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First Order Differential Equations

Introduction to and Classifications of Differential Equations

A differential equation is an equation in an unknown function that contains one or more
derivatives of the unknown function.

The order of a differential equation is the order of the highest derivative in the equation. Differ-
ential equations can be classified based on the order:

• First order – just the first derivative appear in the equation. For example, y′2 + y = sinx.

• Higher order – derivatives higher than the first appear in the equation. For example, y′′ +
sin(xy) = 0 is the equation of the second order.

The first order differential equations have the general form F (y′, y, x) = 0. When possible,
solve the equation for y′ to obtain the form

y′ = f(x, y)

The general form of the n-th order differential equation is

F (y(n), y(n−1), . . . , y′, y, x) = 0.

If the function F is a linear function of the variables y, y′, . . . , y(n), i.e. if the above equation is of
the form

an(x)y(n) + an−1(x)y(n−1) + . . .+ a0(x)y = g(x),

then it is said to be linear. If it is not linear, it is said to be nonlinear. For example, the equation
xy′′ + sinxy = lnx is linear while the equation xy′′ + sinxy2 = lnx is nonlinear.

A linear differential equation of the first order has the form

a(x)y′ + b(x)y = g(x)

Note: if a(x) is a nonzero function, when the equation is divided by it, one obtains y′ + b(x)
a(x)

y = g(x)
a(x)

.

Using P = b
a

and Q = g
a
, we obtain the form y′ + P (x)y = Q(x) which you may remember from

Calculus 2.

Differential equations can be classified also based on the number of functions that are involved.

• A single differential equation – there is a single unknown function. For example, dy
dt

+4y = ln t.

• A system of differential equations – there is more than one unknown function. For example,
dx
dt

+ 4y = ln t together with dy
dt

+ 4x = et.

Based on the type of the solution, differential equations can be classified as follows.
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• Ordinary differential equation is an equation in an unknown function of a single variable. For
example, dy

dx
+ sin y = lnx, d

2P
dt2

+ P = tet, etc.

• Partial differential equation is an equation in an unknown function of more than one variable.
For example ∂y

∂x
+ ∂y

∂t
= sinx+ ln t, yxx + yt = tet, etc.

The function y is a solution of the differential equation F (y(n), y(n−1), . . . , y′, y, x) = 0, if the
equation is satisfied for every value of variable x when y and all its derivatives y′, . . . , y(n) are sub-
stituted into the equation. The function y is a solution on an interval (a, b) if y and its derivatives
satisfy the equation for every value of x on the interval (a, b).

For example, the function y = e2x is a solution of the second order equation y′′+2y′−8y = 0 since
the derivatives y′ = 2e2x and y′′ = 4e2x yield an identity 4e2x+4e2x−8e2x = (4+4−8)e2x = 0e2x = 0
when plugged in the equation. Note that this is identity does not depend on a specific value of x.

Convince yourself that functions of the form y = c1e
2x are also solutions of the differential equation

y′′ + 2y′ − 8y = 0 for every value of constant c1. This illustrates that the solution of a differential
equation does not have to be unique. Moreover, the functions of the form y = c2e

−4x are also solutions
of the equation y′′ + 2y′ − 8y = 0.

The general solution of a differential equation is a family of all functions that satisfy the
equation. We shall see later that the general solution of y′′ + 2y′ − 8y = 0 is of the form y =
c1e

2x + c2e
−4x.

The general solution of a differential equation of the first order depends on a single constant and
the general solution of a differential equation of the n-th degree depends on n constants.

In many applications, a solution passing a certain point or satisfying a certain condition may
be more relevant than the general solution. For a first order differential equation, the condition
y(x0) = y0 is called an initial condition and the differential equation

y′ = f(x, y) together with the initial condition y(x0) = y0

is called an initial value problem. The solution that satisfies the equation and the condition
y(x0) = y0 is called the particular solution.

For example, the function y = 2x+ c is the general solution of the differential equation y′ = 2. If
the condition y(0) = 5 is considered together with the equation, then the solution y = 2x + c does
not satisfy it for every, but only for one value of constant c. Plugging the initial condition values in
the general solution, we obtain that 5 = 2(0) + c and so c = 5. Thus, y = 2x + 5 is the particular
solution of this initial value problem.

Practice Problems.

1. Consider the equation y′ + 3x2y = 6x2.

(a) Classify the equation based on the order and linearity.

(b) Check if y = x2 and y = 2 + e−x
3

are solutions of the equation.

2. Show that y = 1
x+c

is a solution of differential equation y′ = −y2. Then, find a particular

solution that satisfies the initial condition y(0) = 1
4
.
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3. Classify the equation y′′ − 3y′ + 2y = 0 based on the order, linearity and type of unknown
function and show that y = ce2x is a solution of this differential equation for every constant c.

4. Show that y = c1e
x + c2e

2x is a solution of differential equation y′′ − 3y′ + 2y = 0 (it is the
general solution in fact). Then, find the constants c1 and c2 such that the initial conditions
y(0) = 2 and y′(0) = 5 are satisfied.

5. Show that y = c1 cos 2x + c2 sin 2x is a solution of differential equation y′′ + 4y = 0 (it is the
general solution in fact). Then, find the constants c1 and c2 such that the boundary conditions
y(0) = 2 and y(π

4
) = 5 are satisfied.

6. Determine all values of r for which

6
d2y

dt2
− 7

dy

dt
− 3y = 0

has a solution of the form y = ert.

7. Find value of constants A, B and C for which the function y = Ax2 + Bx + C is the solution
of the equation y′′ − y′ + 4y = 8x2.

8. Find value of constant A for which the function y = Ae3x is the solution of the equation
y′′ − 3y′ + 2y = 6e3x.

9. Classify the following differential equations based on the order, linearity and type of unknown
function.

a) The study of electrical circuits – Kirchhoff’s Laws (Physics):

L
d2Q

dt2
+R

dQ

dt
+

1

C
Q = E(t)

where L,C,R are constants and E(t) is a given function.

b) Michaelis-Menten equation that describes the rate of change of plasma drug concentration
C after an intravenous bolus injection (Pharmacy):

−dC
dt

=
vmaxC

k + C

where vmax is the maximum velocity of reaction and k is the rate constant.

c) Wave equation – a model of the vibrating strings and propagation of waves (Physics):

∂2u

∂t2
= c2

∂2u

∂x2

where c is a constant.

d) A model of the learning of a task (Psychology):

y′√
y3(1− y)3

=
2p√
n

where p and n are constants.
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Solutions.

1. (a) Linear first order ordinary differential equation.

(b) y = x2 ⇒ y′ = 2x. Plug the function and its derivative into the equation y′+3x2y = 6x2 ⇒
2x + 3x2(x2) = 6x2 ⇒ 2x + 3x4 = 6x2. This equation does not hold for every value of x (for
example if x = 1 the equation false identity 2 + 3 = 6) so y = x2 is not a solution of the given
equation.

y = 2+e−x
3 ⇒ y′ = −3x2e−x

3
. Plug the function and its derivative into the equation y′+3x2y =

6x2 ⇒ −3x2e−x
3

+ 3x2(2 + e−x
3
) = 6x2 ⇒ −3x2e−x

3
+ 6x2 + 3x2e−x

3
= 6x2 ⇒ 6x2 = 6x2. This

identity holds for every x so the given function is a solution of the equation.

2. y = 1
x+c
⇒ y′ = −1

(x+c)2
. Plug the function and its derivative into the equation y′ = −y2 ⇒

−1
(x+c)2

= −
(

1
x+c

)
⇒ −1

(x+c)2
= −1

(x+c)2
. This identity holds for every x so the given function is a

solution of the equation.

To find c, plug that x = 0 and y = 1
4

into y = 1
x+c
⇒ 1

4
= 1

0+c
⇒ c = 4.

3. Linear, second order ordinary differential equation. y = ce2x ⇒ y′ = 2ce2x ⇒ y′′ = 4ce2x. Plug
into the equation y′′− 3y′+ 2y = 0⇒ 4ce2x− 6ce2x + 2ce2x = 0⇒ (4− 6 + 2)ce2x = 0⇒ 0 = 0.
The given function is a solution of the equation.

4. First part is similar to the previous problem. Use the initial conditions to get 2 = c1e
0 + c2e

0

and 5 = c1e
0 +2c2e

0 ⇒ c1 +c2 = 2 and c1 +2c2 = 5. Solve for c1 and c2 and get c1 = −1, c2 = 3.

5. Using the boundary conditions get 2 = c1 cos 0 + c2 sin 0 = c1 ⇒ c1 = 2, and 5 = c1 cos 2π
4

+
c2 sin 2π

4
= c2 ⇒ c2 = 5.

6. If y = ert, then y′ = rert, and y′′ = r2ert. Plugging that into the equation 6y′′ − 7y′ − 3y = 0
gives you 6r2ert− 7rert− 3ert = 0. Factor ert. Get ert(6r2− 7r− 3) = 0. Since ert is larger than
zero for any value of t, 6r2 − 7r − 3 has to be zero. This happens just when r = −1/3 and
r = 3/2. Thus, y = ert is a solution for r = −1/3 and r = 3/2.

7. Find the derivatives of y = Ax2 +Bx+C to be y′ = 2Ax+B and y′′ = 2A and plug them into
the equation y′′ − y′ + 4y = 8x2 to get 2A − 2Ax − B + 4Ax2 + 4Bx + 4C = 8x2. Note that
both sides are polynomial functions which need to be equal for all values of x. This is possible
just if the coefficient of polynomials with each term are equal. Thus,

• equating the terms with x2 obtain that 4A = 8⇒ A = 2.

• Equating the terms with x obtain that −2A+4B = 0. Since A = 2, −4+4B = 0⇒ B = 1.

• Equating the terms with no x obtain that 2A−B+ 4C = 0⇒ 4− 1 + 4C = 0⇒ C = −3
4
.

Thus, y = 2x2 + x− 3
4

is a solution of differential equation.

8. Find the derivatives of y = Ae3x to be y′ = 3Ae3x and y′′ = 9Ae3x and substitute them into
the equation y′′ − 3y′ + 2y = 6e3x to get

9Ae3x − 9Ae3x + 2Ae3x = 6e3x ⇒ 2Ae3x = 6e3x ⇒ 2A = 6⇒ A = 3

Thus, y = 3e3x is a solution of differential equation.
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9. a) Linear, second order ordinary differential equation. b) Nonlinear, first order ordinary differ-
ential equation. c) Linear, second order partial differential equation. d) Nonlinear, first order
ordinary differential equation.

Separable Differential Equations

The first order differential equation F (y′, y, x) = 0 is separable if we can separate the variables
x and y. Every separable differential equation can be written in a form

P (x) +Q(y)
dy

dx
= 0

or alternatively (if you solve for dy
dx

and rename the functions so that p = −P and q = 1
Q

), as

dy

dx
= p(x)q(y)

To solve a separable differential equation,

• If the derivative is in the form y′ write it as dy
dx
.

• Rewrite the equation so that the left side has just one, and the right side just the other variable.

P (x)dx+Q(y)dy = 0 giving you Q(y)dy = −P (x)dx

• Integrate both sides.

• Solve for the dependent variable y if possible.

We illustrate this method in the following examples.
Example 1. Find the general solution of the differential equation y′ = 2x + 3. Then find the

solution with y(0) = 5.

Solution. Separating the variables in dy
dx

= 2x+ 3 produces dy = (2x+ 3)dx.

Integrating both sides, we have that
∫
dy =

∫
(2x+ 3)dx ⇒ y = x2 + 3x+ c.

Thus, the general solution is a family of parabolas of the form y = x2 + 3x+ c.
Considering the initial condition y(0) = 5, we have that 5 = 02 + 3(0) + c ⇒ 5 = c. Hence, the

parabola y = x2 + 3x+ 5 is the particular solution.

The next example has a bit more of “separating” present.

Example 2. Find the general solution of the differential equation y′ = 2y. Discuss the nature of
the general solution.

Solution. Writing y′ as dy
dx

produces dy
dx

= 2y. Divide by y and multiply by dx to obtain the

variables separated and have that dy
y

= 2dx.
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Integrate both sides to have

ln |y| = 2x+ c.

Solving for |y| produces |y| = e2x+c so that y =
±e2x+c. Note that e2x+c is equal to e2xec. Thus,
denoting ±ec by C eliminates the ± (as well as
the absolute value) so that we can write the gen-
eral solution as

y = Ce2x.

This is a family of exponential functions, increasing and positive if C > 0 and decreasing and
negative if C < 0. If C = 0, the solution is y = 0.

The previous examples leads us to one of the most frequently occurring differential equations
because it models the situation when the rate of change is proportional to the size of the quantity
considered. If y denotes the size of the quantity considered at time x and k denotes the proportionality
constant, the highlighted sentence translates to the following equation.

y′ = ky

Example 3. Find the general solution of y′ = ky where k is a parameter.

Solution. Follow the steps of the previous problem to have that

dy

dx
= ky ⇒ dy

y
= kdx ⇒ ln |y| = kx+ c ⇒ |y| = ekx+c = ekxec ⇒ y = ±ecekx ⇒ y = Cekx

where C again stands for ±ec. Thus, the solutions are exponential functions. Note that C corresponds
to the initial size of y since y(0) = Ce0 = C. If we denote it by y0, we have the familiar format

y = y0e
kx

of the exponential growth for k > 0 or exponential decay for k < 0. If y0 is positive, the solutions
are increasing exponential functions for k > 0 and decreasing exponential functions for k < 0.

Practice Problems.
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1. Find the general solution of the following differential equations. In parts (a) and (b), sketch a
graph of the general solution.

(a) y′x = y (b) y′y = −x (c) y′ = 3x2y

(d) y′ = x(y + 1) (e) y′ = y2xe2x

2. Find the solution of the differential equation that satisfies the given initial condition.

(a) y′ = xy, y(0) = 5 (b) y′ =
√

4x+ 8, y(−2) = 3

(c) y′ = xy
x2+1

, y(0) = 2 (d) y′ = 3y
√

5− 2x, y(5
2
) = 3

3. Free fall, no friction. Recall that the velocity v is the derivative dx
dt

of the distance traveled
x and that the acceleration a is the derivative dv

dt
of the velocity v. A differential equation

describing free fall with no friction is obtained by equating the total force F = ma = md2x
dt2

with the gravitational force mg. Thus,

m
d2x

dt2
= mg.

Find the function describing the distance from the initial position x at time t if there is no
initial velocity. Note that using that v = dx

dt
, the second order equation above can be reduced

to two separable first order equations:

dv

dt
= g, with v(0) = 0 and

dx

dt
= v with x(0) = 0.

Note that here we treated a second order differential equation as a system of two first order
differential equations. We shall later see that every differential equation of order n can be
reduced to a system of n first order differential equations.

Solutions.

1. (a) The equation y′x = y is separable. Writing

y′ as dy
dx

and separating the variables pro-

duces dy
y

= dx
x
. Integrate both sides

∫ dy
y

=∫ dx
x
⇒ ln |y| = ln |x| + c ⇒ |y| = eln |x|+c =

eln |x|ec = |x|ec ⇒ y = ±ecx. Replacing the
constant ±ec by C enables you to get rid
of the absolute values and obtain the gen-
eral solution in the form y = Cx. Thus, the
solutions are lines passing the origin.

(b) The equation y′y = −x is separable. Writing y′ as dy
dx

and separating the variables gives

you ydy = −xdx. Integrate both sides
∫
ydy =

∫
−xdx⇒ y2

2
= −x2

2
+ c⇒ y2 = −x2 + 2c.
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Since 2c is a constant, you can refer to it as
c again. Thus, y2 = −x2 +c. Solve for y and
get y = ±

√
c− x2.

You can also note that the equation y2 =
−x2 +c is more telling in the form x2 +y2 =
c. Thus, if c < 0 no (x, y) values satisfy the
equation. If c > 0, say c = C2, then the
equation x2 + y2 = C2 is an equation of the
circle centered at the origin of radius C.

(c) y′ = 3x2y ⇒ dy
dx

= 3x2y ⇒ dy
y

= 3x2dx ⇒ ln |y| = x3 + c ⇒ |y| = ex
3+c = ex

3
ec. Putting

C = ±ec, we have that y = Cex
3
. Careful: y = ex

3+c is not equal to y = ex
3

+ C.

(d) y′ = x(y + 1)⇒ dy
dx

= x(y + 1)⇒ dy
y+1

= xdx⇒ ln |y + 1| = x2

2
+ c⇒ |y + 1| = ex

2/2+c =

ex
2/2ec. Putting C = ±ec, you have that y + 1 = Cex

2/2 ⇒ y = Cex
2/2 − 1.

(e) y′ = y2xe2x ⇒ dy
dx

= y2xe2x ⇒ dy
y2

= xe2xdx. Integrate the equation. Get −1
y

=
∫
xe2xdx.

Use the integration by parts with u = x and dv = e2xdx for this integral so that v = 1
2
e2x.

Thus,

−1

y
=

1

2
xe2x −

∫ 1

2
e2xdx ⇒ −1

y
=

1

2
xe2x − 1

4
e2x + c ⇒ y =

−1
1
2
xe2x − 1

4
e2x + c

The final answer can also be written as y = 1
−1
2
xe2x+ 1

4
e2x+c

.

2. (a) y′ = xy ⇒ dy
dx

= xy ⇒ dy
y

= xdx ⇒
∫ dy

y
=
∫
xdx ⇒ ln |y| = x2

2
+ c ⇒ |y| = ex

2/2+c =

ex
2/2ec. Thus y = ±ecex2/2 = Cex

2/2. Careful: y = ex
2/2+c is not equal to y = ex

2/2 + C.

Using the initial condition x = 0, y = 5, in the general solution y = Cex
2/2, obtain that

5 = Ce0 ⇒ C = 5. So, the particular solution is y = 5ex
2/2.

(b) y′ =
√

4x+ 8⇒ dy =
√

4x+ 8dx⇒ y =
∫ √

4x+ 8dx. Use the substitution u = 4x+ 8 to
get y = 1

6
(4x+ 8)3/2 + c. Using the initial condition x = −2, y = 3, in the general solution,

obtain that 3 = 0 + c⇒ c = 3. So, the particular solution is y = 1
6
(4x+ 8)3/2 + 3.

(c) y′ = xy
x2+1

⇒ dy
y

= xdx
x2+1

⇒ ln |y| =
∫ xdx
x2+1

. Use the substitution u = x2 + 1 for this last

integral. Obtain that ln |y| = 1
2

ln(x2 + 1) + c. Note that x2 + 1 is positive, so no absolute

value is needed on the right side. Thus, |y| = e
1
2
ln(x2+1)+c ⇒ y = ±eln(x2+1)1/2ec =

Celn(x
2+1)1/2 = C(x2 + 1)1/2 = C

√
x2 + 1. Using that y = 2 when x = 0, obtain that

2 = C
√

1⇒ C = 2. So, the particular solution is y = 2
√
x2 + 1.

(d) y′ = 3y
√

5− 2x ⇒ dy
y

= 3
√

5− 2xdx. Use substitution with u = 5 − 2x for the an-
tiderivative of the function on the right side. After integrating both sides obtain that
ln |y| = −3

2
2
3
(5 − 2x)3/2 + c = −(5 − 2x)3/2 + c ⇒ y = ±e−(5−2x)3/2+c = ±e−(5−2x)3/2ec =

Ce−(5−2x)
3/2
. Using that y(5

2
) = 3, we have that 3 = Ce0 ⇒ C = 3. So, the particular

solution is y = 3e−(5−2x)
3/2

or y = 3e−
√

(5−2x)3 .

3. Solve dv
dt

= g first. Separate to have dv = gdt so that v = gt + c. Using the initial condition
v(0) = 0, get v = gt. Then solve dx

dt
= gt. Separate to have dx = gtdt so that x = g

2
t2 + c. Use

the initial condition x(0) = 0 to get x = g
2
t2.
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Linear Differential Equation

A first order differential equation is linear if it can be written in the form a(x)y′+ b(x)y = c(x).
Note that if a(x) = 0, the equation is not differential. So, let us assume that a(x) is not zero. In

this case we can divide the equation with a(x) and obtain the form y′+ b(x)
a(x)

y = c(x)
a(x)

. If we denote
b(x)
a(x)

by P (x) and c(x)
a(x)

by Q(x), the equation becomes

y′ + P (x)y = Q(x).

This differential equation can be solved following the steps below.

1. Write the equation in the form y′ + P (x)y = Q(x).

2. Find the integrating factor I(x) = e
∫
P (x)dx and multiply both sides of the equation with it.

3. Note that the left side is the derivative of the product I(x) · y.

4. Integrate both sides. On the left side you will have the product I(x) · y.

5. Solve for y.

Practice Problems. Solve the following equations.

1. y′ + 2y = 2ex, y(0) = 1.

2. y′ − 2y = x.

3. xy′ + 2y = x3.

4. x2y′ + xy = 1, y(1) = 2.

5. xy′ + 2y = cosx, y(π) = 0.

Solutions.

1. For the equation y′ + 2y = 2ex, you have that P = 2. Determine the integrating factor as

I = e
∫

2dx = e2x. Multiply the equation by it to get y′e2x + 2e2xy = 2exe2x. Note that the left
side is the derivative of the product ye2x (check: the product rule for ye2x gives you y′e2x+2e2xy
which is exactly the left side). So, the equation becomes (ye2x)′ = 2e3x. Integrate both sides
to get ye2x =

∫
2e3xdx ⇒ ye2x = 2

3
e3x + c. Finally, divide by e2x to get the general solution

y =
2
3
e3x+c

e2x
= 2

3
ex + ce−2x.

Using the initial condition y(0) = 1, you have 1 = 2
3
e0 + ce0 = 2

3
+ c⇒ c = 1

3
. Thus the solution

is y = 2
3
ex + 1

3
e−2x.

2. For the equation y′ − 2y = x, you have that P = −2. Careful: don’t forget the negative sign.

The integrating factor is I = e
∫
−2dx = e−2x. Multiply the equation by it to get y′e−2x−2e−2xy =

xe−2x. Note that the left side is the derivative of the product ye−2x. So, the equation becomes
(ye−2x)′ = xe−2x. Integrate both sides to get ye−2x =

∫
xe−2xdx. Using the integration by parts

with u = x and dv = e−2xdx for the right side, obtain that ye−2x = −x
2
e−2x− 1

4
e−2x + c. Divide

by e−2x to get the general solution y =
−x
2
e−2x− 1

4
e−2x+c

e−2x = −x
2
− 1

4
+ ce2x.
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3. Careful: before determining P, you have to write the equation in the form y′ + Py = Q. So,
you need to divide by x first. Obtain y′+ 2

x
y = x2. This gives you that P = 2

x
. The integrating

factor is I = e
∫

2
x
dx = e2 lnx = elnx

2
= x2. Careful: don’t cancel e2 lnx as 2x.

Multiply the equation by x2 to get y′x2 + 2xy = x4. Note that the left side is the derivative
of the product yx2. So, the equation becomes (yx2)′ = x4. Integrate both sides to get yx2 =∫
x4dx = x5

5
+ c⇒ y =

x5

5
+c

x2
= x3

5
+ c

x2
.

4. To write the equation in the form y′ + Py = Q, you need to divide by x2 first. Obtain

y′ + 1
x
y = 1

x2
. This gives you that P = 1

x
. Determine the integrating factor now. I = e

∫
1
x
dx =

elnx = x. Multiply the equation by x to get y′x + y = 1
x
. Note that the left side is the

derivative of the product yx. So, the equation becomes (yx)′ = 1
x
. Integrate both sides to get

yx =
∫ 1
x
dx = lnx+ c⇒ y = lnx+c

x
.

Using the initial condition y(1) = 2, you have 2 = 0+c
1
⇒ c = 2. Thus the solution is y = lnx+2

x
.

5. Divide by x first to get y′ + 2
x
y = cosx

x
. P = 2

x
⇒ I = e

∫
2
x
dx = e2 lnx = elnx

2
= x2. Multiply by

I to get y′x2 + 2xy = x cosx⇒ (yx2)′ = x cosx⇒ yx2 =
∫
x cosxdx. Using the integration by

parts with u = x and dv = cos xdx, obtain that yx2 = x sinx + cosx + c. Divide by x2 to get
the general solution y = x sinx+cosx+c

x2
= 1

x
sinx+ 1

x2
cosx+ c

x2
.

With y(π) = 0 you have that 0 = −1
π2 + c

π2 ⇒ 0 = −1 + c⇒ c = 1. Thus, the particular solution
is y = 1

x
sinx+ 1

x2
cosx+ 1

x2
.

Bernoulli Equation

A first order differential equation is called Bernoulli equation if it can be written in the form

y′ + P (x)y = Q(x)yn.

Note that for n = 0 and n = 1 this is a linear differential equation (for n = 1 it is also separable).

If n 6= 0 or 1, the substitution u = y1−n reduces Bernoulli’s equation to a linear equation.
Note that if u = y1−n then

y = u1/(1−n), so that y′ =
1

1− n
u1/(1−n)−1u′ =

1

1− n
un/(1−n)u′ and yn = un/(1−n)

Thus, the power of u of the first term on the left is the same as the power of u of the term on
the right. Dividing the equation by un/(1−n) make the power of u of the second term on the left be
1

1−n −
n

1−n = 1−n
1−n = 1. Because of this, the u-equation one obtains in this way is linear.

Examples of Bernoulli equations can be found in the study of the stability of the fluid flow and
in population dynamics.

Practice Problems. Solve the following Bernoulli equations.

1. y′ − 2y + 4y2 = 0

10



2. y′ − y + 2y3 = 0

3. x2y′ + 2xy = y3

Solutions.

1. The equation y′ − 2y + 4y2 = 0 is a Bernoulli’s equation with n = 2. Use the substitution
u = y1−2 = y−1. Thus y = u−1 and so y′ = −u−2u′. Substitute that into the equation. Get
−u−2u′ − 2u−1 + 4u−2 = 0. Multiply by −u2. Get u′ + 2u = 4. This is a linear equation

that can be solved using the integrating factor I = e
∫

2dx = e2x. After multiplying by I, get
ue2x =

∫
4e2xdx = 2e2x + c. Solve for u. Get u = 2 + ce−2x. Solve for y and get y = 1

2+ce−2x .

2. y′ − y + 2y3 = 0 is a Bernoulli’s equation with n = 3. Use the substitution u = y1−3 = y−2.
Thus y = u−1/2 and so y′ = −1

2
u−3/2u′. Substitute that into the equation. Get −1

2
u−3/2u′ −

u−1/2 + 2u−3/2 = 0. Multiply by −2u3/2. Get u′+ 2u = 4. This is a linear equation with I = e2x

and solution u = 2 + ce−2x. Thus y = 1√
2+ce−2x .

3. The equation x2y′ + 2xy = y3 is a Bernoulli’s equation with n = 3. Use the substitution
u = y1−3 = y−2. Thus y = u−1/2 and so y′ = −1

2
u−3/2u′. Substitute that into the equation. Get

−1
2
x2u−3/2u′+2xu−1/2 = u−3/2. Multiply by u3/2. Get −1

2
x2u′+2xu = 1. Divide by −x

2

2
to make

the first term be u′. Get u′ − 4
x
u = −2

x2
. This is a linear equation that can be solved using the

integrating factor I = e
∫
−4/xdx = e−4 lnx = x−4. After multiplying by I, get ux−4 =

∫ −2
x6
dx =

−2
−5x5 + c. Solve for u. Get u = 2

5x
+ cx4. Solve for y and get y = ( 2

5x
+ cx4)−1/2 = 1√

2
5x

+cx4
.

Exact Equation

Partial Derivatives. If a function F depends on two variables x and y, then you can differentiate
it with respect to x and with respect to y. The derivative of F with respect to x, obtained by treating
y as a constant, is called the partial derivative with respect to x and it is denoted by ∂F

∂x
or by Fx.

Analogously, the derivative of F with respect to y, obtained by treating x as a constant, is called the
partial derivative with respect to y and it is denoted by ∂F

∂y
or by Fy.

For example, partial derivatives Fx and Fy of F (x, y) = 3x2 + 2xy − 5y2 are Fx = 6x + 2y and
Fy = 2x− 10y.

Exact equations. A first order differential equation M(x, y) + N(x, y) dy
dx

= 0 is exact if there
is a function F (x, y) such that

∂F

∂x
= M and

∂F

∂y
= N

In this case, Mdx+Ndy = Fxdx+Fydy is the differential dF. When the given equation is multiplied
by dx, it becomes Mdx+Ndy = 0⇒ dF = 0. Hence, the solution is F = c where c is any constant.
Thus, the formula F (x, y) = c is the implicit form of the general solution.

Test for exactness. If M and N are continuous functions on a region in xy-plane, the differential
equation M(x, y)dx+N(x, y)dy = 0 is exact if and only if

My = Nx

11



on the entire region.

Example. Test if differential equations xey + yexy′ = 0 and x3y4 + (x4y3 + 2y)y′ = 0 are exact.

Solution. For the first equation M = xey and N = yex. Since My = xey and Nx = yex, the
equation is not exact.

For the second equation, M = x3y4 and N = x4y3 + 2y. Since My = 4x3y3 and Nx = 4x3y3, the
equation is exact.

Finding the solution. To find the solution F (x, y) = 0,

1. Integrate M(x, y) with respect to x. After integrating, the undetermined part is not a constant
but a function of y. Let use denote it by g(y). Thus F (x, y) =

∫
M(x, y)dx+ g(y).

2. To find the unknown function g(y), differentiate F (x, y) =
∫
M(x, y)dx + g(y) with respect

to y and equate it with N(x, y). Denote the derivative of g(y) by g′(y). This will give you
an equation which you can solve for g′(y). Integrating that with respect to y gives you the
unknown function g(y) and, finally, the solution F (x, y) = 0.

Alternatively, you can:

1. Integrate N(x, y) with respect to y. After integrating, the undetermined part is not a constant
but a function of x. Let use denote it by h(x). Thus F (x, y) =

∫
N(x, y)dy + h(x).

2. To find the unknown function h(x), differentiate F (x, y) =
∫
N(x, y)dy + h(x) with respect

to x and equate it with M(x, y). Denote the derivative of h(x) by h′(x). This will give you
an equation which you can solve for h′(x). Integrating that with respect to x gives you the
unknown function h(x) and, finally, the solution F (x, y) = 0.

Example. Solve the differential equation 2x+ y2 + 2xyy′ = 0.

Solution. Note that this equation is neither linear (because of y2 term) nor separable (because
it has three terms, one just with x, one just with y and a mixed term). Here M = 2x + y2 and
N = 2xy.

Check if the equation is exact:

My = 2y and Nx = 2y

So, the equation is exact. Let us integrate M with respect to x.

F (x, y) =
∫
Mdx =

∫
(2x+ y2)dx = x2 + xy2 + g(y).

Then go to the second step: differentiate with respect to y and equate the result with N.

Fy = 2xy + g′(y) = N = 2xy.

From this, we obtain that g′(y) = 0 and so g(y) is a constant c. Hence, the solution is

F (x, y) = x2 + xy2 + c = 0 or x2 + xy2 = C.

To illustrate the alternative approach, integrate N with respect to y. Obtain that F (x, y) =∫
Ndy =

∫
2xydy = xy2 + h(x). Differentiate with respect to x and equate it with M. So, we have
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that y2+h′(x) = 2x+y2. From here, h′(x) = 2x and so h(x) = x2+c. Thus F (x, y) = xy2+x2+c = 0
which is the same answer that we got using the first approach. 1

Example. Find the value of a for which the equation

(aex
2

+ 2y)y′ − 2x−3 + 2xex
2

y = 0

is exact. Solve the equation using that value of a.

Solution. Let M = −2x−3 + 2xex
2
y and N = aex

2
+ 2y. For the equation to be exact, My should

be equal to Nx. My = 2xex
2

and Nx = 2axex
2
. Thus 2 = 2a⇒ a = 1.

In this case, F =
∫

(−2x−3 + 2xex
2
y)dx = x−2 + ex

2
y + g(y). Fy = ex

2
+ g′(y) = N = ex

2
+ 2y So

g′(y) = 2y, giving you that g(y) =
∫

2ydy = y2 + c. Thus, the solution is F = x−2 + ex
2
y+ y2 + c = 0.

or ex
2
y + x−2 + y2 = C.

Practice Problems. Check if the equations (1)–(4) are exact and, if they are, find the solution.

1. x3y4 + (x4y3 + 2y)y′ = 0

2. 3xy + y2 + (x2 + xy)y′ = 0

3. 2x+ y + (x− 2y)y′ = 0

4. ex(y − x) + (1 + ex)y′ = 0

5. Find the value of parameters a and b for which the equation 2x sin ay + (x2 cos y − by2)y′ = 0
is exact and solve the equation using those values.

6. Find the value of a for which the equation

ay2e3x + 2x2y + (4ye3x +
2

3
x3 + 12e4y)y′ = 0

is exact. Solve the equation using that value of a.

Solutions. Following the same steps as in two solved examples above, obtain the following
solutions.

1. The equation is exact. F =
∫
x3y4dx = 1

4
x4y4 + g(y). Fy = x4y3 + g′ = N = x4y3 + 2y ⇒ g′ =

2y ⇒ g = y2 + c. So, F = 1
4
x4y4 + y2 + c and the solution is 1

4
x4y4 + y2 + c = 0.

2. The equation is not exact.

3. The equation is exact. F =
∫

(2x + y)dx = x2 + xy + g(y). Fy = x + g′ = N = x− 2y ⇒ g′ =
−2y ⇒ g = −y2 + c. F = x2 + xy − y2 + c and the solution is x2 + xy − y2 + c = 0.

4. The equation is exact. It may be easier to integrate N with respect to y than M with respect
to x, so you can find F as

∫
Ndy =

∫
(1 + ex)dy = y + yex + h(x). Then Fx = yex + h′ = M =

yex−xex ⇒ h′ = −xex ⇒ h =
∫
−xexdx = −xex+ex+c the solution is y+yex−xex+ex+c = 0.

1For students with Calculus 3. Note that the equation Mdx + Ndy = 0 is exact precisely when the vector
function ~f = (M,N) is conservative. Thus, checking if an equation is exact uses the same method as checking if a
given vector field is conservative and finding the solution F (x, y) = c of the exact equation uses the same procedure

as finding a potential (a function F (x, y) such that ∇F = ~f).
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5. Let M = 2x sin ay and N = x2 cos y − by2. Then My = 2ax cos ay and Nx = 2x cos y. If
My = Nx, then a has to be 1 and b can take any real value.

F =
∫

2x sin ydx = x2 sin y + g(y). Fy = x2 cos y + g′(y) = N = x2 cos y − by2 ⇒ g′ = −by2 ⇒
g = − b

3
y3 + c. Thus, the solution is x2 sin y − b

3
y3 + c = 0 or x2 sin y − b

3
y3 = C.

6. Let M = ay2e3x + 2x2y and N = 4ye3x + 2
3
x3 + 12e4y. For the equation to be exact, My should

be equal to Nx. My = 2aye3x + 2x2 and Nx = 12ye3x + 2x2. Thus 2a = 12 and so a = 6.

In this case, F =
∫

(6y2e3x + 2x2y)dx = 2y2e3x + 2
3
x3y + g(y). Fy = 4ye3x + 2

3
x3 + g′(y) = N =

4ye3x + 2
3
x3 + 12e4y So g′(y) = 12e4y, giving you that g(y) = 3e4y + c. Thus, the solution is

F = 2y2e3x + 2
3
x3y + 3e4y + c = 0 or 2y2e3x + 2

3
x3y + 3e4y = C.

Homogeneous Equation

A first order differential equation is homogeneous if it can be written in the form

y′ = f(
y

x
).

The substitution u = y
x

reduces homogeneous equation to a separable equation.

Since u = y
x
, we have that y = ux so that y′ = u′x+ u.

Thus, the equation becomes u′x + u = f(u) so that du
dx
x = f(u) − u. This is a separable equation

since du
f(u)−u = dx

x
.

Practice Problems. Solve the following homogeneous differential equations.

1. y′ = x2+xy+y2

x2
Rewrite the right side as 1 + y

x
+ ( y

x
)2 to see that the equation is homogeneous.

2. y′ = 4y−3x
2x−y Divide the numerator and the denominator of the right side by x to have

4 y
x
−3

2− y
x
.

3. y′ = x+3y
x−y Start with the same step as in the previous problem.

Solutions.

1. Using the hint obtain y′ = 1+ y
x

+( y
x
)2. Use the substitution u = y

x
⇒ y = ux⇒ y′ = u′x+u to

get u′x+u = 1 +u+u2 ⇒ u′x = 1 +u2. Separate the variables. du
1+u2

= dx
x
. Integrate tan−1 u =

ln |x|+ c⇒ u = tan(ln |x|+ c). Substitute back and solve for y to get y = x tan(ln |x|+ c).

2. Using the hint get y′ = 4(y/x)−3
2−(y/x) ⇒ u′x+u = 4u−3

2−u ⇒ u′x = 4u−3
2−u −u = 4u−3−2u+u2

2−u = u2+2u−3
2−u ⇒

(2−u)du
u2+2u−3 = dx

x
⇒ (2−u)du

(u+3)(u−1) = dx
x
. Use the partial fractions for the integral of the left side. Obtain

−5/4
u+3

+ 1/4
u−1 = dx

x
⇒ −5

u+3
+ 1

u−1 = 4dx
x
⇒ −5 ln |u+3|+ln |u−1| = 4 ln |x|+c⇒ |u+3|−5|u−1| =

C|x|4 ⇒ |u− 1| = C|x|4|u+ 3|5. Substitute back | y
x
− 1| = C|x|4| y

x
+ 3|5. Multiply by x to get

|y − x| = C|y + 3x|5.
Note that at the step when we multiplied both sides by |u+3|5 we assumed this term is nonzero.
In case when this is zero, the line u = −3⇒ y = −3x is also a solution. So, the general solution
is the family of curves either of the form |y − x| = c|y + 3x|5 or y = −3x.
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3. Rewrite the right side as x+3y
x−y = 1+3(y/x)

1−(y/x) ⇒ u′x + u = 1+3u
1−u ⇒ u′x = 1+3u

1−u − u = 1+3u−u+u2
1−u =

u2+2u+1
1−u ⇒ (1−u)du

u2+2u+1
= dx

x
⇒ (1−u)du

(u+1)2
= dx

x
. Use the partial fractions for the integral of the left

side. Obtain −1
u+1

+ 2
(u+1)2

= dx
x
⇒− ln |u+1|− 2

u+1
= ln |x|+c⇒ ln |u+1|+ 2

u+1
= − ln |x|+c⇒

ln(|u+ 1||x|) + 2
u+1

= c. Substitute back to get ln |x+ y|+ 2x
x+y

= c.

This describes all solutions except when |x+ y| = 0. So, the general solution are curves of the
form ln |x+ y|+ 2x

x+y
= c or y = −x.

Euler’s Method

In some cases, it is impossible to find analytical solution of an equation (a formula for a solution even
in the implicit form). In those cases, one looks for a numerical solution, a list of (x, y) points that
represents an approximation of the analytical solution. Thus, the difference between an analytical
and numerical solution is that the first is given by an exact formula y = y(x) of the solution, while
the second is a list of points that approximate the points on the exact solution. Numerical methods
of solving differential equations are important because many relevant differential equations cannot
be solved exactly.

One of the simplest numerical methods for solving a first order differential equation y′ = f(x, y)
with the initial condition y(x0) = y0, is Euler’s method.

Euler’s method approximates the values of the solution at equally spaced numbers x0, x1 =
x0 + h, x2 = x1 + h, . . . where h is the step size.

We treat x0 as the x-initial value and y0 as the y-initial value. At the point (x0, y0), the slope
of the solution is given by y′ = f(x0, y0) so the tangent line to the solution curve at the initial point
is

y − y0
x− x0

= f(x0, y0)

or, in point-slope form,

y − y0 = f(x0, y0)(x− x0) or y = y0 + f(x0, y0)(x− x0).

For the next point x1 = x0 + h, we can compute the y-value of the approximate solution by

y1 = y0 + f(x0, y0)(x1 − x0) = y0 + f(x0, y0)h.

Having obtained the point (x1, y1), we note that the slope of the solution is given by y′ = f(x1, y1).
So, the tangent line to the solution curve at (x1, y1) is

y − y1 = f(x1, y1)(x− x1)

For the point x2 = x1 + h, the y-value computed using the tangent line is

y2 = y1 + f(x1, y1)(x2 − x1) = y1 + f(x1, y1)h.

Continuing in this way, we obtain a sequence of (x, y) values

xn+1 = xn + h
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yn+1 = yn + f(xn, yn)h

The accuracy of the Euler’s method can be increased by decreasing the step size h.

Example. Let us find the first three approximations of y′ = y + 1, y(0) = 1 with step size 0.1.
We have that

y1 = y0 + (y0 + 1)0.1 = 1 + (1 + 1)0.1 = 1.2

y2 = y1 + (y1 + 1)0.1 = 1.2 + (1.2 + 1)0.1 = 1.42

y3 = y2 + (y2 + 1)0.1 = 1.42 + (1.42 + 1)0.1 = 1.662

Continuing on this way, we can approximate the value of solution at x = 1 to be y10 = 4.187.

Below is a Matlab script which uses the Euler’s method to approximate a solution of the initial
value problem y′ = f(x, y), y(x0) = y0 on the interval [x0, xn] using n steps. The input consists of
the function f , x-initial x0, y-initial y0, x-final xn and the number of steps n.

function [x, y] = euler(f, xinit, yinit, xfinal, n)
h = (xfinal - xinit)/n; (calculates the step size)
x = zeros(n+1, 1);
y = zeros(n+1, 1); (initialize x and y as column vectors of size n+ 1)
x(1) = xinit;
y(1) = yinit; (the first entry in the vectors x and y is x0 and y0 respectively)
for i = 1:n
x(i + 1) = x(i) + h; (every entry in vector x is the previous entry plus the step size h)
y(i + 1) = y(i) + h*f(x(i), y(i)); (Euler’s Method formula)
end

Practice Problems.

1. Use the Matlab script euler with the step size 0.1 to approximate y(1) where y(x) is the
solution of the initial-value problem y′ = x+ y, y(0) = 1. Sketch the solution.

2. Use the Matlab script euler with the step size 0.2 to approximate y(2) where y(x) is the
solution of the initial-value problem y′ = y − e−x, y(0) = 1. Sketch the solution.

3. Use the Matlab script euler with the step size .5 to approximate the size of a fish population
P at time t = 5 where t is measured in weeks if there are 4 population members initially and
the size of the population is changing according to the equation dP

dt
= −0.045P (P −20). Sketch

the solution.

Solutions.

1. Note that x-initial is 0, y-initial is 1, x-final is 1 and the step size is given to be 0.1 so
n = 1−0

.1
= 10. Represent the right side of the equation by f=@(x,y)x+y, execute the script

by [x,y]=(f, 0, 1, 1, 10), and obtain that y(1) = 3.187. Graph by plot(x,y).
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2. Note that x-initial is 0, y-initial is 1, x-final is 2 and the step size is given to be 0.2 so
n = 2−0

.2
= 10. Represent the right side of the equation by f=@(x,y)y-exp(-x), execute the

script by [x,y]=(f, 0, 1, 2, 10), and obtain that y(2) = 3.014. Graph by plot(x,y).

3. You can use y for the dependent variable P and x for the independent variable t. Thus the
equation is dy

dx
= −0.045y(y − 20) (Careful: the right side is not −0.045x(x− 20)). Represent

the right side of the equation as a function by f=@(x,y)-0.045*y*(y-20). The initial time is
0, thus x-initial is 0. The initial population is 4, thus y-initial is 4. The final time is 5 weeks,
thus x-final is 5. With the step size of 0.5, n = 5−0

0.5
= 10. Execute the script by [x,y]=(f, 0,

5, 4, 10) and obtain that P (5) = 19.42. So, the population size is approximately 19 members
after 5 weeks.

Autonomous Differential Equations

In general, if a first order differential equation is solved for y′, it has the form y′ = f(x, y). If the
function on the right side does not depend of the independent variable x, i.e. if the equation is of
the form

dy

dx
= f(y),

the equation said to be autonomous. Note that an autonomous equation is separable.

If f(y) = 0 is zero at y = a, then the horizontal line y = a is a solution because both sides of
the equation y′ = f(y) become zero when y = a. This solution is called the equilibrium solution
and a is called a critical point. After finding the equilibrium solutions, check the sign of f . On the
intervals of y with y′ = f(y) positive, the solutions y are increasing and on the intervals of y with
y′ = f(y) negative, the solutions y are decreasing. Thus, the analysis of the sign of f(y) can tell us a
lot about the graph of the solutions. Getting a graph of solutions may provide valuable information
about the solutions especially in cases when it is difficult to obtain an explicit formula of the general
solution.

If the solutions asymptotically approach an equilibrium solution y = a for x→∞, regardless of
whether the values of the initial conditions are smaller or larger than a, then the solution y = a is
said to be asymptotically stable.

If small initial differences in the initial conditions produce large differences of the solutions in the
long run so that the solutions diverge from an equilibrium solution y = a, the solution y = a is said
to be unstable.

In case that the solutions with the initial conditions larger than the equilibrium solution y = a
are converging towards it and the solutions with the initial conditions smaller than the equilibrium
are diverging from it (or vice versa), the solution y = a is said to be semistable.
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If f(y) = 0 has multiple solution, one can have several types of equilibrium solution present as
the next two examples illustrate.

Example. Sketch a graph of the general solution of the equation y′ = 2y − y2.
Solution. Find the equilibrium solutions by solving 2y − y2 = 0. Factor to get y(2− y) = 0

which produces y = 0 and y = 2 as the equilib-
rium solutions. Examine the sign of y′ = 2y − y2

using the number line
– + –

0 2
. Use the

number line to sketch the graph of all solutions
and conclude that the solutions with initial con-
ditions above y = 2, and below y = 0 are decreas-
ing, and the solutions with initial conditions be-
tween y = 0 and y = 2 are increasing. Conclude
that y = 2 is asymptotically stable and y = 0 is
unstable.

Example. Sketch a graph of the general solution of the equation y′ = (y + 1)(y − 2)2.

Solution. y′ = (y + 1)(y − 2)2 = 0⇒ y = −1 and y = 2.

So, y = −1 and y = 2 are the equilibrium solu-
tions. Examine the sign of y′ = (y + 1)(y − 2)2

using the number line
– + +

-1 2
. Use

the number line to sketch the graph of all solu-
tions and conclude that the solutions with initial
conditions above y = 2, and between y = −1
and y = 2 are increasing, and the solutions with
initial conditions below y = −1 and y = 2 are de-
creasing. Conclude that y = 2 is semistable and
y = −1 is unstable.

Differential equations with parameters

In many cases, a mathematical model leading to a differential equation which depends on a
parameter. For example, in section on Separable Equations, we have seen that if the rate of change
is proportional to the size of the quantity considered, then one has that y′ = ky where k is a nonzero
proportionality constant. Analyzing this equation as an autonomous equation, we can see that the
sign of y′ = ky depends on the sign of k also, not just the sign of y. Hence, we distinguish two
different cases: k > 0 and k < 0. In both cases, y = 0 is an equilibrium solution.

If k > 0, the number line for y′ is
– +

0
. Thus, in this case, the solution y = 0 is unstable.

If k < 0, the number line for y′ is
+ –

0
. Thus, in this case, the solution y = 0 is stable.

Thus, the stability of the equilibrium solutions and the the graphs of solutions are very different
in these two cases.
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This analysis agrees with the form of the general solution y = cekt we obtained by solving the
equation as a separable equation: if k > 0, the term ekt diverges for t → ∞ and, if k < 0, the term
ekt converges to zero for t→∞.

The equation y′ = ky models the population size if the population changes in time at a rate
proportional to its size. We encounter this situation in examples when the percent birth rate is b
and the percent death rate is c so that dy

dt
= by− cy. Here we have that k = b− c. If k > 0 (so b > c)

the population is increasing for any positive initial value y(0). If k < 0 (so b < c) the population is
decreasing to zero for any positive initial value y(0)

For another example, consider the modes in which the rate of change is proportional to the
product y(A− y) where A is a positive constant. This leads us to the equation

y′ = ky(A− y)

where k is a nonzero proportionality constant. The right side is zero when ky = 0 ⇒ y = 0 and
when A− y = 0⇒ y = A. Hence, there are two equilibrium solutions y = 0 and y = A. The sign of
k again impacts the sign of y′ so we distinguish two cases again: k > 0 and k < 0.

Case k > 0. If k > 0, the number line for y′ is
– + –

0 A
. If unsure how to obtain this

number line, take some specific values for k and A, for example, k = 2 and A = 5 (or take your two
favourite positive numbers for k and A) and analyze the sign of y′ = 2y(5 − y). Obtain the sign

distribution
– + –

0 5
. The sign distribution is the same for any positive k and A values

producing the first number line above.

Thus, if k > 0 the solution y = A is stable
and y = 0 unstable.

If y represents the population size, this case
corresponds to the limited growth of the pop-
ulation and the stable solution y = A corre-
sponds to the carrying capacity of population.
A growth can be limited because of factors such
as limited resources like food or internal compet-
itiveness.
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Hence, the population size increases to A if the initial size y(0) is smaller than A If y(0) is
larger than A, the population size decreases to A as the population is too large to grow due to some
constraints like the limiting resources of the environment, for example. If y(0) = A, the solution is
constant y = A. Hence, the equilibrium solution y = A is stable since limt→∞ y = A regardless of the
initial size.

Case k < 0. If k < 0, the number line for y′ is
+ – +

0 A
. If unsure how to obtain this

number line, you can take some specific values for k and A, for example, k = −2 and A = 5 (or take
your favourite positive number for A and your two favourite negative number for k) and analyze the

sign of y′ = −2y(5 − y). Obtain the sign distribution
+ – +

0 5
. The sign distribution is

the same for any negative k and positive A values.

Thus, if k < 0 the solution y = 0 is stable and
y = A unstable.

If y represents the population size, this case
corresponds to the growth with the thresh-
old level and the unstable solution y = A cor-
responds to the threshold level of population.
This situation appears if the population is criti-
cally vulnerable to predators if it is small enough
and can survive just if the initial size is above the
threshold level.

Thus, the population size decreases to 0 if the initial size y(0) is smaller than the threshold A. If
the initial size y(0) is larger than A, the population size increases without a bound. If y(0) = A, the
solution is constant y = A.

Practice Problems.

1. Sketch the graph of solutions of the following equations.

a) y′ = y2−2y b) y′ = y(y+1)(y−2) c) y′ = y(2−y)2(5−y)3

2. Determine the stability of the equilibrium solutions of following equations

a) y′ = (y − a)(y − b) b) y′ = y(ay2 − b)

where a and b are constants. For part b), you can assume that a > 0.

3. The size of a population of rabbits is modeled by differential equation P ′ = −kP (100 − P )
where k is a positive parameter.

a) Estimate the number of rabbits after a long period of time if the initial size of the popu-
lation is 103 rabbits.

b) Estimate the number of rabbits after long period of time if the initial size of the population
is 99 rabbits.
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c) If k = 0.02 per year, use the program euler to estimate the size of the population after 4
years if the population was 99 initially. Use 0.5 for the step size.

4. The Pacific halibut fishery is modeled by differential equation B′ = kB(K−B) where B is the
biomass (total mass of the members of the population) in kilograms at time t, K = 8 · 107 kg
and k = 8.7 · 10−9 per year.

a) Estimate the biomass after many years if the initial biomass is 3 · 106.

b) Estimate the biomass after many years if the initial biomass is 9 · 107.

c) If the biomass is 2 ·107 kg initially, use the program euler to estimate the biomass 5 years
later. Use 0.5 for the step size.

Solutions.

1. a) To find equilibrium solution solve y2 − 2y = y(y− 2) = 0⇒ y = 0 and y = 2. Then analyze

the sign of y′.
+ – +

0 2
. Use this information to sketch the graph of the general

solution: above y = 2, and below y = 0, the solutions are increasing, and between y = 0 and
y = 2 the solutions are decreasing. From the graph, you can see that y = 0 is asymptotically
stable and y = 2 is unstable.

b) Equilibrium solutions: y = −1, y = 0 and y = 2. Sign of y′ :
– + – +

-1 0 2
.

Conclude that y = 0 is stable and y = −1 and y = 2 are unstable.

c) y′ = y(2−y)2(5−y)3 = 0⇒ y = 0, (2−y)2 = 0 or (5−y)3 = 0⇒ y = 0, 2−y = 0 or 5−y = 0.

So, the equilibrium solutions are y = 0, y = 2 and y = 5. Sign of y′ :
– + + –

0 2 5
.

Conclude that y = 0 is unstable, y = 2 is semistable and y = 5 is stable.

2. a) You can consider the following cases: a > b, a < b and a = b. In the first case, the sign of

y′ is
+ – +

b a
So, y = b is stable and y = a is unstable. In the second case, a and b

are interchanged in the previous number line so y = a is stable and y = b is unstable. If a = b,
there is just one equilibrium solution and it is semistable.

b) Note that y′ = y(ay2 − b) = 0⇒ y = 0 or y2 = b
a
. This brings you to the following cases.

Case 1. b
a
≤ 0. In this case, y = 0 is the only solution, so y = 0 is the only equilibrium

solution. The sign of y′ is given by
– +

0
so y = 0 is unstable solution. Thus, the

solutions with positive initial value increase to infinity and those with negative initial value
decrease to negative infinity.

Case 2. b
a
> 0. In this case, the equation y(ay2−b) = 0 has three solutions: y = 0 and y = ±

√
b
a
.

The sign of y′ can be obtained using the number line
– + – +

−
√
b/a 0

√
b/a

So,

y = 0 is stable and y = ±
√

b
a

are unstable. Thus, the solutions with initial values in (−b
a
, b
a
),
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converge towards 0, the solutions with initial values larger than b
a

increase without bounds and
the solutions with initial values smaller than −b

a
decrease without bounds.

3. Parts a) and b) can be obtained by analyzing the graph and stability of the equilibrium solu-

tions. −kP (100 − P ) = 0 ⇒ P = 0 and P = 100. Sign of P ′ :
+ – +

0 100
. Thus,

with initial condition above P = 100 (and below P = 0 but that is not relevant in this case)
the solutions are increasing. In particular, if the initial population size is 103, the population
will be increasing. Thus limt→∞ P = ∞. So, the population size increases without bounds.
The solutions with initial conditions between P = 0 and P = 100 are decreasing. In particular,
if the initial population size is 99, the population will be decreasing to 0. Thus limt→∞ P = 0.
So, the population size decreases to 0 in this case.

c) Represent the right side as a function f=@(x,y)-0.02*y*(100-y), use 0 for x-initial, 99
for y-initial, 4 for x-final and 0.5 for the step size (so that n = 4−0

0.5
= 8). Obtain that the

population size decreased to about 7.63 (can round to 8) four years after.

4. Parts a) and b) can be obtained by analyzing the graph and stability of the equilibrium solu-

tions. B′ = kB(8 · 107−B) = 0⇒ B = 0 and B = 8 · 107. Sign of B′ :
– + –

0 8 · 107 .

Thus, with initial condition above B = 8 ·107 (and below B = 0 but that is not relevant in this
case) the solutions are decreasing. In particular, if the initial biomass is 9 · 107, the biomass
will be decreasing to 8 ·107 so limt→∞B = 8 ·107. The solutions with initial conditions between
B = 0 and B = 8 · 107 are increasing. In particular, if the initial biomass is 3 · 107, the biomass
will be increasing to 8 · 107. Thus limt→∞B = 8 · 107 as well.

c) Represent the right side as a function f=@(x,y)8.7*10ˆ(-9)*y*(8*10ˆ7-y), and use 0 for
x-initial, 2 · 107 for y-initial, 5 for x-final and 0.5 for the step size (so n = 5−0

0.5
= 10). Obtain

that the biomass increased to 74242300 ≈ 7.4 · 107 kg in 5 years.

Modeling with First Order Differential Equations

In application problems or real life scenarios, one may need to come up with a differential equation
that accurately describes certain scenario first, before solving it. So, being able to model the problem
using an equation is equally important as being able to solve the equation. The process of writing
an equation describing the given situation is referred to as mathematical modeling. In order to
successfully model a problem by a differential equation, it might be helpful to ask yourself the
questions listed below.

1. Identify the real problem. Identify the problem variables. What do we need to describe
or find out? What is the problem asking for?

2. Construct an appropriate relation between the variables – a differential equation.
Determine how the dependent variable, the independent variable and the rate of change are
connected. Figuring this out results in a differential equation that models the problem.
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3. Obtain a mathematical solution. Recognize the type of the equation. Decide if you can
solve it analytically (“by hand”) or if you need to find a numerical solution using technology. In
both cases, decide on the method that you will use (e.g. determine if the equation is separable,
linear, exact, Bernoulli, homogeneous or some other type; determine if it is appropriate to use
Euler’s method, Matlab’s ode45 command or other numerical method).

4. Interpret the solution. After solving the equation, check if the mathematical answer agrees
with the context of the original problem. Check the validity: Does your answer make sense?
Do the predictions agree with real data? Do the values have correct sign? Correct units?
Correct size? Check effectiveness: Could a simpler model be used? Have I found a right
balance between greater precision (i.e. greater complexity) and simplicity?

Example 1. A bacteria culture starts with 500 bacteria and grows at a rate proportional to its
size. After 3 hours there are 8000 bacteria. Find the number of bacteria after 4 hours.

Solution. Identifying variables: let y stands for the bacteria culture and t stands for time
passed. The first part of the problem “A bacteria culture starts with 500 bacteria..” tells us that
y(0) = 500. The second part “... and grows at a rate proportional to its size” is the key for getting
the mathematical model. Recall that the rate is the derivative and that “...is proportional to..”
corresponds to “equal to constant multiple of...” So, the equation relating the variables is dy

dt
= ky.

The solution of this differential equation is y = y0e
kt. Since y0 = 500, it remains to determine the

proportionality constant k. From the condition “After 3 hours there are 8000 bacteria” we obtain
that 8000 = 500e3k which gives us that k = 1

3
ln 16 = .924. Thus, the number of bacteria after t

hours can be described by y = 500e.924t. Using the function we have obtained, we find the number of
bacteria after 4 hours to be y(4) = 20159 bacteria.

In the previous example, we have seen that the equation y′ = ky models the situation when the
rate is proportional to the size. Another often encountered scenario is when the total rate dy

dt
is

computed as the difference of the rate causing an increase and the rate causing a decrease:

the total rate = rate in – rate out.

The following example illustrates this situation.

Example 2. A population of field mice inhabits a certain rural area. In the absence of predators,
the mice population increases so that each month, the population increases by 50%. However, several
owls live in the same area and they kill 15 mice per day. Find an equation describing the population
size and use it to predict the long term behavior of the population.

Solution. Identify the variables first. Let y stands for the size of mice population and t be the
time in months. In this case, the total change in mice population dy

dt
can be describe as the difference

of the rate at which the population is increasing and the rate at which the population is decreasing:
dy
dt

= rate in - rate out.
The population increases by 50% so the rate in is 0.5y. Incorporating the information about the

owls, we obtain the rate represented the monthly loss. As 15 are killed daily, 15 · 30 = 450 is killed
monthly and so the rate out is 450. Thus, the differential equation is obtained by equating the total
rate dy

dt
with the difference of rate in and rate out so that

dy

dt
= .5y − 450.
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Note that this is an autonomous equation with the equilibrium solution of .5y − 450 = 0 ⇒
.5y = 450 ⇒ y = 900. Analyzing the sign of the solution, we conclude that the sign changes at 900
from negative to positive.

Thus, we conclude that it is an unstable solution
and that the number of mice will

- drop to 0 if the initial number is smaller
than 900,

- stay constant at 900 if the initial number is
equal to 900, and

- keep increasing without bounds if the initial
number is larger than 900.

The equation can be solved by separating the variables to get dy
.5y−450 = dt and integrating both

sides to obtain 2 ln |.5y−450| = t+ c⇒ ln |.5y−450| = t
2

+ c
2
⇒ |.5y−450| = et/2+c/2 ⇒ .5y−450 =

±et/2+c/2 = ±ec/2et/2 = Cet/2 ⇒ .5y = Cet/2 + 450⇒ y = Cet/2 + 900 (in this last step, we denoted
2C by C again). Note that the positive coefficient with t in the exponent causes this term to increase
indefinitely when t→∞ and reflects the fact that the equilibrium solution 900 is unstable.

Some mathematical models of physical phenomena can be obtained by the rule that

the total force is a sum of all acting forces.

You can assume that the total force F is given by the formula F = ma where a = v′ is the acceleration
from the Newton’s second law. The next example illustrates this scenario.

Example 3. Suppose that an object is falling in the atmosphere near the sea level. Assume that
the drag is proportional to the velocity with the drag coefficient of 2 kg/sec and that the mass of the
object is 10 kg.

(a) Formulate a differential equation describing the velocity of the object. Find the limiting velocity
by analyzing the equation that models this situation.

(b) Find the general solution of the equation and its limit of the solution for t→∞. Compare the
answer with the part (a).

(c) Assuming that the object is dropped from a height of 300 m, determine how long it will take
for the object to hit the ground and how fast it will go at the time of the impact.

Solution. (a) Identify the variables first. Let v denotes the velocity and t denotes the time.
Our goal is to get the solution of a differential equation in unknown velocity as a function of time.
As a = dv

dt
and F = ma, we have that the total force is F = mdv

dt
. We have two forces acting on

this object: the gravitational force equaling mg where g = 9.8 m/sec2 and the drag force which is,
by assumption of the problem equal to 2v. Since these two forces act in the opposite directions, the
total force is equal to the difference of these two forces. Since the force mg is dominant (because the
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object does fall down in the direction of this force), you can choose to have mg as a positive and 2v
as a negative term. Thus, we have that

m
dv

dt
= mg − 2v.

The mass of the object in question is 10 kg, so we have that dv
dt

= 9.8− v
5
.

This is an autonomous equation with the equilibrium solution when 9.8− v
5

= 0⇒ v = 49. Thus,
we can sketch the solutions by analyzing the sign of 9.8− v

5
. Since the sign is changing from positive

to negative, v = 49 m/sec is a stable solution.
Thus, the velocity

- increases to 49 m/sec if the initial velocity
is between 0 and 49,

- stays constant at 49 m/sec if the initial ve-
locity is 49, and

- decreases to 49 m/sec if the initial velocity
is larger than 49.

(b) The equation dv
dt

= 9.8 − v
5

is separable. Multiply by 5 (for simplicity) and separate the
variables. Get 5dv

49−v = dt ⇒ −5 ln |49 − v| = t + c ⇒ ln |49 − v| = −t
5
− c

5
⇒ |49 − v| = e−t/5−c/5 ⇒

49− v = ±e−t/5−c/5 = ±e−c/5e−t/5 = Ce−t/5 ⇒ −v = −49 +Ce−t/5 ⇒ v = 49 +Ce−t/5. Note that in
this last step we denoted −C by C again.

When t → ∞, the term e−t/5 approaches 0. Thus, v = 49 + Ce−t/5 → 49 − 0 = 49. This agrees
with the analysis from (a) and also illustrates that the terminal velocity will be 49 m/sec regardless
of the initial velocity.

(c) As the object is dropped, the initial velocity is 0. Find the particular solution with v(0) = 0
from v = 49 + Ce−t/5. Get 0 = 49 + C. So, C = −49 and thus v = 49− 49e−t/5.

In order to determine the velocity and time of the impact, we need to find a formula describing
the distance s as a function of time t. As v = ds

dt
, s = 49t + 245e−t/5 + c. Note that here the

coordinate system is chosen so that gravity acts in a positive direction (downward) so, s measures
the distance of the object from the initial height to the current position. Thus, the initial position
of the object corresponds to s(0) = 0. This gives us that 0 = 0 + 245 + c. Thus, c = −245 and so
s = 49t+ 245e−t/5 − 245.

So, if the initial height is 300 meters, the time the object hits the ground can be obtained from
the equation

300 = 49t+ 245e−t/5 − 245⇒ 49t+ 245e−t/5 − 545 = 0

This equation requires you to use some technology (Matlab, your calculator, or anything else). Obtain
that t = 10.51 second which means that the object will hit the ground 0.51 seconds after it is dropped.
The velocity at that time is v(10.51) = 49− 49e−10.51/5 = 43.01 m/sec.

Let us also discuss a different choice of the coordinate system in this problem: if s denotes
the distance from the current position to the ground, then s is decreasing as time passes by so
velocity has negative values. The equation that corresponds to this choice of this coordinate system
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is mv′ = −mg + 2|v| ⇒ mv′ = −mg − 2v. This equation also has a stable equilibrium solution with
the same absolute value as the one previously discussed, just the opposite sign. With m = 10, the
equation is v′ = −9.8− 1

5
v ⇒ −5dv

49+v
= dt⇒ ln(49 + v) = −t

5
+ c⇒ v = Ce−t/5 − 49.

With the initial condition v(0) = 0, we have that v = 49e−t/5 − 49. In this case s = −245e−t/5 −
49t + c and with the initial height of 300 m, the initial condition should be s(0) = 300 in this case,
not s(0) = 0. This gives us 300 = −245 + c⇒ c = 545.

To find the time the object hits the ground, set the particular solution s = −245e−t/5− 49t+ 545
to 0. When multiplied by -1, this gives us the same equation as before 245e−t/5 + 49t− 545 = 0 and
the same t-value 10.51 second. The velocity at that time is 49e−10.51/5 − 49 = −43.01 m/sec.

In the following example, we also obtain a differential equation using the argument that the total
rate is equal to the difference of the rate in and the rate out.

Example 4. A tank initially contains 15 thousands gallons of pure water. A mixture of water
and dye enters the tank at the rate of 3 thousands gallons per day and the mixture flows out at
the same rate. The concentration of dye in the incoming water is increasing in time t according
to the expression 0.5t grams per gallon. Determine the differential equation and an appropriate
initial condition that model this situation. Find the corresponding particular solution and use it to
determine the amount of dye in the tank after 3 days.

Solution. If Q denotes the amount of dye measured in grams and t the time measured in days,
the rate of change of Q (in grams per day) is equal to the difference of rate of flow in and rate of

flow out of the pond, dQ
dt

= rate in - rate out. The rate in is the product 3 · 103 gal
day0.5t g

gal which

results in 1500t g
day . The rate out is the product of 3 · 103 gal

day and the quantity Q
15·103

g
gal describing

the ratio of the amount of grams of the dye at time t and the total number of gallons of the mixture.
Thus, the rate out is Q

5

g
day . So, the equation

dQ

dt
= 1500t− Q

5

models this situation. Since the tank initially contains no dye, the initial condition corresponding to
this situation is Q(0) = 0.

The equation Q′ = 1500t − Q
5

is linear. Write it in the form Q′ + 1
5
Q = 1500t and find the

integrating factor to be et/5. So, Qet/5 = 1500
∫
tet/5dt. Use the integration by parts for the integral

on the right and obtain that Qet/5 = 1500(5tet/5 − 25et/5) + c. Thus Q = 7500(t− 5) + ce−t/5 is the
general solution.

Q(0) = 0 ⇒ 0 = 0 − 37500 + c ⇒ c = 37500. The particular solution is Q = 7500(t − 5) +
37500e−t/5 = 7500(t− 5 + 5e−t/5). After three days, t = 3 and so Q = 5580.44 grams or 5.58 kg.

Practice Problems.

1. A population of bacteria grows at a rate proportional to the size of population with the propor-
tionality constant 0.7. Initially, the population consist of two members. Find the population
size after six days.

2. A glucose solution is administered intravenously into the bloodstream at a constant rate of r
mg per minute. As the glucose is added, it is converted into other substances and removed
from the bloodstream at a rate proportional to the amount of glucose at that time.
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(a) Set up a differential equation that models this situation.

(b) If r = 4 and the proportionality constant is 2, sketch the graphs of the general solution
and examine the stability. Determine the amount of glucose present after a long period
of time.

(c) Suppose that the initial amount is 1 mg. Solve the equation with this initial condition
and sketch the graph of this solution.

3. The mass of a bacteria colony has been monitored. Let M(t) denote the mass (in mg) of the
colony at time t (in days). The mass M is increasing by 20% per day. On the other hand,
extreme dryness to which the colony is exposed makes the mass M decrease at a rate of 3 mg
per day.

(a) Write a differential equation whose solution describes the mass M at any given time t
using the assumptions from the paragraph above.

(b) Sketch the graphs of the solutions, find the equilibrium solution(s) and examine the sta-
bility. Explain what happens with the mass of the bacteria colony in the long run for any
initial value of the mass.

(c) Find the general solution of the differential equation from part (a).

(d) Determine the bacteria mass after 5 days if the initial mass is 10 mg.

4. Let T (t) represents the temperature of an object at time t. If the current temperature of the
object is T0 and the room temperature is Tr, the Newton’s Law of Cooling states that the rate
of cooling dT

dt
is proportional to the temperature difference between the room temperature and

the temperature of the object at time t.

(a) Write a differential equation and the initial condition whose solution would provide a
formula for T (t). Make a sketch of the general solution. Use the graph to conclude
what happens to the temperature as time goes by for all possible values of the initial
temperature.

(b) Let us consider a 95◦ C coffee cup that is in a 20◦ C room. Assume that the proportionality
constant is 0.1. Solve the differential equation from part (a) to find the function describing
the temperature of the coffee as a function of time (in minutes). Use the solution to
estimate the temperature of the coffee after 20 minutes.

5. Let A(t) be the area of tissue culture at time t (in days). Let the final area of the tissue when
the growth is complete be 10 cm2. Most cell divisions occur on the periphery of the tissue and
the number of cells on the periphery is proportional to

√
A. So, a reasonable model for the

growth of tissue is obtained by assuming that the rate of growth is jointly proportional to
√
A

and 10− A (i.e. proportional to the product of
√
A and 10− A).

(a) Formulate the differential equation that models this situation.

(b) If the proportionality constant is 1/4 and the area of tissue culture initially is 1 cm2, use
the Euler’s method (you can use Matlab) to approximate the area of the culture after 3,
5 and 10 days using the step size 0.2 for each approximation. Sketch the graph of the
solution.

27



Solutions.

1. The equation is dy
dt

= 0.7y. Separating the variables and solving gives you y = Ce0.7t. Using the
initial condition y(0) = 2, the solution becomes y = 2e0.7t. Plugging 6 for t produces y(6) = 133
protozoa.

2. (a) Let y denotes the amount of glucose at time t. The amount is increasing at a constant rate
r and is decreasing at a rate proportional to y. Let k denote the proportionality constant.
Then the rate in is r and the rate out is ky. So, the differential equation y′ = r − ky
models this situation.

(b) With the given values, the equation becomes y′ = 4− 2y.

The equilibrium solution is 4 − 2y = 0 ⇒
4 = 2y ⇒ y = 2. y′ = 4 − 2y > 0 for y < 2
and y′ = 4−2y < 0 for y > 2. Thus, the solu-
tions are decreasing toward the equilibrium
solution if y(0) > 2 and increasing towards 2
if y(0) < 2. So, y = 2 is stable. This means
that regardless of the initial amount present,
the amount of glucose present becomes 2 mg
after sufficiently long time period.

(c) Separate the variables dy
dt

= 4− 2y ⇒ dy
4−2y = dt. Integrate both sides. Use u = 4− 2y for

the left side. Obtain 1
−2 ln |4−2y| = t+ c⇒ ln |4−2y| = −2t−2c⇒ |4−2y| = e−2t−2c ⇒

4 − 2y = ±e−2t−2c = ±e−2ce−2t = Ce−2t ⇒ −2y = −4 + Ce−2t ⇒ y = 2 − 1
2
Ce−2t.

Replacing −1
2
C by c, we obtain the general solution y = 2 + ce−2t. Note that the term

ce−2t converges to 0 and so y → 2 for t → ∞ regardless of the value of the constant c.
This agrees with the conclusion from part b).

If y(0) = 1, then 1 = 2 + ce0 ⇒ 1 = 2 + c ⇒ c = −1. Thus y = 2 − e−2t. This function
passes (0, 1) and it is increasing to 2 when t→∞. Hence, it agrees with the graph above.

3. (a) Since the rate in is 0.2M and the rate out is 3 the total rate dM
dt

= rate in - rate out
= 0.2M − 3.

(b) The equilibrium solution is 0.2M − 3 =
0 ⇒ M = 15 mg. Examining the sign
of the derivative M ′ = 0.2M − 3 obtain
– +

15
and conclude that M = 15 is

an unstable solution. Thus, if the initial
mass is below 15 mg, the population will
eventually die out. If the initial size is
above 15 mg, the population will increase
without a bound.

(c) The equation is separable. Separate the variables. Get dM
0.2M−3 = dt. Integrate both sides.

Get 1
0.2

ln |0.2M−3| = t+c⇒ ln |0.2M−3| = .2t+.2c⇒ |0.2M−3| = e.2t+.2c ⇒ 0.2M−3 =
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±e.2t+.2c = ±e.2ce.2t = Ce.2t ⇒ .2M = Ce.2t+3⇒M = 1
0.2

(Ce0.2t+3)⇒M = Ce0.2t+15.
Note that in this last step, we use C for C

.2
from the previous step.

The equation M ′− 0.2M = −3 is also linear and you can solve by using P = −0.2⇒ I =
e−0.2t ⇒ Me−0.2t =

∫
−3e−0.2tdt⇒Me−0.2t = 15e−0.2t + c⇒M = 15 + ce0.2t.

(d) The initial condition is M(0) = 10. Thus, with solution M = 15 + ce0.2t, we have that
10 = 15 + c ⇒ c = −5. Hence, the particular solution is M = 15 − 5e0.2t. When t = 5
days, M = 15− 5e ≈ 1.41 mg.

4. (a) Let T denote the temperature at time t, Tr denote the room temperature, and T0 denote
the initial temperature of the object. The equation describing the rate of change of the
object temperature T is given by dT

dt
= k(Tr − T ) with the initial condition T (0) = T0.

Note that the equation is not dT
dt

= k(Tr − T0) because the right side of the equation is
constant and the object is not cooling at a constant rate. If so, the solution would be a
linear, not an exponential function.

The equation dT
dt

= k(Tr − T ) has one equilibrium solution T = Tr.

Since the solutions are decreasing if temper-
ature is higher than Tr, and increasing if the
temperature is lower than Tr, the solution
T = Tr is stable. So, if the object has initial
temperature higher than that of the room,
it will cool down to Tr, and if the object has
initial temperature lower than that of the
room, it will warm up to Tr. If the initial
temperature is the room temperature, the
temperature stays constant at Tr.

(b) The equation is separable. Separating the variables get dT
Tr−T = kdt. Integrating both sides

get − ln |Tr − T | = kt+ c. Solving for T get ln |Tr − T | = −kt− c⇒ Tr − T = ±e−kt−c =
±e−ce−kt = Ce−kt ⇒ T = Tr − Ce−kt. Alternatively, you can have T = Tr + Ce−kt if you
use C for −C of the previous version.

With the initial condition T (0) = T0 and T = Tr + Ce−kt, you have that T0 = Tr + C,
thus C = T0− Tr and so T = Tr + (T0− Tr)e−kt. With T0 = 95, Tr = 20, and k = 0.1, the
solution is T = 20 + 75e−0.1t. To estimate the temperature of the coffee after 20 minutes,
plug t = 20 into the equation for T. Get T = 20 + 75e−2 = 30.15 degrees Centigrade.

5. (a) The differential equation is dA
dt

= k
√
A(10− A).

(b) Represent the right side 1
4

√
y(10− y) of the equation as a function f in Matlab and use 0

for x-initial, 1 for y-initial, 10 for x-final, and 0.2 for the step size so that n = 10−0
0.2

= 50.
Obtain that the area is 8.3 cm2 after 3 days, it is 9.67 cm2 after 5 days and it is 9.995
cm2 after 10 days. The graph is a logistic curve with the horizontal asymptote y = 10
and y-intercept 1.
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