Q$ matches the familiar order of integers when $[(m, n)]$ is shortened to $\frac{m}{n}$. Rearrange the rational numbers below, if needed, so that the elements in the new list are non-decreasing.

 $[(5, 15)], [(50, -100)], [(15, 10)], [(20, -10)], [(-10, 20)]$

- 5. Show that Q has no zero divisors, that is $ab = 0 \Rightarrow a = 0$ or $b = 0$ for any $a, b \in \mathbb{Q}$. You can assume that Z has no zero divisors (that is $mn = 0 \Rightarrow m = 0$ or $n = 0$ for $m, n \in \mathbb{Z}$).
- 6. Find the limit of the following recursive sequences.

(a)
$$
a_{n+1} = \sqrt{2 + a_n}
$$
, $a_0 = 0$
 (b) $a_{n+1} = \frac{1}{1 + a_n}$, $a_0 = 1$.

- 7. Show that the following pairs of sets are in a bijective correspondence. You can assume the existence of any of the bijective correspondences from the formula sheet.
	- (a) $(3,5) \cup [8,9)$ and $(7,\infty)$ (b) $(3,5] \cup [0,9) \cup [7,\infty)$ and $(-\infty,1]$ (c) $\bigcup_{n \in \mathbb{N} - \{0\}} (-n, n)$ and $(0, 1)$ (d) \bigcap $_{n\in\mathbb{N}}[0,n+1)$ and $\mathbb R$ (e) $\bigcup_{n\in\mathbb{N}}(-\infty, -n)$ and $(1, \infty)$
- 8. Represent the following decimal numbers as quotients of two integer numbers.

(a) $0.222222...$ (b) $0.27272727...$ (c) $1.2345454545...$

- 9. Determine the moduli and the arguments given the following complex numbers in algebraic Determine the moduli and the arguments
forms: $-3i$, $\sqrt{2} - \sqrt{2}i$, $-\sqrt{3} + i$, $-2 - i$.
- 10. Determine the real and imaginary parts of the complex numbers given by their moduli and arguments: $\theta = \frac{-\pi}{2}$ $\frac{2\pi}{2}, r = 5; \qquad \theta = \frac{5\pi}{6}$ $\frac{5\pi}{6}, r = 2; \qquad \theta = \frac{-2\pi}{3}$ $\frac{2\pi}{3}, r = 3.$
- 11. Determine the *n*-th power of the given complex numbers and given *n*. Express your answers in algebraic form. (a) $z = -\sqrt{3} + i$, $n = 4$; (b) $z = -2 - i$, $n = 6$.
- 12. Find all solutions of the following equations.

(a)
$$
z^5 + 32 = 0
$$

 (b) $z^5 - 32 = 0$

- 13. (a) The exponential function e^z is defined by $e^z = e^{x+iy} = e^x e^{iy} = e^x (\cos y + i \sin y)$. If *n* is a positive integer, show that $(e^z)^n = e^{nz}$.
	- (b) The complex-valued basic trigonometric functions are defined via exponential function by

$$
\sin z = \frac{1}{2i} (e^{iz} - e^{-iz}) \qquad \cos z = \frac{1}{2} (e^{iz} + e^{-iz})
$$

Verify the identities
 (i) $e^{iz} = \cos z + i \sin z$ (ii) $\sin^2 z + \cos^2 z = 1$

Solutions

1. (a) Reflexivity. We need to show that $(k, l) \sim (k, l)$ for any nonnegative integers k and l.

$$
(k, l) \sim (k, l) \Leftrightarrow k + l = l + k
$$
 (by the definition of \sim)
 $\Leftrightarrow k + l = k + l$ (by commutativity of +)

Since $k + l = k + l$ is true, we have that $(k, l) \sim (k, l)$ is also true. Symmetry. Assume that $(k, l) \sim (m, n)$ for some $k, l, m, n \in \mathbb{N}$ and show that $(m, n) \sim$ $(k, l).$

 $(k, l) \sim (m, n) \Leftrightarrow k + n = l + m$ (by the definition of ~) \Leftrightarrow $m+l=n+k$ (by commutativity of + and symmetry of =) \Leftrightarrow $(m, n) \sim (k, l)$ (by the definition of ~)

Transitivity. Assume that $(k, l) \sim (m, n)$ and that $(m, n) \sim (o, p)$ and show that $(k, l) \sim$ $(o, p).$

$$
(k,l) \sim (m,n) \land (m,n) \sim (o,p) \Leftrightarrow k+n=l+m \land m+p=n+o \text{ (by the definition of } \sim)
$$

\n
$$
\Rightarrow k+n+m+p=l+m+n+o \text{ (by adding the equations)}
$$

\n
$$
\Leftrightarrow k+p=l+o \text{ (by cancelling } n+m)
$$

\n
$$
\Leftrightarrow (k,l) \sim (o,p) \text{ (by the definition of } \sim)
$$

- (b) $[(m, n)] + [(0, 0)] = [(m + 0, n + 0)] = [(m, n)]$. For the other relation, either argue that it holds by the first one and commutativity, or show directly that $[(0, 0)] + [(m, n)] +$ $[(0 + m, 0 + n)] = [(m, n)].$
- (c) $[(m, n)] + [(n, m)] = [(m + n, n + m)] = [(m + n, m + n)] = [(0, 0)]$ where the last relation holds since $(m + n, m + n) \sim (0, 0)$ as $m + n + 0 = m + n + 0$. The other relation holds since the first holds and addition is commutative.
- (d) Let us consider the case $m \geq n$ first. In this case, $m n$ is a natural number and the relation $[(n, m)] = [(0, m-n)]$ is equivalent with $(n, m) \sim (0, m-n)$ and this last relation is, by definition of \sim equivalent with $n + m - n = m + 0$. This last relation is true since both $m + 0$ and $n + m - n$ are equal to m.

Let us consider the case $m < n$ now. In this case $n - m$ is a natural number and the relation $[(n, m)] = [(n - m, 0)]$ is equivalent with $(n, m) \sim (n - m, 0)$. This last relation is equivalent with $n+0 = m+n-m$ by the definition of \sim . The relation $n+0 = m+n-m$ is true since both sides are equal to n .

2. [(6,3)] can be shortened to $6-3=3$, [(1000, 1005)] to $1000-1005=-5$, [(6,8)] to $6-8=-2$, $[(57, 56)]$ to $57 - 56 = 1$, and $[(56, 58)]$ to $56 - 58 = -2$. As $-5 < -2 = -2 < 1 < 3$, we have that

$$
[(1000, 1005)] < [(6, 8)] = [(56, 58)] < [(57, 56)] < [(6, 3)].
$$

- 3. $[(m, n)] \cdot [(n, m)] = [(mn, nm)] = [(mn, mn)] = [(1, 1)]$ where the last relation holds since $(mn, mn) \sim (1, 1)$ as $mn \cdot 1 = mn \cdot 1$. Similarly, $[(n, m)] \cdot [(m, n)] = [(nm, mn)] = [(nm, nm)]$ $[(1, 1)].$
- 4. $[(5, 15)]$ can be shortened to $\frac{5}{15} = \frac{1}{3}$ $\frac{1}{3}$, [(50, -100)] to $\frac{50}{-100} = \frac{-1}{2}$ $\frac{1}{2}$, [(15, 10)] to $\frac{15}{10} = \frac{3}{2}$ $\frac{3}{2}, [(20, -10)]$ to $\frac{20}{-10} = -2$, and $[(-10, 20)]$ to $\frac{-10}{20} = \frac{-1}{2}$ $\frac{-1}{2}$. As $-2 < \frac{-1}{2} = \frac{-1}{2} < \frac{1}{3} < \frac{3}{2}$ $\frac{3}{2}$, we have that $[(20, -10)] < [(50, -100)] = [(-10, 20)] < [(5, 15)] < [(15, 10)].$
- 5. Let $a = [(m, n)]$ and $b = [(k, l)]$ and assume that $ab = 0$ so that $[(mk, nl)] = [(0, 1)]$. This implies that $mk \cdot 1 = nl \cdot 0$ so that $mk = 0$. As Z has no zero divisors, this implies that $m = 0$ or $k = 0$. If $m = 0$, then $a = [(0, n)] = [(0, 1)] = 0$. If $k = 0$, then $b = [(0, 1)] = [(0, 1)] = 0$.
- 6. (a) Let a stand for the limit of this sequence in case it exists. Note that then $a = \lim_{n\to\infty} a_n$ and $a = \lim_{n\to\infty} a_{n+1}$ as well. To find the value of a let $n \to \infty$ in the equation $a_{n+1} =$ $\overline{a} = \lim_{n \to \infty} a_{n+1}$ as well. To find the value of a let $n \to \infty$ in the equation $a_{n+1} = \overline{a + a_n}$. The left side converges to a and the right side to $\sqrt{2 + a}$. So, a can be found from the equation $a = \sqrt{2+a} \Rightarrow a^2 = 2+a \Rightarrow a^2 - a - 2 = 0 \Rightarrow (a-2)(a+1) = 0 \Rightarrow a = 2$ or $a = -1$. Since -1 is an extraneous root (it does not satisfy the equation $a = \sqrt{2} + a$), the limit of the sequence is $a = 2$. Alternatively, you can also argue that starting with the nonnegative term $a_0 = 0$, all the terms of the sequence are nonnegative and so the solution $a = -1$ can be discarded.
	- (b) Let a stand for the limit of this sequence in case it exists. Note that then $a = \lim_{n\to\infty} a_n$ and $a = \lim_{n \to \infty} a_{n+1}$ as well. To find the value of a let $n \to \infty$ in the equation $a_{n+1} = \frac{1}{1+a}$ $\frac{1}{1+a_n}$. The left side converges to a and the right side to $\frac{1}{1+a}$. So, a can be found from the equation $a = \frac{1}{1+a} \Rightarrow a(1+a) = 1 \Rightarrow a^2 + a - 1 = 0 \Rightarrow a = \frac{-1+\sqrt{5}}{2} \approx 0.618$ or $a = \frac{-1-\sqrt{5}}{2} \approx -1.618$. Starting with the positive term $a_0 = 1$, all the terms of the sequence are positive, so the starting with the positive term $u_0 = 1$, an the terms of the sequence converges towards the positive value $a = \frac{-1 + \sqrt{5}}{2} \approx 0.618$.
- 7. (a) $|(3,5) \cup [8,9)| = |(3,5)| + |[8,9)| = |\mathbb{R}| + |\mathbb{R}| = |\mathbb{R}|$ and $|(7,\infty)| = |\mathbb{R}|$.
	- (b) Note that $[0, 9) \cup [7, \infty) = [0, \infty)$ and $(3, 5] \cup [0, \infty) = [0, \infty)$. So, $[(3, 5] \cup [0, 9) \cup [7, \infty)] =$ $|[0,\infty)| = |\mathbb{R}|$ and $|(-\infty,1]| = |\mathbb{R}|$.
	- (c) Note that $\bigcup_{n\in\mathbb{N}}(-n, n) = (-1, 1)\cup(-2, 2)\cup(-3, 3)\cup\ldots = (-\infty, \infty) = \mathbb{R}$. As $|(0, 1)| = |\mathbb{R}|$, the two sets have the same cardinality.
	- (d) $\bigcap_{n\in\mathbb{N}}[0,n+1]=[0,1)\cap[0,2)\cap[0,3)\cap\ldots=[0,1)$. As $|[0,1)|=|\mathbb{R}|$, the two sets have the same cardinality.
	- (e) $\bigcup_{n\in\mathbb{N}}(-\infty,-n) = (-\infty,0) \cup (-\infty,-1) \cup (-\infty,-2) \cup (-\infty,-3) \cup ... = (-\infty,0).$ Since $|(-\infty, 0)| = |\mathbb{R}|$ and $|(1, \infty)| = |\mathbb{R}|$, the two sets have the same cardinality.
- 8. (a) $0.222222... = 0.2 + 0.02 + 0.002 + ... = \frac{2}{10} + \frac{2}{10^2} + \frac{2}{10^3} + ... = \sum_{n=1}^{\infty} 2\left(\frac{1}{10}\right)^n$. Using the formula $\frac{ar^k}{1-r}$ with $a=2$, $r=\frac{1}{10}$ and $k=1$, we have that the sum is $\frac{\frac{2}{10}}{\frac{9}{10}}=\frac{2}{9}$ $\frac{2}{9}$.
	- (b) $0.27272727... = 0.27 + 0.0027 + 0.000027 + ... = \frac{27}{100} + \frac{27}{100^2} + \frac{27}{100^3} + ... = \sum_{n=1}^{\infty} 27 \left(\frac{1}{100}\right)^n$. Using the formula $\frac{ar^k}{1-r}$ with $a = 27$, $r = \frac{1}{100}$ and $k = 1$, we have that the sum is $\frac{\frac{27}{100}}{\frac{99}{100}} =$ $\frac{27}{99} = \frac{3}{11}.$
	- (c) $1.2345454545... = 1.23 + 0.0045 + 0.000045 + 0.00000045 + ... = 1.23 + \frac{45}{100^2} + \frac{45}{100^3} + \frac{45}{100^4} + ...$ $\ldots = 1.23 + \sum_{n=2}^{\infty} 45 \left(\frac{1}{100} \right)^n$. Using the formula $\frac{ar^k}{1-r}$ with $a = 45$, $r = \frac{1}{100}$ and $k = 2$, we have that the sum is $1.23 + \frac{\frac{45}{100^2}}{\frac{99}{100}} = \frac{123}{100} + \frac{45}{99(100)} = \frac{123(99) + 45}{99(100)} = \frac{12222}{9900} = \frac{679}{550}$.
- 9. The complex number $-3i$ is on the negative part of y axis. Hence, $\theta = \frac{-\pi}{2}$ $\frac{2}{2}$. We have that $r = \sqrt{(-3)^2} = 3.$

The complex number $\sqrt{2}$ – √ 2i is on the $y = -x$ line and in the fourth quadrant. Hence, $\theta = \frac{-\pi}{4}$ $\frac{1}{4}$. We have that $r = \sqrt{\sqrt{2}^2 + (-1)}$ √ $(2)^2 =$ $\sqrt{2+2}\sqrt{4}=2.$ The complex number − √ $\overline{3}+i$ is in the second quadrant. Hence, $\theta = \pi + \tan^{-1} \frac{1}{-\sqrt{3}} = \pi + \frac{-\pi}{6} =$ 5π $\frac{5\pi}{6}$. The modulus is $r = \sqrt{(-\frac{5\pi}{6})}$ √ $(3)^2 + 1^2 =$ √ $4 = 2.$

The complex number $-2-i$ is in the third quadrant. Hence, $\theta = \pi + \tan^{-1} \frac{1}{-2} = \pi + \tan^{-1} \frac{1}{2} \approx$ $\pi + 0.4636 \approx 3.605$. The modulus is $r = \sqrt{(-2)^2 + (-1)^2} =$ √ $5 \approx 2.24$.

10. If $\theta = \frac{-\pi}{2}$ $\frac{2\pi}{2}$, the number is on the negative part of y-axis. As $r = 5$, $(x, y) = (0, -5)$. Alternatively, $x = 5 \cos \frac{-\pi}{2} = 0$ and $y = 5 \sin \frac{-\pi}{2} = -5$.

If $\theta = \frac{5\pi}{6}$ $\frac{6\pi}{6}$ and $r = 2, x = r \cos \theta = 2 \cos \frac{5\pi}{6} = 2 \cdot \frac{-\sqrt{3}}{2} = -\frac{\pi}{6}$ √ $2, x = r \cos \theta = 2 \cos \frac{5\pi}{6} = 2 \cdot \frac{-\sqrt{3}}{2} = -\sqrt{3}$ and $y = r \sin \theta = 2 \sin \frac{5\pi}{6} = 2 \cdot \frac{1}{2} = 1$. Thus, $(x, y) = (-\sqrt{3}, 1).$ If $\theta = \frac{-2\pi}{3}$ $\frac{2\pi}{3}$ and $r = 3$, $x = r \cos \theta = 3 \cos \frac{-2\pi}{3} = 3 \cdot \frac{-1}{2} = \frac{-3}{2}$ $\frac{-3}{2}$ and $y = r \sin \theta = 3 \sin \frac{-2\pi}{3} =$ $3 \cdot \frac{-1}{\sqrt{2}} = \frac{-3}{\sqrt{2}}$. Thus, $(x, y) = \left(\frac{-3}{2}, \frac{-3}{\sqrt{2}}\right)$.

- 11. (a) From problem (1), we have that $z = -$ √ $\overline{z} = -\sqrt{3} + i = 2e^{5\pi/6i}$. Hence, $z^4 = 2^4e^{4\cdot5\pi/6i} = 16e^{10\pi/3i}$ $16(\cos\frac{10\pi}{3} + i\sin\frac{10\pi}{3}) = 16(\frac{-1}{2} - \frac{\sqrt{3}}{2})$ $\frac{\sqrt{3}}{2}$) = -8 - 8 √ 3i. √ √
	- (b) From problem (1), we have that $z = -2 i \approx$ $\overline{5}e^{3.605i}$. Hence, $z^6 \approx 0$ $(5)^6 e^{6 \cdot 3.605 i} =$ $125e^{12.63i} = 125(\cos 12.63 + i \sin 12.63) = 125(-0.935 + 0.0636) = -116.88 + 7.95i.$

12. (a) We need to find all five solutions of $z^5 = 32$. Note that 32 corresponds to the complex number (32,0) which is on the positive side of the x-axis so $\theta = 0$. The distance from $(32, 0)$ to the origin is 32 so $r = 32$. Hence, the five solutions of the characteristic equation can be found by the formula

$$
\sqrt[5]{32}e^{\frac{0+2k\pi}{5}i} = 2e^{\frac{2k\pi}{5}i} \text{ for } k = 0, 1, \dots, 4.
$$

These five solutions form a regular polygon with five sides on the circle of radius 2 centered at the origin.

(b)
$$
z^5 = -32 = 32e^{\pi i}
$$
. Hence, $z_k = \sqrt[5]{32}e^{\frac{\pi + 2k\pi}{5}i} = 2e^{\frac{(2k+1)\pi}{5}i}$ for $k = 0, 1, ..., 4$.
\n $k = 0 \Rightarrow z_0 = 2e^{\frac{\pi}{5}i} = 2(\cos{\frac{\pi}{5}} + i\sin{\frac{\pi}{5}}) \approx$ -0.62 + 1.90i)
\n1.62 + 1.18i,
\n $k = 1 \Rightarrow z_1 = 2e^{\frac{3\pi}{5}i} = 2(\cos{\frac{3\pi}{5}} + i\sin{\frac{3\pi}{5}}) \approx$ -0.62 + 1.90i,
\n $k = 2 \Rightarrow z_2 = 2e^{\frac{5\pi}{5}i} = 2e^{\pi i} = 2(\cos{\pi} + i\sin{\pi}) =$ -2
\n -2 ,
\n $k = 3 \Rightarrow z_3 = 2e^{\frac{7\pi}{5}i} = 2(\cos{\frac{7\pi}{5}} + i\sin{\frac{7\pi}{5}}) \approx$ -0.62 - 1.90i,
\n $k = 4 \Rightarrow z_4 = 2e^{\frac{7\pi}{5}i} = 2(\cos{\frac{9\pi}{5}} + i\sin{\frac{9\pi}{5}}) \approx$ -0.62 - 1.90i
\n1.62 - 1.18i.

13. (a)
$$
(e^z)^n = (e^{x+iy})^n = (e^x e^{iy})^n = e^{nx} e^{iny} = e^{n(x+iy)} = e^{nz}
$$
.
\n(b) (i) $\cos z + i \sin z = \frac{1}{2} (e^{iz} + e^{-iz}) + i \frac{1}{2i} (e^{iz} - e^{-iz}) = \frac{1}{2} (e^{iz} + e^{-iz} + e^{iz} - e^{-iz}) = \frac{1}{2} (2e^{iz}) = e^{iz}$.
\n(ii) $\sin^2 z + \cos^2 z = \frac{-1}{4} (e^{iz} - e^{-iz})^2 + \frac{1}{4} (e^{iz} + e^{-iz})^2 = \frac{-1}{4} (e^{2iz} - 2 + e^{-2iz}) + \frac{1}{4} (e^{2iz} + 2 + e^{-2iz}) = \frac{1}{4} (-e^{2iz} + 2 - e^{-2iz} + e^{2iz} + 2 + e^{-2iz}) = \frac{1}{4} (4) = 1$.