Differential Equations

Lia Vas

Formulas for Exam 1

1. Derivatives.

y	x^{n}	e^{x}	b^{x}	$\ln x$	$\log _{b} x$	$\sin x$	$\cos x$	$\sin ^{-1} x$	$\tan ^{-1} x$	$\sec ^{-1} x$
y^{\prime}	$n x^{n-1}$	e^{x}	$b^{x} \ln b$	$\frac{1}{x}$	$\frac{1}{x} \cdot \frac{1}{\ln b}$	$\cos x$	$-\sin x$	$\frac{1}{\sqrt{1-x^{2}}}$	$\frac{1}{1+x^{2}}$	$\frac{1}{x \sqrt{x^{2}-1}}$

2. Integrals.

y	x^{n}	e^{x}	b^{x}	$\frac{1}{x}$	$\sin x$	$\cos x$	$\frac{1}{\sqrt{1-x^{2}}}$	$\frac{1}{1+x^{2}}$
$\int y d x$	$\frac{1}{n+1} x^{n+1}$	e^{x}	$\frac{1}{\ln b} b^{x}$	$\ln \|x\|$	$-\cos x$	$\sin x$	$\sin ^{-1} x$	$\tan ^{-1} x$

3. Rules of Differentiation

(a) Product rule: If $y=f \cdot g$, then $y^{\prime}=f^{\prime} \cdot g+g^{\prime} \cdot f$
(b) Quotient rule: If $y=\frac{f}{g}$, then $y^{\prime}=\frac{f^{\prime} \cdot g-g^{\prime} \cdot f}{g^{2}}$
(c) Chain rule: If $y=f(g(x))$, then $y^{\prime}=f^{\prime}(g(x)) \cdot g^{\prime}(x)$
4. Integration by parts. $\int u d v=u v-\int v d u$
5. Separable Differential Equation: $\quad P(x) d x=Q(y) d y$. Integrate both sides.
6. Linear Differential Equation: $\quad y^{\prime}+P(x) y=Q(x)$. Integrating factor: $I(x)=e^{\int P(x) d x}$. After multiplying with $I(x)$, left side of the equation is equal to derivative of $I(x) \cdot y$.
7. Homogeneous Differential Equation: $y^{\prime}=f\left(\frac{y}{x}\right)$. Use substitution $u=\frac{y}{x}$ to reduce to a separable equation.
8. Bernoulli's Differential Equation: $\quad y^{\prime}+P(x) y=Q(x) y^{n}$. Use substitution $u=y^{1-n}$ to reduce to a linear equation. In this case $y=u^{1 /(1-n)}$.
9. Exact Differential Equation: $M d x+N d y=0$ if $M_{y}=N_{x}$. Find F as $\int M d x$ and equate F_{y} with N. Solution is of the form $F=0$.
10. Autonomous Differential Equation: $\frac{d y}{d t}=f(y)$. Can sketch the solutions without solving it. Find equilibrium solutions and check the sign of $f(y)$.

11. Basic Differential Equation Models:

(a) Rate proportional to the size: $y^{\prime}=k y$. Here k is a proportionality constant.
(b) Total rate equal to the difference of rate in and rate out.
(c) Total force equal to the sum of all acting forces.

