Differential Equations Lia Vas

Formulas for Exams 1 and 2

1. Homogeneous equation ay'' + by' + cy = 0.

Three cases depending on the solutions r_1 and r_2 of the characteristic equation:

	solutions of the characteristic equation	fundamental solutions of the equation			
	$ar^2 + br + c = 0$	ay'' + by' + cy = 0			
1.	$r_1 \neq r_2$ real	$y_1 = e^{r_1 x}$ and $y_2 = e^{r_2 x}$			
2.	$r_1 = r_2$ real	$y_1 = e^{r_1 x}$ and $y_2 = x e^{r_1 x}$			
3.	r_1, r_2 complex $p \pm qi$	$y_1 = e^{px} \cos qx$ and $y_2 = e^{px} \sin qx$			

Polar representation of complex numbers and Euler's formula.

$$z = x + iy = \rho \cos \theta + i\rho \sin \theta = \rho (\cos \theta + i \sin \theta) = \rho e^{\theta i}.$$

Finding *n*-solutions of the equation $r^n = a$. If $a = \rho(\cos(\theta) + i\sin(\theta)) = \rho e^{i\theta}$, then the solutions are

$$\sqrt[n]{\rho} e^{\frac{(\theta+2k\pi)i}{n}}$$
 for $k = 0, 1, \dots, n-1$.

2. Non-homogeneous equation ay'' + by' + cy = g(x).

The general solution is $y = y_h + y_p$ where y_h is the homogeneous and y_p the particular solution.

(a) Variation of Parameters. If $y_h = c_1y_1 + c_2y_2$ is the solution of the homogeneous part of find the particular solution in the form $y_p = v_1y_1 + v_2y_2$. Find the unknown functions v_1 and v_2 from the equations

$$\begin{array}{rcl} v_1'y_1 + v_2'y_2 &= & 0 \\ av_1'y_1' + av_2'y_2' &= & g(x) \end{array}$$

- (b) **Undetermined Coefficients.** Below $p_k(x)$ is a polynomial $a_k x^k + a_{k-1} x^{k-1} + \ldots + a_0$ of degree k and p and q are real numbers.
- Case 1 If $g(x) = p_k(x)e^{px}$, then $y_p = x^s(A_kx^k + A_{k-1}x^{k-1} + \ldots + A_0)e^{px}$ where s is the number of times p appears on the list of zeros of the characteristic equation and A_0, \ldots, A_k are undetermined coefficients.

Case 2 $g(x) = p_k(x)e^{px} \cos qx$ or $g(x) = p_k(x)e^{px} \sin qx$, then

$$y_p = x^s (A_k x^k + A_{k-1} x^{k-1} + \ldots + A_0) e^{px} \cos qx + x^s (B_k x^k + B_{k-1} x^{k-1} + \ldots + B_0) e^{px} \sin qx$$

where s is the number of times p + iq appears on the list of zeros of the characteristic equation and A_0, \ldots, A_k and B_0, \ldots, B_k are undetermined coefficients.

If g(x) is a sum of functions $g(x) = g_1(x) + g_2(x) + \ldots + g_m(x)$ and each function $g_1(x)$, $g_2(x), \ldots, g_m(x)$ is a function described under two cases above, then the particular solution y_p is the sum of particular solutions

$$y_p = y_{p1} + y_{p2} + \ldots + y_{pm}$$

where each solution y_{pi} , i = 1, ..., m is obtained as in Case 1 or 2 described above.

3. Applications.

(a) Equation of the motion of a harmonic oscillator of mass m, the damping constant γ , spring constant k $\left(k = \frac{mg}{L}\right)$ where L is the total elongation) and an external force F(t) at time t.

$$mu'' + \gamma u' + ku = F(t).$$

If $\gamma = 0$, the oscillations are undamped. If $\gamma \neq 0$ and characteristic equation has real zeros, the motion is overdamped. If $\gamma \neq 0$ and characteristic equation has complex zeros, the oscillations are underdamped.

(b) Equation of the charge of an electric circuit with the resistance R, the capacitance C and the inductance L containing a battery producing the voltage E(t) at time t.

$$LQ'' + RQ' + \frac{1}{C}Q = E(t).$$

4. Derivatives and Integrals.

y	x	n	e^x	b^x	$\ln x$	$\log_b x$	$\sin x$	$\cos x$	$\sin^{-1}x$	$\tan^{-1} x$	$\sec^{-1} x$
y'	nx^{n}	n - 1	e^x	$b^x \ln$	$b \frac{1}{x}$	$\frac{1}{x} \cdot \frac{1}{\ln b}$	$\cos x$	$-\sin x$	$\frac{1}{\sqrt{1-x^2}}$	$\frac{1}{1+x^2}$	$\frac{1}{x\sqrt{x^2-1}}$
	ļ		x^n	e^x	b^x	$\frac{1}{x}$	$\sin x$	$\cos x$	$\frac{1}{\sqrt{1-x^2}}$	$\frac{1}{1+x^2}$	
$\int y$	dx	$\frac{1}{n+1}$	\overline{x}^{n+1}	e^x	$\frac{1}{\ln b} b^x$	$\ln x $	$-\cos x$	$\sin x$	$\sin^{-1}x$	$\tan^{-1}x$	

- (a) Product rule: $y = f \cdot g \Rightarrow y' = f' \cdot g + g' \cdot f$
- (b) Quotient rule: $y = \frac{f}{g} \Rightarrow y' = \frac{f' \cdot g g' \cdot f}{g^2}$ (c) Chain rule: $y = f(g(x)) \Rightarrow y' = f'(g(x)) \cdot g'(x)$

Integration by parts formula: $\int u \, dv = u v - \int v \, du$

- 5. Separable Differential Equation: P(x)dx = Q(x)dy. Integrate both sides.
- 6. Linear Differential Equation: y' + P(x)y = Q(x). Integrating factor: $I(x) = e^{\int P(x)dx}$. After multiplying with I(x), left side of the equation is equal to derivative of $I(x) \cdot y$.
- 7. Homogeneous Differential Equation: $y' = f(\frac{y}{x})$. Use substitution $u = \frac{y}{x}$ to reduce to a separable equation.
- 8. Bernoulli's Differential Equation: $y' + P(x)y = Q(x)y^n$. Use substitution $u = y^{1-n}$ to reduce to a linear equation. In this case $y = u^{1/(1-n)}$.
- 9. Exact Differential Equation: Mdx + Ndy = 0 if $M_y = N_x$. Find F as $\int Mdx$ and equate F_y with N. Solution is of the form F = 0.
- 10. Autonomous Differential Equation: $\frac{dy}{dt} = f(y)$. Can sketch the solutions without solving it. Find equilibrium solutions and check the sign of f(y).

11. Basic Differential Equation Models:

- (a) Rate proportional to the size: y' = ky. Here k is a proportionality constant.
- (b) Total rate equal to the difference of rate in and rate out.
- (c) Total force equal to the sum of all acting forces.