Review for Exam 4

1. (a) Show that the relation \sim used to define \mathbb{Z} and given on $\mathbb{N} \times \mathbb{N}$ by

$$(k,l) \sim (m,n) \iff k+n = l+m$$

is an equivalence relation.

- (b) Show that the integer [(0,0)] is the identity for addition (i.e. show that [(m,n)] + [(0,0)] = [(m,n)] and [(0,0)] + [(m,n)] = [(m,n)]).
- (c) For any integer [(m, n)], show that its additive inverse is [(n, m)] (i.e. show that [(m, n)] + [(n, m)] = [(0, 0)] and [(n, m)] + [(m, n)] = [(0, 0)]).
- (d) Show that [(n,m)] = [(0,m-n)] if $m \ge n$ and [(n,m)] = [(n-m,0)] if m < n for any natural numbers m and n.
- 2. The relation \leq on \mathbb{Z} matches the familiar order of integers when [(m, n)] is shortened to m n. Rearrange the integer numbers below, if needed, so that the elements in the new list are non-decreasing.

[(6,3)], [(1000,1005)], [(6,8)], [(57,56)], [(56,58)]

- 3. If $[(m,n)] \in \mathbb{Q}$ is such that $m \neq 0$, show that $[(m,n)] \cdot [(n,m)] = [(1,1)]$ and $[(n,m)] \cdot [(m,n)] = [(1,1)]$.
- 4. The relation \leq on \mathbb{Q} matches the familiar order of integers when [(m, n)] is shortened to $\frac{m}{n}$. Rearrange the rational numbers below, if needed, so that the elements in the new list are non-decreasing.

[(5,15)], [(50,-100)], [(15,10)], [(20,-10)], [(-10,20)]

- 5. Show that \mathbb{Q} has no zero divisors, that is $ab = 0 \Rightarrow a = 0$ or b = 0 for any $a, b \in \mathbb{Q}$. You can assume that \mathbb{Z} has no zero divisors (that is $mn = 0 \Rightarrow m = 0$ or n = 0 for $m, n \in \mathbb{Z}$).
- 6. Find the limit of the following recursive sequences.

(a)
$$a_{n+1} = \sqrt{2+a_n}$$
, $a_0 = 0$ (b) $a_{n+1} = \frac{1}{1+a_n}$, $a_0 = 1$.

- 7. Show that the following pairs of sets are in a bijective correspondence. You can assume the existence of any of the bijective correspondences from the formula sheet.
 - (a) $(3,5) \cup [8,9)$ and $(7,\infty)$ (b) $(3,5] \cup [0,9) \cup [7,\infty)$ and $(-\infty,1]$ (c) $\bigcup_{n \in \mathbb{N} - \{0\}} (-n,n)$ and (0,1)(d) $\bigcap_{n \in \mathbb{N}} [0,n+1)$ and \mathbb{R} (e) $\bigcup_{n \in \mathbb{N}} (-\infty, -n)$ and $(1,\infty)$
- 8. Represent the following decimal numbers as quotients of two integer numbers.

(a) 0.222222... (b) 0.27272727... (c) 1.234545454545...

- 9. Determine the moduli and the arguments given the following complex numbers in algebraic forms: -3i, $\sqrt{2} \sqrt{2}i$, $-\sqrt{3} + i$, -2 i.
- 10. Determine the real and imaginary parts of the complex numbers given by their moduli and arguments: $\theta = \frac{-\pi}{2}, r = 5;$ $\theta = \frac{5\pi}{6}, r = 2;$ $\theta = \frac{-2\pi}{3}, r = 3.$
- 11. Determine the *n*-th power of the given complex numbers and given *n*. Express your answers in algebraic form. (a) $z = -\sqrt{3} + i$, n = 4; (b) z = -2 i, n = 6.
- 12. Find all solutions of the following equations.

(a)
$$z^5 + 32 = 0$$
 (b) $z^5 - 32 = 0$

- 13. (a) The exponential function e^z is defined by $e^z = e^{x+iy} = e^x e^{iy} = e^x (\cos y + i \sin y)$. If n is a positive integer, show that $(e^z)^n = e^{nz}$.
 - (b) The complex-valued basic trigonometric functions are defined via exponential function by

$$\sin z = \frac{1}{2i}(e^{iz} - e^{-iz}) \qquad \cos z = \frac{1}{2}(e^{iz} + e^{-iz})$$

Verify the identities (i) $e^{iz} = \cos z + i \sin z$ (ii) $\sin^2 z + \cos^2 z = 1$

Solutions

1. (a) Reflexivity. We need to show that $(k, l) \sim (k, l)$ for any nonnegative integers k and l.

$$(k,l) \sim (k,l) \iff k+l = l+k$$
 (by the definition of \sim)
 $\iff k+l = k+l$ (by commutativity of +)

Since k + l = k + l is true, we have that $(k, l) \sim (k, l)$ is also true. Symmetry. Assume that $(k, l) \sim (m, n)$ for some $k, l, m, n \in \mathbb{N}$ and show that $(m, n) \sim (k, l)$.

 $\begin{array}{ll} (k,l)\sim (m,n) &\Leftrightarrow & k+n=l+m & (\text{by the definition of }\sim) \\ &\Leftrightarrow & m+l=n+k & (\text{by commutativity of }+\text{ and symmetry of }=) \\ &\Leftrightarrow & (m,n)\sim (k,l) & (\text{by the definition of }\sim) \end{array}$

Transitivity. Assume that $(k, l) \sim (m, n)$ and that $(m, n) \sim (o, p)$ and show that $(k, l) \sim (o, p)$.

$$\begin{array}{ll} (k,l) \sim (m,n) \wedge (m,n) \sim (o,p) & \Leftrightarrow & k+n=l+m \, \wedge \, m+p=n+o & (\text{by the definition of } \sim) \\ & \Rightarrow & k+n+m+p=l+m+n+o & (\text{by adding the equations}) \\ & \Leftrightarrow & k+p=l+o & (\text{by cancelling } n+m) \\ & \Leftrightarrow & (k,l) \sim (o,p) & (\text{by the definition of } \sim) \end{array}$$

- (b) [(m,n)] + [(0,0)] = [(m+0,n+0)] = [(m,n)]. For the other relation, either argue that it holds by the first one and commutativity, or show directly that [(0,0)] + [(m,n)] + = [(0+m,0+n)] = [(m,n)].
- (c) [(m,n)] + [(n,m)] = [(m+n,n+m)] = [(m+n,m+n)] = [(0,0)] where the last relation holds since $(m+n,m+n) \sim (0,0)$ as m+n+0 = m+n+0. The other relation holds since the first holds and addition is commutative.
- (d) Let us consider the case $m \ge n$ first. In this case, m n is a natural number and the relation [(n,m)] = [(0,m-n)] is equivalent with $(n,m) \sim (0,m-n)$ and this last relation is, by definition of \sim equivalent with n + m n = m + 0. This last relation is true since both m + 0 and n + m n are equal to m.

Let us consider the case m < n now. In this case n - m is a natural number and the relation [(n,m)] = [(n-m,0)] is equivalent with $(n,m) \sim (n-m,0)$. This last relation is equivalent with n+0 = m+n-m by the definition of \sim . The relation n+0 = m+n-m is true since both sides are equal to n.

2. [(6,3)] can be shortened to 6-3=3, [(1000, 1005)] to 1000-1005=-5, [(6,8)] to 6-8=-2, [(57,56)] to 57-56=1, and [(56,58)] to 56-58=-2. As -5<-2=-2<1<3, we have that

$$[(1000, 1005)] < [(6, 8)] = [(56, 58)] < [(57, 56)] < [(6, 3)].$$

- 3. $[(m,n)] \cdot [(n,m)] = [(mn,nm)] = [(mn,mn)] = [(1,1)]$ where the last relation holds since $(mn,mn) \sim (1,1)$ as $mn \cdot 1 = mn \cdot 1$. Similarly, $[(n,m)] \cdot [(m,n)] = [(nm,mn)] = [(nm,nm)] = [(1,1)]$.
- 4. [(5, 15)] can be shortened to $\frac{5}{15} = \frac{1}{3}$, [(50, -100)] to $\frac{50}{-100} = \frac{-1}{2}$, [(15, 10)] to $\frac{15}{10} = \frac{3}{2}$, [(20, -10)] to $\frac{20}{-10} = -2$, and [(-10, 20)] to $\frac{-10}{20} = \frac{-1}{2}$. As $-2 < \frac{-1}{2} = \frac{-1}{2} < \frac{1}{3} < \frac{3}{2}$, we have that

$$[(20, -10)] < [(50, -100)] = [(-10, 20)] < [(5, 15)] < [(15, 10)].$$

- 5. Let a = [(m, n)] and b = [(k, l)] and assume that ab = 0 so that [(mk, nl)] = [(0, 1)]. This implies that $mk \cdot 1 = nl \cdot 0$ so that mk = 0. As \mathbb{Z} has no zero divisors, this implies that m = 0 or k = 0. If m = 0, then a = [(0, n)] = [(0, 1)] = 0. If k = 0, then b = [(0, l)] = [(0, 1)] = 0.
- 6. (a) Let a stand for the limit of this sequence in case it exists. Note that then $a = \lim_{n \to \infty} a_n$ and $a = \lim_{n \to \infty} a_{n+1}$ as well. To find the value of a let $n \to \infty$ in the equation $a_{n+1} = \sqrt{2 + a_n}$. The left side converges to a and the right side to $\sqrt{2 + a}$. So, a can be found from the equation $a = \sqrt{2 + a} \Rightarrow a^2 = 2 + a \Rightarrow a^2 - a - 2 = 0 \Rightarrow (a - 2)(a + 1) = 0 \Rightarrow a = 2$ or a = -1. Since -1 is an extraneous root (it does not satisfy the equation $a = \sqrt{2 + a}$), the limit of the sequence is a = 2. Alternatively, you can also argue that starting with the nonnegative term $a_0 = 0$, all the terms of the sequence are nonnegative and so the solution a = -1 can be discarded.
 - (b) Let a stand for the limit of this sequence in case it exists. Note that then $a = \lim_{n \to \infty} a_n$ and $a = \lim_{n \to \infty} a_{n+1}$ as well. To find the value of $a \text{ let } n \to \infty$ in the equation $a_{n+1} = \frac{1}{1+a_n}$. The left side converges to a and the right side to $\frac{1}{1+a}$. So, a can be found from the equation $a = \frac{1}{1+a} \Rightarrow a(1+a) = 1 \Rightarrow a^2 + a - 1 = 0 \Rightarrow a = \frac{-1+\sqrt{5}}{2} \approx 0.618$ or $a = \frac{-1-\sqrt{5}}{2} \approx -1.618$. Starting with the positive term $a_0 = 1$, all the terms of the sequence are positive, so the sequence converges towards the positive value $a = \frac{-1+\sqrt{5}}{2} \approx 0.618$.

- 7. (a) $|(3,5) \cup [8,9)| = |(3,5)| + |[8,9)| = |\mathbb{R}| + |\mathbb{R}| = |\mathbb{R}|$ and $|(7,\infty)| = |\mathbb{R}|$.
 - (b) Note that $[0,9) \cup [7,\infty) = [0,\infty)$ and $(3,5] \cup [0,\infty) = [0,\infty)$. So, $|(3,5] \cup [0,9) \cup [7,\infty)| = |[0,\infty)| = |\mathbb{R}|$ and $|(-\infty,1]| = |\mathbb{R}|$.
 - (c) Note that $\bigcup_{n \in \mathbb{N}} (-n, n) = (-1, 1) \cup (-2, 2) \cup (-3, 3) \cup \ldots = (-\infty, \infty) = \mathbb{R}$. As $|(0, 1)| = |\mathbb{R}|$, the two sets have the same cardinality.
 - (d) $\bigcap_{n \in \mathbb{N}} [0, n+1) = [0, 1) \cap [0, 2) \cap [0, 3) \cap \ldots = [0, 1)$. As $|[0, 1)| = |\mathbb{R}|$, the two sets have the same cardinality.
 - (e) $\bigcup_{n\in\mathbb{N}}(-\infty,-n) = (-\infty,0) \cup (-\infty,-1) \cup (-\infty,-2) \cup (-\infty,-3) \cup \ldots = (-\infty,0)$. Since $|(-\infty,0)| = |\mathbb{R}|$ and $|(1,\infty)| = |\mathbb{R}|$, the two sets have the same cardinality.
- 8. (a) $0.222222\ldots = 0.2 + 0.02 + 0.002 + \ldots = \frac{2}{10} + \frac{2}{10^2} + \frac{2}{10^3} + \ldots = \sum_{n=1}^{\infty} 2\left(\frac{1}{10}\right)^n$. Using the formula $\frac{ar^k}{1-r}$ with a = 2, $r = \frac{1}{10}$ and k = 1, we have that the sum is $\frac{\frac{2}{10}}{\frac{9}{10}} = \frac{2}{9}$.
 - (b) $0.27272727... = 0.27 + 0.0027 + 0.000027 + ... = \frac{27}{100} + \frac{27}{100^2} + \frac{27}{100^3} + ... = \sum_{n=1}^{\infty} 27 \left(\frac{1}{100}\right)^n$. Using the formula $\frac{ar^k}{1-r}$ with a = 27, $r = \frac{1}{100}$ and k = 1, we have that the sum is $\frac{27}{\frac{99}{100}} = \frac{27}{99} = \frac{3}{11}$.
 - (c) $1.2345454545... = 1.23 + 0.0045 + 0.000045 + 0.0000045 + ... = 1.23 + \frac{45}{100^2} + \frac{45}{100^3} + \frac{45}{100^4} + ... = 1.23 + \sum_{n=2}^{\infty} 45 \left(\frac{1}{100}\right)^n$. Using the formula $\frac{ar^k}{1-r}$ with a = 45, $r = \frac{1}{100}$ and k = 2, we have that the sum is $1.23 + \frac{\frac{45}{100^2}}{\frac{99}{100}} = \frac{123}{100} + \frac{45}{99(100)} = \frac{123(99)+45}{99(100)} = \frac{12222}{9900} = \frac{679}{550}$.
- 9. The complex number -3i is on the negative part of y axis. Hence, $\theta = \frac{-\pi}{2}$. We have that $r = \sqrt{(-3)^2} = 3$.

The complex number $\sqrt{2} - \sqrt{2}i$ is on the y = -x line and in the fourth quadrant. Hence, $\theta = \frac{-\pi}{4}$. We have that $r = \sqrt{\sqrt{2}^2 + (-\sqrt{2})^2} = \sqrt{2+2}\sqrt{4} = 2$. The complex number $-\sqrt{3} + i$ is in the second quadrant. Hence, $\theta = \pi + \tan^{-1} \frac{1}{-\sqrt{3}} = \pi + \frac{-\pi}{6} = \frac{5\pi}{6}$. The modulus is $r = \sqrt{(-\sqrt{3})^2 + 1^2} = \sqrt{4} = 2$.

The complex number -2 - i is in the third quadrant. Hence, $\theta = \pi + \tan^{-1} \frac{-1}{-2} = \pi + \tan^{-1} \frac{1}{2} \approx \pi + 0.4636 \approx 3.605$. The modulus is $r = \sqrt{(-2)^2 + (-1)^2} = \sqrt{5} \approx 2.24$.

10. If $\theta = \frac{-\pi}{2}$, the number is on the negative part of y-axis. As r = 5, (x, y) = (0, -5). Alternatively, $x = 5 \cos \frac{-\pi}{2} = 0$ and $y = 5 \sin \frac{-\pi}{2} = -5$.

If $\theta = \frac{5\pi}{6}$ and r = 2, $x = r \cos \theta = 2 \cos \frac{5\pi}{6} = 2 \cdot \frac{-\sqrt{3}}{2} = -\sqrt{3}$ and $y = r \sin \theta = 2 \sin \frac{5\pi}{6} = 2 \cdot \frac{1}{2} = 1$. Thus, $(x, y) = (-\sqrt{3}, 1)$. If $\theta = \frac{-2\pi}{3}$ and r = 3, $x = r \cos \theta = 3 \cos \frac{-2\pi}{3} = 3 \cdot \frac{-1}{2} = \frac{-3}{2}$ and $y = r \sin \theta = 3 \sin \frac{-2\pi}{3} = 3 \cdot \frac{-1}{\sqrt{2}} = \frac{-3}{\sqrt{2}}$. Thus, $(x, y) = (\frac{-3}{2}, \frac{-3}{\sqrt{2}})$.

- 11. (a) From problem (1), we have that $z = -\sqrt{3} + i = 2e^{5\pi/6i}$. Hence, $z^4 = 2^4 e^{4\cdot 5\pi/6i} = 16e^{10\pi/3i} = 16(\cos\frac{10\pi}{3} + i\sin\frac{10\pi}{3}) = 16(\frac{-1}{2} \frac{\sqrt{3}}{2}) = -8 8\sqrt{3}i$.
 - (b) From problem (1), we have that $z = -2 i \approx \sqrt{5}e^{3.605i}$. Hence, $z^6 \approx (\sqrt{5})^6 e^{6\cdot 3.605i} = 125e^{12.63i} = 125(\cos 12.63 + i \sin 12.63) = 125(-0.935 + 0.0636) = -116.88 + 7.95i$.

12. (a) We need to find all five solutions of $z^5 = 32$. Note that 32 corresponds to the complex number (32, 0) which is on the positive side of the *x*-axis so $\theta = 0$. The distance from (32, 0) to the origin is 32 so r = 32. Hence, the five solutions of the characteristic equation can be found by the formula

$$\sqrt[5]{32}e^{\frac{0+2k\pi}{5}i} = 2e^{\frac{2k\pi}{5}i}$$
 for $k = 0, 1, \dots, 4$.

These five solutions form a regular polygon with five sides on the circle of radius 2 centered at the origin. 2 centered

(b) $z^5 = -32 = 32e^{\pi i}$. Hence, $z_k = \sqrt[5]{32}e^{\frac{\pi + 2k\pi}{5}i} = 2e^{\frac{(2k+1)\pi}{5}i}$ for $k = 0, 1, \dots, 4$.

$$k = 0 \Rightarrow z_{0} = 2e^{\frac{\pi}{5}i} = 2(\cos\frac{\pi}{5} + i\sin\frac{\pi}{5}) \approx 1.62 + 1.18i,$$

$$k = 1 \Rightarrow z_{1} = 2e^{\frac{3\pi}{5}i} = 2(\cos\frac{3\pi}{5} + i\sin\frac{3\pi}{5}) \approx -0.62 + 1.90i,$$

$$k = 2 \Rightarrow z_{2} = 2e^{\frac{5\pi}{5}i} = 2e^{\pi i} = 2(\cos\pi + i\sin\pi) = -2,$$

$$k = 3 \Rightarrow z_{3} = 2e^{\frac{7\pi}{5}i} = 2(\cos\frac{7\pi}{5} + i\sin\frac{7\pi}{5}) \approx -0.62 - 1.90i,$$

$$k = 4 \Rightarrow z_{4} = 2e^{\frac{7\pi}{5}i} = 2(\cos\frac{9\pi}{5} + i\sin\frac{9\pi}{5}) \approx 1.62 - 1.18i.$$

$$-0.62 - 1.90i,$$

$$-0.62 -$$

13. (a)
$$(e^{z})^{n} = (e^{x+iy})^{n} = (e^{x}e^{iy})^{n} = e^{nx}e^{iny} = e^{n(x+iy)} = e^{nz}.$$

(b) (i) $\cos z + i \sin z = \frac{1}{2}(e^{iz} + e^{-iz}) + i\frac{1}{2i}(e^{iz} - e^{-iz}) = \frac{1}{2}(e^{iz} + e^{-iz} + e^{iz} - e^{-iz}) = \frac{1}{2}(2e^{iz}) = e^{iz}.$
(ii) $\sin^{2} z + \cos^{2} z = \frac{-1}{4}(e^{iz} - e^{-iz})^{2} + \frac{1}{4}(e^{iz} + e^{-iz})^{2} = \frac{-1}{4}(e^{2iz} - 2 + e^{-2iz}) + \frac{1}{4}(e^{2iz} + 2 + e^{-2iz}) = \frac{1}{4}(-e^{2iz} + 2 - e^{-2iz} + e^{2iz} + 2 + e^{-2iz}) = \frac{1}{4}(4) = 1.$