
Differential Equations
Lia Vas

Second and higher order differential equations.
Homogeneous equations with constant coefficients

A second order differential equation is linear if it can be written in the form

a(x)y′′ + b(x)y′ + c(x)y = g(x).

The general solution of such equation will depend on two constants. An initial-value problem for
the second order equation consists of finding the solution of the second order differential equation
that satisfies the conditions

y(x0) = y0 and y′(x0) = y1.

A boundary-value problem for the second order equation consists of finding the solution of
the second order differential equation that satisfies the conditions

y(x0) = y0 and y(x1) = y1.

Homogeneous equations with constant coefficients. A linear differential equation is called
homogeneous if g(x) = 0. To find the general solution of such differential equation, it is sufficient to
find two solution y1(x) and y2(x) which are not constant multiple of one another (linearly independent
solutions). Such two solutions are said to be fundamental solutions. Then, the general solution
has the form

y(x) = c1y1(x) + c2y2(x).

If a homogeneous equation has constant coefficients (that is if a, b and c are constants,) then
the function of the form y = erx is a solution iff r is a solution of the characteristic equation

ar2 + br + c = 0.

This is indeed so since plugging the function y = erx and its derivatives y′ = rerx and y′′ = r2erx into
the equation ay′′+ by′+ cy = 0 produces ar2erx + brerx + cerx = 0⇒ (ar2 + br+ c)erx = 0. Note that
this last relation holds if and only if r is a solution of the characteristic equation ar2 + br + c = 0.

The equation ar2 + br+ c = 0 has either two real solutions r1 and r2, single real solution r1 = r2,
or a pair of complex solutions p± iq. These cases correspond exactly to the the discriminant b2− 4ac
being either positive, zero, or negative. Let us consider the impact of the three cases to the solution
of the original, differential equation ay′′ + by′ + cy = 0.

Case 1 If the characteristic equation has two real and distinct roots r1 and r2, then er1x and er2x are
two fundamental solutions and the general solution is y = c1e

r1x + c2e
r2x.

Case 2 If the characteristic equation has one real root r1 = r2, then er1x and xer1x are two fundamental
solutions and the general solution is y = c1e

r1x + c2xe
r1x.

Case 3 If the characteristic equation has two complex roots p ± iq, then epx cos qx and epx sin qx are
two fundamental solutions and the general solution is y = c1e

px cos qx+ c2e
px sin qx.

1



Practice Problems.

a) Solve the following differential equations.

1. y′′ − 6y′ + 8y = 0

2. y′′ − y′ − 6y = 0

3. y′′ − 2y′ + y = 0

4. y′′ − 4y′ + 4y = 0

5. y′′ − 2y′ + 2y = 0

6. y′′ + 4y = 0

7. y′′ − 2y′ + 5y = 0

b) Solve the following initial-value problems.

1. y′′ − 6y′ + 8y = 0, y(0) = 0, y′(0) = 2

2. y′′ − 2y′ + y = 0, y(0) = 2, y′(0) = 3

3. y′′ + 4y = 0, y(0) = 2, y′(0) = 2

c) Solve the following boundary-value problems.

1. y′′ − 6y′ + 8y = 0 y(0) = 0, y(1) = e2

2. y′′ − 2y′ + y = 0, y(0) = 2, y(1) = 0

3. y′′ + 4y = 0, y(0) = 3, y(π/4) = −2

Solutions.

a) 1. The characteristic equation is r2 − 6r + 8 = 0⇒ (r − 4)(r − 2) = 0⇒ r = 4, r = 2. Thus
y1 = e4x and y2 = e2x so the general solution is y = c1e

4x + c2e
2x.

2. The characteristic equation is r2 − r − 6 = 0⇒ r = 3, r = −2. Thus y = c1e
3x + c2e

−2x.

3. The characteristic equation is r2 − 2r + 1 = 0 ⇒ r = 1 is a double zero. Hence y1 = ex

and y2 = xex and the general solution is y = c1e
x + c2xe

x.

4. r = 2 is a double zero of the characteristic equation and so y = c1e
2x + c2xe

2x.

5. The characteristic equation is r2 − 2r + 2 = 0 ⇒ r = 2±
√
4−8
2

= 2±2i
2

= 1 ± i. Hence
y1 = ex cosx and y2 = ex sinx and the general solution is y = c1e

x cosx+ c2e
x sinx.

6. The characteristic equation is r2 + 4 = 0 ⇒ r2 = −4 ⇒ r = ±2i. Hence y = c1 cos 2x +
c2 sin 2x.

7. The characteristic equation is y′′− 2y′+ 5y = 0⇒ r2− 2r+ 5 = 0⇒ r = 2±
√
−16
2

= 1± 2i.
Hence y1 = ex cos 2x and y2 = ex sin 2x so the general solution is y = c1e

x cos 2x +
c2e

x sin 2x.

b) 1. Note that the general solution is y = c1e
4x + c2e

2x so that y′ = 4c1e
4x + 2c2e

2x. From the
first condition c1 +c2 = 0. From the second 4c1 +2c2 = 2. Solving this system of equations
produces c1 = and c2 = Hence y = e4x − e2x.
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2. The general solution is y = c1e
x + c2xe

x so that y′ = c1e
x + c2e

x + c2xe
x. Using the initial

conditions produces y = 2ex + xex.

3. The general solution is y = c1 cos 2x+ c2 sin 2x so that y′ = −2c1 sin 2x+ 2c2 cos 2x. Using
the initial conditions produces y = 2 cos(2x) + sin(2x).

c) 1. The general solution is y = c1e
4x + c2e

2x. From the first boundary condition c1 + c2 = 0.
From the second c1e

4 + c2e
2 = e2. Thus c2 = −c1 and c1e

4 − c1e2 = e2 ⇒ c1e
2 − c1 = 1⇒

c1 = 1
e2−1 ⇒ c2 = −1

e2−1 y = 1
e2−1e

4x − 1
e2−1e

2x.

2. The general solution is y = c1e
x + c2xe

x. Using the boundary conditions produces y =
2ex − 2xex

3. The general solution is y = c1 cos 2x + c2 sin 2x. Using the boundary conditions produces
y = 3 cos(2x)− 2 sin(2x)

Higher Order Linear Differential Equations

The method of solving homogeneous differential equations of second order generalizes for solving
homogeneous differential equations of higher order with constant coefficients.

Recall that a linear higher order differential equation is of the form

an(x)y(n) + an−1(x)y(n−1) + . . .+ a0(x)y = g(x).

A homogeneous linear differential equation with constant coefficients has the form

any
(n) + an−1y

(n−1) + . . .+ a0y = 0.

Its characteristic equation
anr

n + an−1r
n−1 + . . .+ a0 = 0

has n solutions which produce n fundamental solutions y1, y2, . . . , yn. The general solution is

y = c1y1 + c2y2 + . . .+ cnyn.

The following cases match the three cases of the case n = 2.

1. If r1, r2, . . . , rm are different real solutions for some integer m ≤ n, then er1x, er2x, . . . , ermx are
fundamental solutions.

2. If r1 = r2 = . . . = rm for some integer m ≤ n, then er1x, xer1x, . . . , xmermx are fundamental
solutions.

3. If p1 ± q1i, p2 ± q2i, . . . , pm ± qmi are solutions of characteristic equation for some integer
m such that 2m ≤ n, then ep1x cos q1x, e

p1x sin q1x, e
p2x cos q2x, e

p2x sin q2x, . . . , e
pmx cos qmx,

epmx sin qmx are fundamental solutions.

Examples. Find general solutions of the following equations.

1. y′′′ − 2y′′ − y′ + 2y = 0 2. y′′′ − 2y′′ + y′ = 0 3. y(4) + 8y′′ − 9y = 0
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Solutions.

1. The characteristic equation is r3 − 2r2 − r + 2 = 0. The left side factors as r3 − 2r2 − r + 2 =
r2(r − 2)− (r − 2) = (r − 2)(r2 − 1) = (r − 2)(r − 1)(r + 1) Hence r = 1,−1, 2. Thus, ex, e−x

and e2x are three fundamental solutions and the general solution is y = c1e
x + c2e

−x + c3e
2x.

2. The characteristic equation is r3 − 2r2 + r = 0. Factoring this equation, we get r(r − 1)2 = 0,
so r = 0 is a solution and r = 1 is a double solution. Thus, e0x = 1, ex and xex are three
fundamental solutions and the general solution is y = c1 + c2e

x + c3xe
x.

3. The characteristic equation is r4 + 8r2 − 9 = 0. The equation of the type ar4 + br2 + c = 0 is
called a biquadratic equation. You can solve it by using the formula for quadratic equation
except that the formula produces solutions for r2, not r. In this case, you can also factor and
obtain (r2 − 1)(r2 + 9) = 0 which produces the solutions r2 = 1 and r2 = −9. The first
equation produces r = ±1 and the second and r = ±3i. Thus, ex, e−x, cos 3x and sin 3x are
four fundamental solutions and the general solution is y = c1e

x + c2e
−x + c3 cos 3x+ c4 sin 3x.

In order to better understand the complex roots case as well as the methods of finding solutions
in case when the characteristic equation is of the form rn − a = 0, we review a few facts about the
complex numbers.

Complex Numbers

Complex numbers were introduced during the course of the study of algebraic equations and, in
particular, the solutions of equations that involve square roots of negative real numbers.

The expression
√
−1 is denoted by i. A complex number is any expression of the form x + iy

where x and y are real numbers. In this case, x is called the real part and y is called the imaginary
part of the complex number x + iy. This complex number can be represented in the real plane as a
point with coordinate (x, y). The complex number x − iy is said to be the complex conjugate of
the number x+ iy. Note that it is represented by the point (x,−y).

Trigonometric Representations. Let us
recall the polar coordinates x = ρ cos θ and y =
ρ sin θ. Using this representation, we have that

z = x+ iy = ρ cos θ + iρ sin θ.

Recall that ρ 1 is the distance from the point (x, y)
to the origin and the angle θ is the angle between
the radius vector of (x, y) and the positive part
of x-axis.

If z = x+ iy = ρ(cos θ+ i sin θ), then ρ is called the modulus or the absolute value of z and the
angle θ is called the argument or the phase of z.

1We use the notation ρ instead of r used in Calculus 2 not to mix it up with the variable in the characteristic
equation.
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Euler’s formula.
eiθ = cos θ + i sin θ.

This formula is especially useful in the solution of differential equations. Euler’s formula was proved
(in an obscured form) for the first time by Roger Cotes in 1714, then rediscovered and popularized
by Euler in 1748. Euler’s proof uses the power series for ex, sinx and cos x.

Using Euler’s formula, we have that

z = x+ iy = ρ(cos θ + i sin θ) = ρeiθ

so a complex number can be represented without a use of addition. This can be especially useful
when finding a power or a root of a complex number. For example, the trigonometric representation
yields an easy formula for the n-th power of a complex number z = ρeiθ.

zn = ρneinθ = ρn(cos(nθ) + i sin(nθ))

When solving algebraic equations of the form zn = a where a is a given complex number a =
ρ(cos(θ) + i sin(θ)), we can obtain n solutions of the equation by the formula

n
√
ρe

(θ+2kπ)i
n = n

√
ρ

(
cos

θ + 2kπ

n
+ i sin

θ + 2kπ

n

)
for k = 0, 1, . . . n− 1.

These solutions have a nice representation in the complex plane: they form the vertices of a
regular polygon with n-sides inscribed in the circle of radius n

√
ρ centered at the origin. We illustrate

this in the following examples.
Examples. Find general solutions of the following equations.

1. y′′′ + 8y = 0 2. y(5) − 32y = 0

Solutions.

1. The characteristic equation is r3 + 8 = 0. Thus, we need to find all three solutions of the
equation r3 = −8. Note that −8 corresponds to the complex number (−8, 0) which is on the
negative side of the x-axis so θ = π. The distance from (−8, 0) to the origin is 8 so ρ = 8.
Hence, the three solutions of the characteristic equation can be found by the formula

3
√

8 e
π+2kπ

3
i = 2 e

π+2kπ
3

i for k = 0, 1, 2.

These three solutions form an equilateral triangle on the circle of radius 2 centered at the origin.

k = 0 ⇒ r0 = 2e
π
3
i = 2(cos π

3
+ i sin π

3
) =

1 +
√

3i

k = 1 ⇒ r1 = 2e
3π
3
i = 2eπi = 2(cos π +

i sin π) = −2

k = 2 ⇒ r2 = 2e
5π
3
i = 2(cos 5π

3
+ i sin 5π

3
) =

1−
√

3i.
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Note that r1 is real and r0 and r2 represent a complex pair. They produce the fundamental
solutions y1 = e−2x, y2 = ex cos

√
3x and y3 = ex sin

√
3x. Thus, the general solution is

y = c1e
−2x + c2e

x cos
√

3x+ c3e
x sin
√

3x.

2. The characteristic equation is r5−32 = 0. Thus, we need to find all five solutions of the equation
r5 = 32. Note that 32 corresponds to the complex number (32, 0) which is on the positive side
of the x-axis so θ = 0. The distance from (32, 0) to the origin is 32 so ρ = 32. Hence, the five
solutions of the characteristic equation can be found by the formula

5
√

32e
0+2kπ

5
i = 2e

2kπ
5
i for k = 0, 1, . . . , 4.

These five solutions form a regular polygon with five sides on the circle of radius 2 centered at
the origin.

k = 0⇒ r0 = 2e0i = 2,

k = 1⇒ r1 = 2e
2π
5
i = 2(cos 2π

5
+ i sin 2π

5
) ≈

0.62 + 1.90i,

k = 2⇒ r2 = 2e
4π
5
i = 2(cos 4π

5
+ i sin 4π

5
) ≈

−1.62 + 1.18i,

k = 3⇒ r3 = 2e
6π
5
i = 2(cos 6π

5
+ i sin 6π

5
) ≈

−1.62− 1.18i,

k = 4⇒ r4 = 2e
8π
5
i = 2(cos 8π

5
+ i sin 8π

5
) ≈

0.62− 1.90i.

Solution 2 corresponds to y1 = e2x. Roots r1 and r4 are conjugated producing two fundamental
solutions y2 = e0.62x cos 1.90x and y3 = e0.62x sin 1.90x. Roots r2 and r3 are conjugated, pro-
ducing another pair of fundamental solutions y4 = e−1.62x cos 1.18x and y5 = e−1.62x sin 1.18x.
Thus, the general solution is
y = c1e

2x + c2e
0.62x cos 1.90x+ c3e

0.62x sin 1.90x+ c4e
−1.62x cos 1.18x+ c5e

−1.62x sin 1.18x.

Fundamental Theorem of Algebra. A quadratic equation ax2 + bx + c = 0 can have two
(possibly equal) real solutions or no real solutions. As opposed to this situation, in the complex
plane, every quadratic equation has exactly two solutions (possibly equal). Similar claim holds for
every polynomial: Every polynomial (with complex coefficients) of degree n has exactly n solutions
(some possibly equal) in the complex plane. This is statement is known as the Fundamental Theorem
of Algebra.

Moreover, if an n-th degree polynomial with real coefficient has a complex root a + ib, then
its complex conjugate a − ib is also the root of a polynomial. Thus, the complex roots appear in
conjugated pairs. Thus, if r1 = a+ ib and r2 = a− ib constitute a conjugated complex pair, then two
fundamental solutions that correspond to this conjugated pair originate from

e(a+ib)x = eaxeibx = eax(cos bx+ i sin bx).

Since the solutions are real-valued functions, two solutions can be taken to be eax cos bx and eax sin bx.

Finding zeros of polynomials in Matlab. Unlike the situation for quadratic equation, there is
no general formula for polynomials of degrees higher than 4 (more about this in the Abstract Algebra
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course). Even for cubic or quartic polynomials when such formula exists, it is rather complex to use.
Thus, unless a polynomial is easy to factor or to use the n-th root formula, it is convenient to find
approximate solutions using Matlab or some other technology.

In Matlab, you can find zeros of polynomial anx
n + an−1x

n−1 + . . . + a1x + a0 = 0 using the
command roots. Represent the polynomial as a vector of length n + 1 with coefficients of the
polynomial as the entries

p=[an an−1 . . . a1 a0]

and then use the command

roots(p)

Example. Find general solution of the equation −90y(4) + 100y
′′′ − 54y′ + 16y = 0 by using Matlab

to find solutions of the characteristic equation.
Solution. The characteristic equation is −90r4 +100r3−54r+16 = 0. Represent the polynomial

on the left side in Matlab as p=[-90 100 0 -54 16] and use the command roots(p) to get the
solutions r = -0.6900, 0.3511 and 0.7250 ± 0.4562i. This gives you four fundamental solutions y1 =
e−0.69x, y2 = e0.3511x y3 = e0.7250x cos 0.4562x and y4 = e0.7250x sin 0.4562x. So, the general solution is
y = c1e

−0.69x + c2e
0.3511x + c3e

0.7250x cos 0.4562x+ c4e
0.7250x sin 0.4562x.

Practice Problems. Find general solutions of the following differential equations.

1. y(4) − y = 0. 2. y(4) − 5y′′ − 36y = 0.

3. y′′′ − 8y = 0 4. y(5) + 32y = 0.

5. −18y(5) + 25y(4)− 27y
′′

+ 16y′+ 20y = 0. Use Matlab to find the solutions of the characteristic
equation.

Solutions.

1. The characteristic equation is r4−1 = 0⇒ (r2−1)(r2+1) = 0⇒ r = ±1 and r = ±i. The first
pair r = ±1 produces the fundamental solutions y1 = ex and y2 = e−x and the second r = ±i
produces y3 = cosx and y4 = sinx. So, the general solution is y = c1e

x+c2e
−x+c3 cosx+c4 sinx.

Alternatively, you can find the four solutions by considering four solutions of the equation r4 =
1 = 1e0i by the formula 4

√
1e

2kπ
4
i = 1 e

kπ
2
i for k = 0, 1, 2, 3. Obtain that r0 = 1, r1 = i, r2 = −1

and r3 = −i yield the same general solution.

2. The characteristic equation is r4 − 5r2 − 36 = 0 ⇒ (r2 − 9)(r2 + 4) = 0 ⇒ r = ±3, r =
±2i. The first pair r = ±3 produces the fundamental solutions y1 = e3x and y2 = e−3x

and the second r = ±2i produces y3 = cos 2x and y4 = sin 2x. So, the general solution is
y = c1e

3x + c2e
−3x + c3 cos 2x+ c4 sin 2x.

3. The characteristic equation is r3 − 8 = 0. You can approach this equation on two ways.

One way is to find the solutions of r3 = 8 = 8e0i by the formula 3
√

8 e
2kπ
3
i = 2e

2kπ
3
i for k = 0, 1, 2.
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k = 0 ⇒ r0 = 2e0i = 2
k = 1 ⇒ r1 = 2e

2π
3
i = 2(cos 2π

3
+ i sin 2π

3
) =

−1 +
√

3i
k = 2 ⇒ r2 = 2e

4π
3
i = 2(cos 4π

3
+ i sin 4π

3
) =

−1−
√

3i.

These solutions correspond to the fundamen-
tal solutions y1 = e2x, y2 = e−x cos

√
3x and

y3 = e−x sin
√

3x.

Thus, the general solution is y = c1e
2x + c2e

−x cos
√

3x+ c3e
−x sin

√
3x.

Alternatively, you can factor r3 − 8 as (r − 2)(r2 + 2r + 4) and use the quadratic formula to
find zeros of the second term. Obtain r = 2, r = −1 ± i

√
3 which produce the same general

solution as above.

4. The characteristic equation is r5 + 32 = 0 ⇒ r5 = −32 = 32eπi. Hence, using the formula

produces rk = 5
√

32e
π+2kπ

5
i = 2e

(2k+1)π
5

i for k = 0, 1, . . . , 4.

k = 0⇒ r0 = 2e
π
5
i = 2(cos π

5
+ i sin π

5
) ≈

1.62 + 1.18i,

k = 1⇒ r1 = 2e
3π
5
i = 2(cos 3π

5
+ i sin 3π

5
) ≈

−0.62 + 1.90i,

k = 2⇒ r2 = 2e
5π
5
i = 2eπi = 2(cosπ + i sin π) =

−2,

k = 3⇒ r3 = 2e
7π
5
i = 2(cos 7π

5
+ i sin 7π

5
) ≈

−0.62− 1.90i,

k = 4⇒ r4 = 2e
7π
5
i = 2(cos 9π

5
+ i sin 9π

5
) ≈

1.62− 1.18i.

Roots r0 and r4 are conjugated and r1 and r3 are conjugated. The general solution is y =
c1e
−2x + c2e

1.62x cos 1.18x+ c3e
1.62x sin 1.18x+ c4e

−0.62x cos 1.90x+ c5e
−0.62x sin 1.90x.

5. The characteristic equations corresponds to a polynomial p that can be represented in Mat-
lab as p=[-18 25 0 -27 16 20]. The command roots(p) gives you the following values:
1.2971, 0.7664± 0.9707i and −0.7205± 0.2023i. Thus, the general solutions is y = c1e

1.2971x +
c2e

0.7664x cos 0.9707x+ c3e
0.7664x sin 0.9707x+ c4e

−0.7205x cos 0.2023x+ c5e
−0.7205x sin 0.2023x.
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