Differential Equations Lia Vas

Formulas for Exam 1

1. Derivatives.

y	x^n	e^x	b^x	$\ln x$	$\log_b x$	$\sin x$	$\cos x$	$\sin^{-1}x$	$\tan^{-1} x$	$\sec^{-1} x$
y'	nx^{n-1}	e^x	$b^x \ln b$	$\frac{1}{x}$	$\frac{1}{x} \cdot \frac{1}{\ln b}$	$\cos x$	$-\sin x$	$\frac{1}{\sqrt{1-x^2}}$	$\frac{1}{1+x^2}$	$\frac{1}{x\sqrt{x^2-1}}$

2. Integrals.

y	x^n	e^x	b^x	$\frac{1}{x}$	$\sin x$	$\cos x$	$\frac{1}{\sqrt{1-x^2}}$	$\frac{1}{1+x^2}$
$\int y dx$	$\frac{1}{n+1}x^{n+1}$	e^x	$\frac{1}{\ln b} b^x$	$\ln x $	$-\cos x$	$\sin x$	$\sin^{-1} x$	$\tan^{-1} x$

3. Rules of Differentiation

- (a) Product rule: If $y = f \cdot g$, then $y' = f' \cdot g + g' \cdot f$
- (b) Quotient rule: If $y = \frac{f}{g}$, then $y' = \frac{f' \cdot g g' \cdot f}{g^2}$
- (c) Chain rule: If y = f(g(x)), then $y' = f'(g(x)) \cdot g'(x)$
- 4. Integration by parts. $\int u \, dv = u \, v \int v \, du$
- 5. Separable Differential Equation: P(x)dx = Q(y)dy. Integrate both sides.
- 6. Linear Differential Equation: y' + P(x)y = Q(x). Integrating factor: $I(x) = e^{\int P(x)dx}$. After multiplying with I(x), left side of the equation is equal to derivative of $I(x) \cdot y$.
- 7. Homogeneous Differential Equation: $y' = f(\frac{y}{x})$. Use substitution $u = \frac{y}{x}$ to reduce to a separable equation.
- 8. Bernoulli's Differential Equation: $y' + P(x)y = Q(x)y^n$. Use substitution $u = y^{1-n}$ to reduce to a linear equation. In this case $y = u^{1/(1-n)}$.
- 9. Exact Differential Equation: Mdx + Ndy = 0 if $M_y = N_x$. Find F as $\int Mdx$ and equate F_y with N. Solution is of the form F = 0.
- 10. Autonomous Differential Equation: $\frac{dy}{dt} = f(y)$. Can sketch the solutions without solving it. Find equilibrium solutions and check the sign of f(y).

11. Basic Differential Equation Models:

- (a) Rate proportional to the size: y' = ky. Here k is a proportionality constant.
- (b) Total rate equal to the difference of rate in and rate out.
- (c) Total force equal to the sum of all acting forces.