
Fundamentals of Calculus
Lia Vas

Absolute Extrema and Constrained Optimization

Recall that a function f(x) is said to have a
relative maximum at x = c if f(c) ≥ f(x) for
all values of x in some open interval containing c.
However, that does not mean that the value f(c)
is absolutely the largest value on entire domain
of f. If f(c) ≥ f(x) for all the values x in the
domain of f , then f is said to have an absolute
maximum at x = c.

Similarly, f(x) has a relative minimum at
x = c if f(c) ≤ f(x) for all values of x in some
open interval containing c. If f(c) is the abso-
lutely smallest value on entire domain of f, that
is if f(c) ≤ f(x) for all the values x in the do-
main of f , then f is said to have an absolute
minimum at x = c.

Even if having a relative extrema, a function
does not have to have an absolute extrema. For
example, the function on the figure on the right
defined on (−∞, 2) has both relative minimum
and a relative maximum but has neither an abso-
lute minimum nor an absolute maximum.

However, if the domain of a continuous func-
tion f(x) is a closed interval, then f achieves both
the absolute maximum and absolute minimum on
the interval.

This statement is known as the Extreme Value Theorem. We illustrate this theorem by the
following figures.
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In the figure above, we can see that the absolute extreme value is either at a critical point or at
the end point of the interval. When one finds all the critical points and the endpoints and plugs them
in the function, the largest value obtained is the absolute maximum and the lowest is the absolute
minimum. Thus we have the following.

The Closed Interval Method. To find the absolute maximum and minimum values
of a continuous function f(x) on a closed interval [a, b]:

1. Find f ′(x) and the critical points in (a, b).
2. Evaluate f(x) at the critical values in [a, b] and the endpoints a and b. Then

- the largest value you obtain is the absolute maximum and
- the smallest value you obtain is the absolute minimum.

Example 1. Find the absolute minimum and maximum of f(x) = 3x4 + 4x3 − 36x2 + 1 on the
interval [−1, 4].

Solutions. Find derivative f ′(x) = 12x3 + 12x2 − 72x = 12x(x2 + x − 6) = 12x(x − 2)(x + 3).
Thus the critical values are 0, 2 and −3. Note that −3 is not in the interval [−1, 4], so it is not
relevant for this problem.

Evaluate the function at the critical points 0
and 2 and at the endpoints −1 and 4. Obtain
that

f(0) = 1 f(2) = −63
f(−1) = −36 f(4) = 449

As 449 is the largest of these four values, (4, 449)
is the absolute maximum and as −63 is the small-
est, (2,−63) is the absolute minimum.

Example 2. Assume that the formula

C(t) = 2te−.4t for 0 ≤ t ≤ 4

computes the concentration C (in µg/cm3) of a certain drug present in the body t hours after the
drug was administered.
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Find the minimal and the maximal concentration during the first four hours the drug is present
in the body.

Solutions. Use the product rule for the derivative C ′(t) = 2e−.4t+e−.4t(−.4)2t = 2e−.4t (1− .4t) .
Find the critical points by setting the derivative to zero and solving for t.

2e−.4t (1− .4t) = 0⇒ 2e−.4t = 0 or 1−.4t = 0⇒ e−.4t = 0 or 1 = .4t⇒ no sol. or t =
1

.4
=

5

2
= 2.5.

Note that e−.4t = 0 has no solutions since the exponential function is always positive (alternatively
e−.4t = 0⇔ −.4t = ln 0 which is not defined). Hence t = 2.5 is the only critical point.

Plug the critical point 2.5 and the endpoints
0 and 4 into the function C(t). As

C(2.5) = 1.84, C(0) = 0, and C(4) = 1.615,

we conclude that the minimal concentration is 0
µg/cm3 and it is reached at the very beginning,
zero hours after the drug is administered. The
maximal concentration is 1.84 µg/cm3 and it is
reached 2.5 hours after the drug is administered.

Constrained Optimization

Finding optimal conditions under which a certain event occurs is one of the most important
applications of calculus. The term optimization problem refers to a problem of finding such optimal
conditions. The quantity which needs to be optimized is referred to as the objective. The objective
can depend on more than one variable. In this case, an equation that relates the variables is called
the constraint.

To solve an applied optimization problem follow the steps below.

1. Read the problem carefully. Sketch a diagram if possible in order to visualize the relevant
information.

2. List the relevant quantities in the problem and assign them appropriate variables.

3. Determine the quantity to be maximized or minimized and write down how it depends on the
independent variables. This gives you the objective. Look for the key words in the problem
(the largest, the smallest, the shortest, the quickest, the cheapest and so on) indicating the
quantity that is to be optimized.

4. Determine how the independent variables are related. This gives you the constraint equation.
The constraint often involves the numerical value given in the problem.

5. Using the constraint, express one independent variable in terms of the other. Using this,
eliminate a variable from the objective equation making it a function of single variable.
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6. Find the extreme values of the objective simplified by the previous step. If the domain of the
objective is a closed interval, use the Closed Interval Method. If not, you need to use either the
First or the Second Derivative Test to determine whether there is a minimum or a maximum
at each of the relevant critical points.

When you have found the needed value of the first independent variable, use the constraint to
find the value of the other independent variable.

7. Interpret the solution. Write a sentence that answers the question posed in the problem.

We illustrate this method with examples below.

Example 1. Find the dimensions of the rectangular garden of the greatest area that can be
fenced off with 400 feet of fencing.

Solution. The problem is asking for optimal dimensions of the rectangular region so let us start
by graphing a rectangular region and denoting the length and width by x and y.

Determine the objective. Note the words
“the greatest area”. This means that the
area of the rectangular region is the objective. If
we denote the area by A, the objective is A = xy.

Determine the constraint. The numerical ref-
erence “400 feet of fencing” indicates the con-
straint. The length of the fence corresponds to
the perimeter of the rectangle 2x+ 2y.

Thus the perimeter being 400 is the constraint equation. So, 2x+2y = 400, or simplified x+y =
200 is the constraint.

Eliminate a variable. Solve the constraint for x or y. For example with y = 200−x the objective
becomes

A = xy = x(200− x) = 200x− x2.

Note that x and y are nonnegative numbers so the domain of A(x) is bounded below by x = 0. When
y = 0, x is the largest possible x = 200. So the domain of A is [0, 200].

Find the maximum. The derivative of the area is A′(x) = 200− 2x and the only critical point is
200− 2x = 0⇒ x = 100. At this point we know only that this is a critical point – we cannot assume
that it maximizes the function. So, to check whether it really maximizes A, you need to do one of
the following: the First Derivative Test, the Second Derivative Test, or the Closed Interval Method.

1. Choosing the First Derivative Test. Perform the line test for A′. Obtain
A′

A
+ –
↗ 100 ↘

Conclude that there is a maximum at x = 100.

2. Choosing the Second Derivative Test. Find the second derivative A′′(x) = −2. Since it is less
than zero at any point, including the critical point x = 100, we conclude that the function is
concave down at x = 100, so there is a maximum at 100.
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3. Choosing the Closed Interval Method. Note that x and y are nonnegative numbers so the
domain of A(x) is bounded below by x = 0. When y = 0, x is the largest possible x = 200.
So the domain of A is [0, 200]. Plug the endpoints 0, and 200, and the critical point 100 into
the objective to determine the absolute extremes. A(0) = A(200) = 0 is the minimum and
A(100) = 10, 000 is the maximum.

When x = 100, y = 200− x = 200− 100 = 100.
Make a conclusion. The dimensions of 100 ft with 100 ft produce the largest area of 10, 000 ft2.

Example 2. An open top box is made with a square base and should have a volume of 6000 cubic
inches. If the material for the sides costs $.20 per square inch and the material for the base costs
$.30 per square inch, determine the dimensions of the box that minimize the cost of the materials.

Solution. The problem is asking for the dimensions that minimize the cost. You can start by
graphing a open top box with a square base and denoting the sides of the base by one variable and
the height with the other. For example, x and y.

Determine the objective. With the require-
ment that the cost needs to be minimized, the
cost of the material is the objective. The total
cost is the sum of the cost for the bottom and
the cost for the sides. We are given the prices
in dollars per square inch so these prices need to
be multiplied with corresponding areas in square
inch to produce the cost in dollars. If we denote
the cost by C, we have that

Total cost C = cost for the base + cost for the sides
= 0.3 (area of the base) + 0.2 (area of the four sides)
= 0.3 (x2) + 0.2 (4 times xy)
= 0.3x2 + 0.8xy.

Determine the constraint. The numerical reference “6000 cubic inches” indicates the constraint.
It refers to the volume of the box and so the volume being 6000 is the constraint equation. Since the
volume is the product of the area of the base x2 and the height y, we obtain the constraint

x2y = 6000.

Eliminate a variable. Note that it is easier to solve the constraint for y instead of x. So y = 6000
x2

and the objective becomes

C = 0.3x2 + 0.8xy = 0.3x2 + 0.8x
6000

x2
= 0.3x2 +

4800

x

Find the minimum. Find the derivative C ′(x) = 0.6x − 4800
x2 and the critical points 0 and the

solution of 0.6x− 4800
x2 = 0⇒ 0.6x3 = 4800⇒ x3 = 8000⇒ x = 3

√
8000 = 20.

Using the First Derivative Test, obtain
C ′

C
– +
↘ 20 ↗ . Thus, there is an absolute minimum

at 20. Alternatively, you can plug 20 in the second derivative C ′′(x) = 0.6 + 9600
x3 and, since C ′′(20) =

1.8 > 0, conclude that there is a minimum at 20 using the Second Derivative Test.
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When x = 20, determine that the height is y = 6000
x2 = 6000

400
= 15.

Make a conclusion. To obtain the minimal cost of 360 dollars for making the box, the base needs
to have a side of 20 inches and the height should be 15 inches.

Practice Problems.

1. Find the absolute minimum and maximum of the function f(x) = x3 − 3x2 − 12x+ 24 on the
indicated interval. (a) [0, 6] (b) [−3, 6]

2. The percent concentration of a certain medication during the first 20 hours after it has been
administered is approximated by

p(t) =
230t

t2 + 6t+ 9
0 ≤ t ≤ 20.

Determine the minimal and maximal concentration during the first 20 hours.

3. The function B(t) = 5 − 1
9

3

√
(8− 3t)5 models the biomass (total mass of the members of the

population) in kilograms of a mice population after t months. Determine when the population
is smallest and when it is the largest between 3 and 6 months after it started being monitored.

4. In a physics experiment, temperature T (in Fahrenheit) and pressure P (in kilo Pascals) have
a constant product of 5000 and the function F = T 2 + 50P is being monitored. Determine the
temperature T and pressure P that minimize the function F.

5. A fence must be built in a large field to enclose a rectangular area of 400 square meters. One
side of the area is bounded by existing fence; no fence is needed there. Material for the fence
cost $ 8 per meter for the two ends, and $ 4 per meter for the side opposite the existing fence.
Find the cost for the least expensive fence.

6. Consider a box with a square base. Find the dimensions of the box with the surface area 96
square inches, such that the volume is as large as possible.

7. A company wishes to manufacture a box with a volume of 36 cubic feet that is open on the top
and is twice as long as it is wide. Find the dimensions of the box produced from the minimal
amount of the material.

8. If p denotes the frequency of the dominant allele and q the frequency of recessive allele so that
p+ q = 1, the Hardy - Weinberg Law states that the proportion of individuals in a population
who are heterozygous is 2pq and the proportion of individuals who are homozygous is p2 + q2.

(a) Find the maximal and minimal percentage of people that are heterozygous.

(b) Find the maximal and minimal percentage of people that are homozygous.

Solutions.

1. f(x) = x3− 3x2− 12x+ 24⇒ f ′(x) = 3x2− 6x− 12 = 3(x2− 2x− 4) = 3(x− 4)(x+ 2). Thus,
the critical points are at x = 4 and at x = −2.

For part (a) only x = 4 is relevant since −2 is outside of [0,6]. Evaluate the function f(x)
at the critical point 4 and at the endpoints 0 and 6. Obtain that f(0) = 24, f(6) = 60, and
f(4) = −8. Hence, the maximum is 60 at x = 6 and the minimum is −8 at x = 4.
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For part (b), both critical points are in the given interval [−3, 6]. Evaluate the function f(x)
at both critical points and at both endpoints. In addition to f(6) = 60 and f(4) = −8, obtain
that f(−2) = 28 and f(−3) = 6. So, the absolute maximum is still 60 at x = 6 and the absolute
minimum is still −8 at x = 4.

2. p(t) = 230t
t2+6t+9

⇒ p′(t) = 230(t2+6t+9)−(2t+6)230t
(t2+6t+9)2

= 230(t2+6t+9−2t2−6t)
(t2+6t+9)2

= 230(9−t2)
(t2+6t+9)2

= 230(3−t)(3+t)
(t+3)4

=
230(3−t)
(t+3)3

. Thus the critical points are ±3. Since only 3 is in the interval [0, 20], only 3 is relevant.

Plug the critical point 3 and the endpoints 0 and 20 into the function p(t) and have

p(3) =
115

6
≈ 19.17, p(0) = 0, and p(20) =

4600

529
≈ 8.696.

Conclude that 0 % is the minimal and 19.17 % is the maximal percent concentration.

3. B(t) = 5− 1
9

3

√
(8− 3t)5 ⇒ B′(t) = −5

27
(8− 3t)2/3(−3) = 5

9
(8− 3t)2/3. The only critical point is

8 − 3t = 0 ⇒ t = 8
3

and it is not in the interval. Evaluate function at the endpoints 3 and 6.
Since B(3) ≈ 5.11 and B(6) ≈ 10.16, the absolute maximum is 10.16 kg at t = 6 months and
the absolute minimum is 5.11 kg at t = 3 months.

4. The objective is F = T 2 + 50P and the constraint is PT = 5000. Solving for P for example, we
have that P = 5000

T
and so F = T 2 + 250000

T
. Then F ′ = 2T − 250000

T 2 = 2T 3−250000
T 2 . The critical

points are the solutions of 2T 3 − 250000 = 0 ⇒ 2T 3 = 250000 ⇒ T 3 = 125000 ⇒ T = 50 and
T 2 = 0⇒ T = 0. Use the First or the Second Derivative Test. With the latter, F ′′ = 2 + 500000

T 3

and F ′′(50) = 2 + 4 = 6 > 0, so there is a minimum at T = 50. F is not defined at 0, so there
is no extreme value at 0. When T = 50, P = 5000

50
= 100. Thus, the pressure of 100 kPa and

the temperature of 50 degrees Fahrenheit minimize the function F .

5. Using x for the length of the side opposite to the existing fence and y for the other side, the
objective, the cost function, is C = 4x + 8 · 2y = 4x + 16y. The constraint is xy = 400.
Solving for y, for example, you obtain that y = 400

x
so that C = 4x+ 16400

x
= 4x+ 6400

x
. Thus,

C ′ = 4− 6400
x2 = 4x2−6400

x2 . The critical points are the solutions of 4x2−6400 = 0⇒ x2 = 1600⇒
x = ±40 and x2 = 0 ⇒ x = 0. Thus, the only relevant critical point is x = 40. To check that
there is a minimum at x = 40, use the First or the Second Derivative Test. Using the latter,
C ′′(x) = 12800

x3 and so C ′′(40) = 12800
403

= 0.2 > 0. Hence there is a minimum at x = 40. When
x = 40, y = 400

40
= 10. Hence, 40 and 10 are dimensions that minimize the cost which becomes

$ 320 in that case.

6. The objective is the volume V = x2y. The constraint is the surface area being 96 in2. Hence,
2x2 + 4xy = 96⇒ x2 + 2xy = 48. Solving the constraint for y produces 2xy = 48− x2 ⇒ y =
48−x2

2x
. The volume becomes V = x2 48−x

2

2x
= 1

2
x(48−x2) = 1

2
(48x−x3). Hence, V ′ = 1

2
(48−3x2)

and the critical points are 48−3x2 = 0⇒ 48 = 3x2 ⇒ 16 = x2 ⇒ x = ±4. Since negative values
are not relevant, x = 4 is the only feasible critical point. To check that there is a minimum at
x = 4, use the First or the Second Derivative Test. Using the latter, V ′′(x) = 1

2
(−6x) = −3x so

V ′′(4) = −12 < 0. Hence, the volume is maximal when x = 4 in which case y = 48−42
2(4)

= 32
8

= 4.
Thus, the box with the maximal volume is a cube with the side of 4 inches.
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7. Using x for the length of the shorter side of the base and y for the height, the dimensions of the
box are x, 2x and y. The objective is the surface area function S = 2x2+2xy+4xy = 2x2+6xy.
The constraint is the volume being 36, so 2x2y = 36. Solve for y to get y = 18

x2 and substitute

into the objective S = 2x2 + 6x 18
x2 = 2x2 + 108

x
. As S ′ = 4x− 108

x2 = 4x3−108
x2 , the critical points

are x = 0 and 4x3 − 108 = 0 ⇒ 4x3 = 108 ⇒ x3 = 27 ⇒ x = 3. To check that there is a
minimum at x = 3, use the First or the Second Derivative Test. Using the latter, S ′′ = 4 + 216

x3

and S ′′(3) = 4 + 216
27

= 12 > 0, so x = 3 minimizes S. When x = 3, y = 18
32

= 2. So, 3, 6 and 2
feet are the dimensions that minimize the amount of the material for the box.

8. (a) The objective is F = 2pq and the constraint is p + q = 1. Thus q = 1 − p and F =
2p(1−p) = 2p−2p2. The only critical point is F ′ = 2−4p = 0⇒ p = 1

2
. Since p is the frequency

(probability), we have that the domain of F is the closed interval [0,1], so that we can use the
Closed Interval Method to find both minimum and maximum. Since F (1

2
) = 1

2
= 50% and

F (0) = F (1) = 0% the percent of heterozygous individuals in a population varies from 0 to 50.

(b) The objective is F = p2 + q2 and the constraint is p + q = 1. Hence, q = 1 − p and
F = p2 + (1 − p)2. Thus, F ′ = 2p + 2(1 − p)(−1) = 2p − 2 + 2p = 4p − 2. The only critical
point is 4p− 2 = 0 ⇒ p = 1

2
. As in part (a), the extreme values are at the critical point or at

the endpoints of [0, 1]. As F (0) = 1, F (1) = 1, and F (1
2
) = 1

4
+ 1

4
= 1

2
, we can conclude that the

minimal value is 1
2

and the maximal value is 1. Hence, the percent of homozygous individuals
in a population varies from 50 to 100 percent.
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