Differential Equations

Lia Vas

Formulas for Exams 1 and 2

1. Homogeneous equation $a y^{\prime \prime}+b y^{\prime}+c y=0$.

Three cases depending on the solutions r_{1} and r_{2} of the characteristic equation:

	solutions of the characteristic equation $a r^{2}+b r+c=0$	fundamental solutions of the equation $a y^{\prime \prime}+b y^{\prime}+c y=0$
1.	$r_{1} \neq r_{2}$ real	$y_{1}=e^{r_{1} x}$ and $y_{2}=e^{r_{2} x}$
2.	$r_{1}=r_{2}$ real	$y_{1}=e^{r_{1} x}$ and $y_{2}=x e^{r_{1} x}$
3.	r_{1}, r_{2} complex $p \pm q i$	$y_{1}=e^{p x} \cos q x$ and $y_{2}=e^{p x} \sin q x$

Polar representation of complex numbers and Euler's formula.

$$
z=x+i y=\rho \cos \theta+i \rho \sin \theta=\rho(\cos \theta+i \sin \theta)=\rho e^{\theta i} .
$$

Finding n-solutions of the equation $r^{n}=a$. If $a=\rho(\cos (\theta)+i \sin (\theta))=\rho e^{i \theta}$, then the solutions are

$$
\sqrt[n]{\rho} e^{\frac{(\theta+2 k \pi) i}{n}} \quad \text { for } k=0,1, \ldots n-1
$$

2. Non-homogeneous equation $a y^{\prime \prime}+b y^{\prime}+c y=g(x)$.

The general solution is $y=y_{h}+y_{p}$ where y_{h} is the homogeneous and y_{p} the particular solution.
(a) Variation of Parameters. If $y_{h}=c_{1} y_{1}+c_{2} y_{2}$ is the solution of the homogeneous part of find the particular solution in the form $y_{p}=v_{1} y_{1}+v_{2} y_{2}$. Find the unknown functions v_{1} and v_{2} from the equations

$$
\begin{array}{rlc}
v_{1}^{\prime} y_{1}+v_{2}^{\prime} y_{2} & =0 \\
a v_{1}^{\prime} y_{1}^{\prime}+a v_{2}^{\prime} y_{2}^{\prime} & =g(x)
\end{array}
$$

(b) Undetermined Coefficients. Below $p_{k}(x)$ is a polynomial $a_{k} x^{k}+a_{k-1} x^{k-1}+\ldots+a_{0}$ of degree k and p and q are real numbers.
Case 1 If $g(x)=p_{k}(x) e^{p x}$, then $\quad y_{p}=x^{s}\left(A_{k} x^{k}+A_{k-1} x^{k-1}+\ldots+A_{0}\right) e^{p x}$
where s is the number of times p appears on the list of zeros of the characteristic equation and A_{0}, \ldots, A_{k} are undetermined coefficients.
Case $2 g(x)=p_{k}(x) e^{p x} \cos q x$ or $g(x)=p_{k}(x) e^{p x} \sin q x$, then

$$
y_{p}=x^{s}\left(A_{k} x^{k}+A_{k-1} x^{k-1}+\ldots+A_{0}\right) e^{p x} \cos q x+x^{s}\left(B_{k} x^{k}+B_{k-1} x^{k-1}+\ldots+B_{0}\right) e^{p x} \sin q x
$$

where s is the number of times $p+i q$ appears on the list of zeros of the characteristic equation and A_{0}, \ldots, A_{k} and B_{0}, \ldots, B_{k} are undetermined coefficients.
If $g(x)$ is a sum of functions $g(x)=g_{1}(x)+g_{2}(x)+\ldots+g_{m}(x)$ and each function $g_{1}(x)$, $g_{2}(x), \ldots, g_{m}(x)$ is a function described under two cases above, then the particular solution y_{p} is the sum of particular solutions

$$
y_{p}=y_{p 1}+y_{p 2}+\ldots+y_{p m}
$$

where each solution $y_{p i}, i=1, \ldots, m$ is obtained as in Case 1 or 2 described above.

3. Applications.

(a) Equation of the motion of a harmonic oscillator of mass m, the damping constant γ, spring constant k ($k=\frac{m g}{L}$ where L is the total elongation) and an external force $F(t)$ at time t.

$$
m u^{\prime \prime}+\gamma u^{\prime}+k u=F(t) .
$$

If $\gamma=0$, the oscillations are undamped. If $\gamma \neq 0$ and characteristic equation has real zeros, the motion is overdamped. If $\gamma \neq 0$ and characteristic equation has complex zeros, the oscillations are underdamped.
(b) Equation of the charge of an electric circuit with the resistance R, the capacitance C and the inductance L containing a battery producing the voltage $E(t)$ at time t.

$$
L Q^{\prime \prime}+R Q^{\prime}+\frac{1}{C} Q=E(t)
$$

4. Derivatives and Integrals.

y	x^{n}	e^{x}	b^{x}	$\ln x$	$\log _{b} x$	$\sin x$	$\cos x$	$\sin ^{-1} x$	$\tan ^{-1} x$	$\sec ^{-1} x$
y^{\prime}	$n x^{n-1}$	e^{x}	$b^{x} \ln b$	$\frac{1}{x}$	$\frac{1}{x} \cdot \frac{1}{\ln b}$	$\cos x$	$-\sin x$	$\frac{1}{\sqrt{1-x^{2}}}$	$\frac{1}{1+x^{2}}$	$\frac{1}{x \sqrt{x^{2}-1}}$

y	x^{n}	e^{x}	b^{x}	$\frac{1}{x}$	$\sin x$	$\cos x$	$\frac{1}{\sqrt{1-x^{2}}}$	$\frac{1}{1+x^{2}}$
$\int y d x$	$\frac{1}{n+1} x^{n+1}$	e^{x}	$\frac{1}{\ln b} b^{x}$	$\ln \|x\|$	$-\cos x$	$\sin x$	$\sin ^{-1} x$	$\tan ^{-1} x$

(a) Product rule: $y=f \cdot g \Rightarrow y^{\prime}=f^{\prime} \cdot g+g^{\prime} \cdot f$
(b) Quotient rule: $y=\frac{f}{g} \Rightarrow y^{\prime}=\frac{f^{\prime} \cdot g-g^{\prime} \cdot f}{g^{2}} \quad$ (c) Chain rule: $y=f(g(x)) \Rightarrow y^{\prime}=f^{\prime}(g(x)) \cdot g^{\prime}(x)$

Integration by parts formula: $\int u d v=u v-\int v d u$
5. Separable Differential Equation: $P(x) d x=Q(x) d y$. Integrate both sides.
6. Linear Differential Equation: $y^{\prime}+P(x) y=Q(x)$. Integrating factor: $I(x)=e^{\int P(x) d x}$. After multiplying with $I(x)$, left side of the equation is equal to derivative of $I(x) \cdot y$.
7. Homogeneous Differential Equation: $y^{\prime}=f\left(\frac{y}{x}\right)$. Use substitution $u=\frac{y}{x}$ to reduce to a separable equation.
8. Bernoulli's Differential Equation: $y^{\prime}+P(x) y=Q(x) y^{n}$. Use substitution $u=y^{1-n}$ to reduce to a linear equation. In this case $y=u^{1 /(1-n)}$.
9. Exact Differential Equation: $M d x+N d y=0$ if $M_{y}=N_{x}$. Find F as $\int M d x$ and equate F_{y} with N. Solution is of the form $F=0$.
10. Autonomous Differential Equation: $\frac{d y}{d t}=f(y)$. Can sketch the solutions without solving it. Find equilibrium solutions and check the sign of $f(y)$.

11. Basic Differential Equation Models:

(a) Rate proportional to the size: $y^{\prime}=k y$. Here k is a proportionality constant.
(b) Total rate equal to the difference of rate in and rate out.
(c) Total force equal to the sum of all acting forces.

