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0. Review of Matlab 

Introduction to Matlab

The main Matlab window is divided into four (or five, depending on the version) parts: 
Menu Bar (at the very top)

Workspace Current Folder Command Window
Clicking on “New Script”, which is the very first command in the Menu Bar, the Matlab window
opens another part, called the 

Editor 
In some versions of Matlab, the Editor automatically opens on the start. 

 
All Matlab commands are executed in the Command Window. If your code is not longer that 
one line, you can type it in the Command Window and execute it by pressing “enter”. 

The Editor  is used for more complex code. You can have multiple Editor tabs open if you

 1 -



need to work on more than one set of code at a time. The default file is titled “Untitled” so
when you type some code in it, you need to save the file and give it a meaningful name. One
benefit of typing the code in the Editor is that you can save it while the code typed in the
Command Window cannot be saved, just executed. Hence, you can execute the saved code
multiple times while executing a command in the Command Window again requires typing the
whole command again.  

The Directory (Current Folder part) shows your current location. If you want to execute some
code typed in the Editor, change the location of your current folder to match the folder where
you saved the code from the Editor. The current location of the Directory is listed in the long
white bar above the Editor. 

You can change your current folder by clicking on the folder icon with a green arrow (see the
icons on the right side of the white bar listing your current directory). Note that the directory
that is opened when Matlab starts is usually not the directory where your files are saved so
you will need to change the current folder. 

The Workspace lists all variables that have been defined and specifies their type and value. 

The Menu Bar contains some familiar commands, such as New, Open, and Save. When the
Editor is open, the Menu Bar contains also Comment and Run. Comment allows us to write
text in the code that is not executed which helps your code be more meaningful to you, the
programmer,  or  to  a  user.  Alternatively,  you can  type “%”  before  any text  and  it  will  be
included as a comment. 

Solving Equations. Representing Functions.

You can use +, -, *, \ and ^ to add, subtract, multiply, divide or raise to a power, respectively.
To perform symbolic calculations, use syms  to declare the variables you plan to use. For
example, suppose that you need factor  x²-3x+2. First you need  syms x  (you are declaring
that x is a variable). Then you can use the command factor(x^2-3*x+2) to  get  the  answer

ans =(x-1)*(x-2).  

Note  that  we  entered  3*x  to  represent  3x in  the  command  above.  Entering  *  for
multiplication is always necessary in Matlab. 

For solving equations, you can use the command solve. 
● Represent the variable you are solving using syms command. 
● Move every term to the left side of the equation so that the equations of the form 

g(x)=h(x) become g(x)-h(x)=0
● If the term on the left side is f(x) and the equation is 

f(x)=0
the command you want to execute is solve(f(x))

Note that the left side of the equation is in parenthesis. Thus, the command solve has the
form solve(the left side of the equation if the right side is 0)
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For  example,  to  solve  the  equation  x³-2x-4=0,  you  type  solve(x^3-2*x-4)  and  get  the
following answer: ans =     2 -1+i -1-i.  Here  i stands  for  the  imaginary
number . This answer tells us that there is just one real solution, 2. 

The command solve  often gives  you a  symbolic  answer.  For  example,  when solving  the
equation 3x²-8x+2=0 by solve(3*x^2-8*x+2) we obtain the answer as 
ans =  4/3-10^(1/2)/3 10^(1/2)/3+4/3.  If  we  want  to  get,  often  more  meaningful,
numerical answer in the decimal form with, say, three significant digits, use the command
vpa, refer to the previous answer as ans, and specify how many digits of the answer you
want to see. For example vpa(ans, 3) produces ans =0.279 2.39. 

The command vpa has the general form
vpa(expression you want to approximate, number of significant digits) 

You can solve more than one equation simultaneously. For example suppose that we need to
solve the system x²+ x+ y²   =  2  and 2x-y  =  2. We can use:  >>  syms x y 
>> [x,y] =solve( x^2+ x+ y^2-2, 2*x-y-2) to get the answer 
x = 1  2/5  y = 0 -6/5
meaning that there are two solutions x=1, y=0 and x=2/5, y=-6/5. Note that the [x,y]= part at
the beginning of the command is necessary. 

To represent a function given by a formula containing a variable x, start by syms x if you have
not defined x to be your variable already. If we want to call the function f, the following 
command defines f(x) to be a function defined by the given formula. 

f = @(x) formula defining the function 

For example, the command f = @(x) x^2+3*x-2   defines the function x²+3x-2.

After defining a function, we can evaluate it at a point. For example, f(2) produces the answer 
ans = 8.

The following table gives an overview of how
most commonly used functions or expressions
are represented in Matlab. 

As when using the calculator, one must be careful
when representing a function. For example, 


1

x ( x+6 )
    should be represented as 1/(x*(x+6)) not as  1/x*(x+6) nor as 1/x(x+6),


3

x2+5x+6
  should be represented as 3/(x^2+5*x+6) not as  3/x^2+5*x+6,

 e5x
2    should  be  represented  as exp(5*x^2)  not  as   e^(5*x^2),  exp*(5*x^2),

exp(5x^2) nor as exp^(5*x^2).
 ln(x)  should be represented as log(x), not ln(x).
 log3(x2) should be represented as log(x^2)/log(3) not as log(x)/log(3)*x^2.
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Basic Graphing. Differentiation and Integration

When graphing functions depending on a variable x, you can start your session by declaring x
for your variable by syms x

The simplest way to graph a function is to use the command ezplot (easy plot). For example,
to graph the function  x²+x+1, use  ezplot(x^2+x+1).  If  we  need to specify the domain, for
example if the variable x should take values between -2 and 2, we can use ezplot(x^2+x+1,
[-2, 2]). If we need to modify the window, for example, if we want to see the graph for x in the
interval [-2, 2] and for y in the interval [1, 4], we can use axis([-2  2  1  4]).

Using hold on and hold off, together with ezplot command, you can plot multiple curves on
the  same  window.  For  example,  to  graph  the  functions  sin(x)  and  e-x^2  ,  you  can  use 

ezplot(sin(x)) hold on ezplot(exp(-x^2)) hold off

The command for differentiation is diff. It has the following form diff(function)

For example, the derivative of  x3-2x+5 can be found using syms x and diff(x^3-2*x+5).The
answer is  ans = 3*x^2-2.

For the n-th derivative use diff(function, n)

For example, to get the second derivative of x3-2x+5, use diff(x^3-2*x+5, 2)
ans =  6*x
Similarly, the 23rd derivative of sin(x) is obtained by diff(sin(x), 23) 
ans =-cos(x)

For the indefinite integrals, start with syms x followed by the command int(function)

For example, int(x^2) evaluates the integral  . The answer is   ans = 1/3*x^3.

For definite integrals, the command is int(function, lower bound, upper bound) 

For example, int(x^2, 0, 1) evaluates the integral  The answer is ans = 1/3. 

1. Using the Editor – basics of programming

Suppose that  you need to  execute the  same operation  several  times with  different  input
values. Matlab allows you to create a script that you can execute repeatedly (i.e. to write a
program).  Such a script  should be entered as a new file  in  the Editor  (see the previous
section). Keep in mind that you should change your current directory to match the directory
where you saved the code from the Editor. So, the “Current Folder" should be  the same
directory as the one where your script is saved. In this case, your file should be listed in the
Current Folder window. 
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Example 1.1. Suppose that you want to solve the equation of the type ax² + bx + c = 0. We
can create a function which has the values of a, b and c  as  the  input values and which
produces the solution(s) of the quadratic equation x1 and x2 as the output values. Let us call
such function “quadratic”. 
 
Start your script by 
function [x1, x2] = quadratic(a, b, c)
which specifies that your script is a function with input a,b,c and output x1 and x2. The word
“quadratic” is the name chosen by us. This is followed by the formulas computing x1 and x2.
These values of x1 and x2 are automatically displayed by listing x1 and x2 in the first line of
the code so the two formulas below end by the semicolon symbols.   
x1 = (-b+sqrt(b^2-4*a*c))/(2*a);
x2 = (-b-sqrt(b^2-4*a*c))/(2*a);

It is recommended to save this script using the same name you used in it. It appears in the
folder you chose to save it in as quadratic.m.  

To execute this script and find solutions of x² -3x + 2 = 0, for example, you can execute the 
following command in the command window (or another editor window, but not the same 
editor window where you have the script quadratic)
>> [x1, x2] = quadratic(1, -3, 2)
The output is x1 =     2 x2 =     1

Alternatively, the following script can be used. 
function [ ] = quadratic2(a, b, c)
x1 = (-b+sqrt(b^2-4*a*c))/(2*a)
x2 = (-b-sqrt(b^2-4*a*c))/(2*a)
Here we do not need to list the output variables in the first line since we did not use the
semicolon  symbols  when  computing  the  values  of  x1  and  x2  so,  those  values  will  be
displayed. You can execute this script to solve the same equation as above by quadratic(1, -
3, 2) instead of by [x1, x2] = quadratic(1, -3, 2). The output is the same as before: 

x1 =     2 x2 =     1.  

Both versions of this script produce the complex values if the solutions of a quadratic equation
are complex numbers. For example, to solve x²  + 4 = 0, using the second version, we can
execute quadratic(1, 0, 4) and obtain the answers x1 = 0 + 2.0000ix2 = 0 - 2.0000i
Hence, the solutions are ±2 i .

Example 1.2.  Let us write a script which calculates the Cartesian coordinates (x,y) of a point 
given by polar coordinates (r,θ).   
One possibility is the following. 
function [x, y] = polar(r, theta)
x = r*cos(theta);
y = r*sin(theta);

For example, to calculate (x,y) coordinates of for r=3 and θ = π , we can use the command 
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[x,y]=polar(3, pi) and get the answer    x = -3    and     y =  3.6739e-016.
Note that y is very close to 0. The inaccuracy appears because pi is only an approximation of 
π not the exact value. Using sym('pi') represents π more accurately and the command 
[x,y]=polar(3, sym('pi')) gives you the expected answer     x = -3 and    y = 0. 

2. The First Order Differential Equations

Symbolic solutions using   dsolve   

A  solution  of a differential  equation given by a formula  is said to be a symbolic solution.
Matlab command dsolve produces a symbolic solution. In this case, y(x) can be declared as
a  function  of  x  using  the  command  syms  and  the  derivative  of  the  function  y can  be
represented by diff(y, x). Note that the order of variables here  (dependent first, independent
second)  matches the order  in  the expression  dy/dx.  The equality  sign  in  the  equation  is
represented by ==. The command dsolve has the following form. 

dsolve(equation, independent variable)

If  the equation also has an initial condition,  one can get the  particular solution using the
following format. The equality sign in the initial condition should also be represented by ==.

dsolve(equation, initial condition, independent variable)

Example 2.1. Consider the equation  x y' - y = 1. a) Find the general solution. b) Find the
particular solution corresponding to the initial condition y(1)=5 and graph it.

a) You can find the general solution by syms y(x) followed by 
>> dsolve(x*diff(y,x)-y==1, x)    producing   ans = C1*x-1
Thus, the general solution consists of functions of the form y =cx-1, where c is any constant. 

b) The particular solution can be found by 
>> dsolve(x*diff(y,x)-y==1, y(1)==5, x)    producing the answer  ans = 6*x-1
This solution can be graphed by ezplot(ans)

Numerical solutions using   ode45  .   

Many differential equations cannot be solved explicitly in terms of elementary functions. for
those  equations,  approximate  solutions  can  be  obtained  using  numerical  methods.
Approximate solutions can be found by using the command  ode45.  The following example
illustrates the use of this command. 

The command ode45 requires that the equation is in the form y'=f(x,y). Thus, if the equation
is not given in this form, you have to solve for y' first. Then you want to represent the formula
on the right side as a function f. In this case, 

ode45(f, [x-initial, x-final], y-initial)

produces a graph of the solution on interval [x-initial, x-final] and 
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[x,y]=ode45(f, x-initial:step size:x-final, y-initial)

produces a list of x-values starting at x-initial, ending at x-final with the specified step size and
a list of corresponding y-values. 

Example   2.2  .   Consider the initial value problem y' = e(−x
2
) , y(0)=1. Graph the solution on

the interval [0, 2] and display the y-values for x=0, 0.5, 1, 1.5 and 2.

Represent the right side of the equation as a function
first  by    f=@(x,y)  exp(-x^2).  Then  graph  on  the
required interval by ode45(f, [0 2], 1). 

If  you want the graph without the circles around the
points at which ode45 calculates the solution, you can
do the following: 
>> [x, y] = ode45(f, [0 2], 1);
>> plot(x, y)

To display the numerical values of the solution, use: 
>> [x, y] = ode45(f, 0:.5:2, 1)
If you want the x and y values to be displayed in two
columns next to each other (so that it is easy to see
the y-value for a corresponding x-value), use 
>> [x,y]
and get the following output. 
x = y =  
         0    1.0000
    0.5000    1.4613
    1.0000    1.7468
    1.5000    1.8562
    2.0000    1.8821

Besides  the  previous  script,  we  can  also  obtain  a
similar one using ode45 instead of dsolve. To execute
it,  one  first  need  to  solve  the  equation  for  y’  and
represent the right side of the equation as a function
in Matlab. This function is the input of the script below.   

function[ ]=several_solutions(f) 
hold on

for c=the first y-value at initial x : step size : the last y-value at initial x     
    [x,y]=ode45(f, [initial x, final x], c);
    plot(x,y)

end
hold off

Example 2.  3  .   Graph the solutions of the equation  y'  = x+y for  y(0) taking integer values
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between -2 and 4 on interval [0,6].  

Start by representing the right side of the equation as a function.      >> f = @(x,y) x+y 
Modify the general format of the above script to fit the values from this problem.

function[ ]=several_solutions(f)
hold on

for c=-2:1:4 (this means that the variable c is taking values starting at -2 and  
 ending at 4 with step size of 1.    

    [x,y]=ode45(f, [0, 6], c); (the domain [0,6] is specified in this line) 
 plot(x,y)
end

hold off

You can execute the script by several_solutions(f)

You can modify the window by using the command axis([xmin,  xmax,  ymin, ymax]) 
if necessary. For example, in the previous example you can use  axis([-1 6, -100 100])  to
produce the second graph below.

You can modify the  script to produce graphs of solutions of different equations as the next
example illustrates. 

Example 2.  4  .    Graph the solutions of the equation y' = (y-2)(10-y) for sufficiently many values
of y(0) larger than 3 so that the limiting behavior of the solutions can be determined. 

Represent the right side of the equation as a function first: f =@(x,y) (y-2)*(10-y) 
Since this is an autonomous equation with the equilibrium solutions at y=2 and y=100, in
order to get a telling graph, we can graph a few solutions with initial conditions less than 10
and a few larger than 10. For example, 3,5,7,…,15. Thus, change c=-2:1:4 to c=3:2:15, for
example. If you run the script with the line [x,y]=ode45(f, [0, 6], c) unchanged, you will see
that the solutions converge too quickly for you to be able to see them well. So, you can make

 8 -

0 1 2 3 4 5 6
-500

0

500

1000

1500

2000

2500

0 1 2 3 4 5 6
-100

-80

-60

-40

-20

0

20

40

60

80

100



the  domain  [0,6]  smaller,  for  example  [0,1].  With
this modification, the graph on the right is obtained. 

Euler’s Method

The following script calculates the numerical values
of  the  solution  of  an  initial  value  problem  using
Euler’s method. It approximates the solution of the
initial value problem  y' = f(x,y), y(x0) = y0  on the
interval  [x0,  xn]  using  n  steps  using  the  following
formulas:

h = (xn – x0)/n (step size), xi+1 = xi +h, and yi+1 = yi +f(xi , yi) h 

for i=0,1...,n-1.  The input is the function f, x0, y0, xn and n.  The output is the list of x and y
values of the approximate solution. 

function [x, y] = euler(f, xinit, yinit, xfinal, n)
h = (xfinal - xinit)/n;  (calculates the step size)
x = zeros(n+1, 1);
y = zeros(n+1, 1);  (initialize x and y as column vectors of size n+1 initially filled by zeros)
x(1) = xinit;
y(1) = yinit; (the first entry in the vectors x and y is x0 and y0 respectively)
for i = 1:n

x(i + 1) = x(i) + h; (every entry in vector x is the previous entry plus the step size h)
  y(i + 1) = y(i) + h*f(x(i), y(i)); (Euler’s Method formula)
end

Note that in some cases the step size h, not the number of steps n may be given. Since h =
(xn - x0)/n, you can calculate the number of steps n as n=(xn - x0)/h in those cases.  

Example   2.  5.   Approximate the y-value of the solution of the initial value problem y' = e(−x
2
)

y(0)=1 for x=2. Use Euler’s method with 20 steps. Display the y-values for x=1 and x=2 and
the graph of the solution. 

To execute the script euler, represent the right side of the equation as a function f.  
>> f=@(x,y) exp(-x^2);
The given initial problem has x0=0, y0=1, xn=2 and n=20. So, execute the script by 
>> [x,y]=euler(f, 0, 1, 2, 20)

The outcome of the command is a list of (x,y)-values. Similarly as for ode45, if you want your
x and y values to be displayed in two columns next to each other (so that it is easy to see the
y-value for a corresponding x-value), simply type [x,y]. To graph this list, use plot(x,y). 
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The list  consists  of  21  (x,y)  points.  The  list
starts with the initial condition (x,y)=(0,1). The
x-values  are  all  h=(2-0)/20=0.1  units  apart.
The last x-value is 2 and the corresponding y-
value is 1.9311. From this list you can see the
y-values corresponding to x=1 and x=2.  

x y
1

1.7778
2

1.9311

Alternatively, if you need to display a specific
(x,y)-value, you need to determine the i-value
that corresponds to this point (i.e. you need to count the steps performed until the point has
been calculated). Then you can display the point by typing x(i) and y(i).

For example, the point with x=1 is the 11th point calculated (Note: not 10th point - recall that
x=0 corresponds to first point calculated, not the zeroth point calculated). So, to display this x-
value you can type
>> x(11) and obtain the answer ans =    1.000
To display the corresponding y-value, you can type   
>> y(11) and obtain the answer ans =    1.7778
Similarly, the point with x=2 is the 21th point calculated. You can display the x and y values as
follows. 
>> x(21) ans =    2.000
>> y(21) ans =    1.9311

Practice problems 1

1. a) Find the general solution of the differential equation y'-2y=6x. 
b) Find the particular solution with initial condition y(0)=3.
c) Plot the particular solution on interval [0,2] and find the value of this solution at 2.  

2. Consider the equation y' = (y+1)(3-y)²(5-y). Using ode45, find the value of the solution
with the initial condition y(0)=4 at x=5. Graph the solution with initial condition y(0)=4
for x-values in [0, 5]. 

3. Modify the script several_solutions to graph the solutions of the differential equation
y'=0.1y(1-y) for the initial condition y(0) taking values 0.1, 0.3, 0.5 and 0.7.

4. Consider  the equation y'  =  (y-1)(5-y).  Using the  script euler,  find the value of  the
solution with the initial condition y(0)=2 at x=3 for step size of 0.25. Graph the solution
with initial condition y(0)=2 for x-values in [0, 3].  

Solutions. 
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1. a) General solution: dsolve(diff(y,x)-2*y==6*x, x) ans=(C1*exp(2*x))/2-3*x- 3/2
b) Particular solution: dsolve(diff(y,x)-2*y==6*x, y(0)==3, x) ans=(9*exp(2*x))/2-3*x- 3/2
c)  dsolve(diff(y,x)-2*y==6*x, y(0)==3, x) ezplot(ans, [0
2]) To find the value at 2: f=@(x) (9*exp(2*x))/2-3*x- 3/2

f(2) ans=238.19

2. First,  define the right side equation as a function by
f=@(x,y) (y+1)*(3-y)^2*(5-y).  To display x and y values
use [x,y]=ode45(f, [0,5], 4). The last y-value listed in the
output  corresponds to value at x=5 and it  is y=4.9997.
Plot  the solution by plot(x,y).  Obtain  the graph on the
right.

3. Modify the several_solutions script so that the second
line is  c=0.1:0.2:0.7 (so that c= 0.1,  0.3,  0.5 and 0.7).
Also, to see better the limiting behavior of the solutions,
you  may  want  to  graph  the  solutions  on  domain  that
includes large values of x, for example [0,100]. Modify the
line with ode45 to be  [x,y]=ode45(f, [0, 100], c) in this
case.  Execute   f  =@(x,y)0.1*y*(1-y) and
several_solutions(f) and obtain the graph on the right. 

4. First,  define the right side equation as a function by
f=@(x,y)  (y-1)*(5-y). Note  that  the  step  size  of  0.25
corresponds  to  the  number  of  steps  n=(3-0)/0.25=12.
Execute the script euler by [x,y]=euler(f, 0, 2, 3, 12). To
display the answers in two columns, one corresponding
to x and the other to y-values use simply  [x,y]. The list
starts  by  x=0  and  y=2.  The  list  ends  with  x=3  and
y=5.000. Graph the list by using plot(x,y). The graph should look similar to the graph from the
second problem. 

3. Second and Higher Order Differential Equations

Symbolic solutions using   dsolve  

Analogously to the set-up for the first order differential equations, dsolve produces a symbolic
solution and ode45 a numerical solution of a second order equation. For command dsolve,
recall  that  we  represent  the  first  derivative  of  the  function  y with  diff(y,x).  The  second
derivative y’’ of y(x) can be represented by diff(y, x, 2). The command for a general solution
has the same format as for a first order equation dsolve(equation, independent variable). The
command for a particular solution has the following form 

dsolve(equation, initial condition, independent variable)

where the equality sign in the initial conditions should be represented by ==. For the second
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initial condition, y’ can be represented as Dy and then one can use Dy(0) for the second initial
condition. 

Example   3  .1.    a) Find the general solution of y''-3y'+2y = sin x. 
  b) Find the particular solution of the same equation with the initial conditions 
       y(0) = 1, y'(0)=-1.  

a) For the general solution use syms y(x) followed by   
>> dsolve(diff(y, x, 2)-3*diff(y, x)+2*y==sin(x), x) producing the answer 
ans = C1*exp(x) + (10^(1/2)*cos(x - atan(1/3)))/10 + C2*exp(2*x)
b) For the particular solution use Dy=diff(y,x)  followed by
>>   dsolve(diff(y,  x,  2)-3*diff(y,  x)+2*y==sin(x),  y(0)==1,  Dy(0)==-1,  x)  producing  the
answer  ans = (5*exp(x))/2 - (9*exp(2*x))/5 + (10^(1/2)*cos(x - atan(1/3)))/10 

Numerical solution using   ode45  

For equations that can not be solved in terms of elementary functions, we use numerical
methods. For ode45, the second order differential equation must be converted to a system
of two first order equations using the substitution 

(S) y=y1 and y'=y2. 
The first equation of the new system reflects the relation between the two new functions: the
second one is the derivative of the first. So, the first equation is 

(1) y1'=y2 .
The  second  equation  is  obtained  by  applying  the  substitution  to  the  original  differential
equation  and  solving  it  for  y''=y2'.  For  example,  the  equation  y''-3y'+2y =  sin  x  from the
previous example with substitution (S) becomes y2'-3y2 +2 y1 = sin x. Solving for y2' produces
the second equation of the system to be y2'=sin x+3y2-2y1 . Thus, the system is 

(1) y1'=y2    and (2) y2'=sin x+3y2-2y1

The two new functions can be denoted by y(1) and y(2) in Matlab. The solution y is a vector
function y=[y(1); y(2)]. Keep in mind that  y(1) corresponds to the solution  y of the original
equation and that y(2) corresponds to the derivative y'. In most cases, we are looking for the
function y, not for the derivative y'. So, you can consider y(2) to be a byproduct. 

If you represent the formulas on the right side as a function  f by f=@(x, y) [first eq; second
eq], you can graph the solutions y=y1 and y'=y2 as functions of x by  

ode45(f, [x-initial, x-final], [y-initial; y’-initial])

You can obtain the list of x, y and y’ values by 

[x,y]=ode45(f, x-initial: step size:x-final, [y-initial; y’-initial])

We illustrate these commands in the following example. 

Example   3  .2.   Consider the following  initial value problem
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y'' + x y' + y = 0 with y(0)=1 and y'(0)=0. 

(a) Using ode45, graph the solution on interval [0, 5]. 
(b) Using ode45, display the list of y-values of the solution for the integer x-values from 0 to 5.

First, you need to convert the given second order differential equation into a system of two
first order equations using the substitution (S)  y=y1 and y'=y2. The first equation of the new
system is (1) y1'=y2 . The second equation is obtained by using the substitution for the given
equation y'' + xy' + y = 0 to obtain y2' + xy2+ y1 =0 and then solving for y2' to get (2) y2'=-xy2- y1.
Thus, the newly obtained system is 
(1)   y1'=y2 and (2)   y2'=-x y2- y1 .

Represent  the right side of the two equations as a
vector  function  f  that  depends  on  independent
variable  x and dependent  variable  y consisting  of
two functions y(1) and y(2).

f=@(x,y) [y(2); -x*y(2)-y(1)]
The  first  entry  of  f  is  the  right  side  of  the  first
equation and the second entry of f is the right side of
the second equation. 

(a) Graph the solution on interval [0, 5] by  
ode45(f, [0, 5], [1;0]).

In this command,  [0, 5] indicates the interval for  x
and  [1;0] indicate  the  initial  values  y(0)=1  and
y'(0)=0. The output is a graph with two functions y(1)
representing the solution y, plotted in blue, and y(2)
representing its derivative y', plotted in orange.  

Alternatively, you can use 
[x,y]=ode45(f, [0, 5], [1;0]); followed by plot(x,y)

which produces graphs without displaying the values
used to plot them. The command starting by “[x,y]=”
calculates numerical values of the solutions and the
semicolon  at  its  end  suppresses  them  to  be
displayed.  The  result  is  the  second  graph  on  this
page.

To display graph of y without the graph of y', you can
use  [x,y]=ode45(f,  [0,  5],  [1;0]);  followed  by
plot(x,y(:,1))
This produces the third graph on this page.  

(b)  To obtain  numerical  values of  the solution use  
[x, y] = ode45(f, [0:1:5], [1;0])

Here   [0:1:5] indicates  that  the  x  is  taking  values
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starting at 0, ending at 5 at step 1 away from each other. [1;0] indicates the initial values, just
as in part (a). The vector y in the output will consist of two columns. The first y(1) consists of
the values of the solution y at x-values between 0 and 5 and the second y(2) consists of the
values of the derivative y' at these points. If you want the x and y values to be displayed in
columns next to each other (so that it is easy to see the y-value for a corresponding x-value),
you can use [x,y]. Obtain the list

ans =         0        1.0000    0
    1.0000    0.6065   -0.6065
    2.0000    0.1354   -0.2707
    3.0000    0.0111   -0.0333
    4.0000    0.0003   -0.0013
    5.0000    0.0000   -0.0000

Here the three columns represent x, y and y' values respectively.
 
To display the list without the y’-values, use [x,y(:,1)].

Finding zeros of polynomials. 

Unlike the situation for quadratic equation, there is no general  formula for polynomials of
degrees higher than 4 (Wikipedia is a good source for more details). Even for cubic or quartic
polynomials when such formula exists, it is rather complex to use. Thus, unless a polynomial
is easy to factor or to use the n-th root formula, it is convenient to find approximate solutions
using Matlab or some other technology.

In  Matlab,  you  can  find  zeros  of  polynomial an x
n
+a

(n−1)x
(n−1)

+...+a1 x+a0=0  using  the
command roots. Represent the polynomial as a vector of length n+1 with coefficients of the
polynomial as the entries

p=[a_n  a_(n-1) …. a_1 a_0]
and then use the command roots(p)

Example    3.3  .  Find  general  solution  of  the  equation  −90 y(4)+100 y ' ' '−54 y '+16 y=0  by
using Matlab to find solutions of the characteristic equation.

The characteristic equation is −90 r4+100 r3−54 r+16=0 . Represent the left side in Matlab
as p=[-90 100 0 -54 16]  and use the command  roots(p) to get the solutions r= -0.6900,
0.3511, 0.7250 +0.4562i and 0.7250 -0.4562i .
This  gives  you  four  fundamental  solutions  y_1= e(−0.69 x ) ,  y_2=  e(0.3511 x) ,   y_3=
e(0.7250 x )cos(0.4562 x)   and   y_4= e(0.7250 x )sin(0.4562 x) .  So,  the  general  solution  is
y=c1e

(−0.69 x)
+c2 e

(0.3511 x )
+c3e

(0.7250 x )cos(0.4562 x)+c4e
(0.7250 x )sin(0.4562 x) .

Practice problems 2
1. a) Find the general solution of the equation  y''-4  y'+4  y= ex  +x². b) Find particular

solution of the initial value problem with y(0)=8, y'(0)=3.
2. Using ode45 graph the solution of y'' + x² y' + y = cos 2x, y(0)=1, y'(0)=-1 for t in [0, 4]. 
3. Find general  solutions of the equation  −18 y(5)

+25 y(4)
−27 y ' '+16 y '+20 y=0 .  Use

Matlab to find the solutions of the characteristic equation. 
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Solutions

1. a)  dsolve(diff(y,x,2)-4*diff(y,x)+4*y==exp(x)+x^2, x)
b) Dy=diff(y,x)       dsolve(diff(y,x,2)-4*diff(y,x)+4*y==exp(x)^2+x^2, y(0)==8, Dy(0)==3, x)
ans = x/2 + (61*exp(2*x))/8 -(51*x*exp(2*x))/4 + (x^2*exp(2*x))/2 + x^2/4 + 3/8

2. Convert to a system using y=y1 and y'=y2. The first equation of the system is y1'=y2 and the
second is obtained from y'' + x²y' + y = cos 2x  → y2'+ x²y2 + y1 = cos 2x  → y2'=cos 2x - x² y2 -
y1. So the system is (1) y1'=y2  and (2) y2'=cos 2x - x² y2 - y1

Represent the right side of the two equations as a vector function f by 
f=@(x,y) [y(2); cos(2*x)-x^2*y(2)-y(1)] 

To graph the solution on interval [0, 4], you can use ode45(f, [0, 4], [1;-1]). The values [1;-1]
correspond to the y and y' values from the initial conditions. 

3. The characteristic equations corresponds to a polynomial which can be represented in
Matlab as  p=[-18 25 0 -27 16 20]. The command  roots(p) gives you the following values:
1.29,  0.76+0.97i,  0.76-0.97i,  -0.72+0.20i,  and  -0.72-0.20i.  Thus,  the  general  solutions  is
y=c1e

(1.29x )
+c2e

(0.76 x)cos(0.97 x)+c3e
(0.76x )sin (0.97 x)+c4 e

(−0.72 x)cos(0.20 x)+c5 e
(−0.72 x)sin (0.20 x).

4. Systems of Differential Equations

Symbolic solutions using   dsolve   

The command dsolve can be used for finding symbolic solutions of a system of differential
equations.  The next  example illustrates finding general  and particular  solutions using this
command. 

Example   4  .1  . Consider the system   dx/dt=2x-y dy/dt=3x-2y
a) Find the general solution of this system. 
b) Find the particular solution of the initial value problem with x(0)=1 and y(0)=2. 
c) Graph the particular solution on interval 0≤t≤20.

a) syms x(t) y(t) followed by 
[x,y] = dsolve(diff(x,t)==2*x – y,  diff(y,t)==3*x – 2*y,  t) 

produces x = C1*exp(t) + (C2*exp(-t))/3 and y =C1*exp(t) + C2*exp(-t)
b) syms x(t) y(t)  followed by 

[x,y] = dsolve(diff(x,t)==2*x - y,  diff(y,t)==3*x - 2*y,  x(0)==1,  y(0)==2,  t) 
produces x = exp(-t)/2 + exp(t)/2   and  y =(3*exp(-t))/2 + exp(t)/2
c) To graph these two solutions on [0,20], you can use 

ezplot(x, [0,20]) hold on ezplot(y, [0,20]) hold off

Numer  ical solution using   ode45   and phase plane graphs  
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Finding  symbolic  solutions  might  be  very  limiting  because  many  systems  of  differential
equations cannot be solved explicitly in terms of elementary functions. For those equations or
systems of equations, numerical methods are used.  We focus on the command  ode45. In
order to use it, the system needs to be in the form x'=f(x,y,t) and y'=g(x,y,t) and the right sides
of  the equations should be represented as a vector  function first.  The function x can be
represented as y(1) and the function y as y(2). The first entry of the function f is the right side
of the first equation and the second entry of  f is the right side of the second equation.  The
next example illustrates this. 
 
Example   4  .2  . Consider the  system 

dx/dt=2x-x2-xy dy/dt=xy-y
with the initial conditions x(0)=1 and y(0)=2.

(a) Display the (x,y)-values of a numerical solution for t taking integer values 
between 0 and 6. 
(b) Graph the solutions on interval [0,20]. 
(c) Graph the solution from b) in the phase plane.  
(d) Plot sufficiently many solutions of this system (without the given initial 
conditions) in the phase plane to determine the type of the equilibrium point (1,1).
(e) Graph the solutions from part d) in the tx and ty planes. 

 
Represent  the  right  side of  equation as  a vector  function of  independent  variable  t.  The
unknown functions x and y are represented by y(1) and y(2) respectively.

f = @(t,y) [2*y(1)-y(1)^2-y(1)*y(2); y(1)*y(2)-y(2)]

(a) The command [t,y]=ode45(f, [0:1:6], [1;2])
computes  the  (x,y)-values  at  t=0,1,2,...,6.  The  part
[0:1:6] indicates that t-values start at 0, end at 6 and
are  1  step  away  from  each  other.  The  part  [1;2]
reflects the initial conditions x(0)=1 and  y(0)=2.  Note
that here y is a vector whose entries will be the values
of  y(1)  representing  x  and  y(2) representing  y.   To
display t, x and y values in columns next to each other
(so  that  it  is  easy  to  see  the  (x,y)-value  for  a
corresponding  t-value), you can use  [t,y].  Obtain  the
list

ans =    0    1.0000    2.0000
    1.0000    0.5909    1.5148
    2.0000    0.6791    1.0294
    3.0000    0.9123    0.8370
    4.0000    1.0763    0.8424
    5.0000    1.0980    0.9281
    6.0000    1.0502    1.0016

(b) The command    ode45(f,[0,20],[1;2]) 
graphs the two solutions on the same plot as
functions of t. The function x will be graphed in blue
and y in orange (the first graph). 
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Alternatively, you can graph using 
[t,y]=ode45(f,[0 20],[1;2]); followed by plot(t,y)
which produces graphs without displaying the values
used to plot them. The command starting by “[x,y]=”
calculates numerical values of the solutions and the
semicolon  at  its  end  suppresses  them  to  be
displayed. The  result is the second graph.  Note that
both x and y approach 1 for large values of t.  This
may be relevant when determining the stability of the
equilibrium point (1,1). 

You may need to display just the first or just the
second function. In this case, the command 
[t,y]=ode45(f,[0 20],[1;2]); followed by plot(t,y(:,1)) 
plots just x-values (the graph on the right).  

Similarly, the command 
[t,y]=ode45(f,[0 20],[1;2]); followed by plot(t,y(:,2)) 
plots just y-values. 

(c) The command [t,y] = ode45(f,[0,20],[1;2]); 
followed by plot(y(:,1),y(:,2)) 
plots the solution in the phase plane: it plots (x,y) as
a parametric curve of parameter t in (x,y)-plane.  

The graph on the  right  displays  the output  of  this
command.  Note  that  we  can  determine  the
orientation of  this  parametric  curve  using  the
previous graphs. In particular, from the previous graphs we can note that both x and y values
converge to 1. Moreover, the initial condition (x,y)=(1,2) indicates that this is the initial point.
Thus, the curve is traced starting from the
point (1,2) and ending at the point (1,1).  

(d) The following script can be used to
graph the trajectories in the phase plane for
x(0) and y(0) taking initial values 0,1,2,…,5. 

close all; hold on
for a = 0:0.2:5
   for b = 0:0.2:5 (modify these values if
necessary to change the density and 
starting points of the curves)
      [t, y] = ode45(f, 0:0.2:20, [a; b]);
      plot(y(:,1), y(:,2))
   end
end
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hold off
axis([0 2 0 2]) (modify these values to change
the window)

From the graph, we can tell that (1,1) is a spiral
point.  The  stability  can  be  determined  by
analyzing the graphs of the solution in part a
and b for example which indicate that both x
and y approach 1. Thus, (1,1) is a stable spiral
point. 

(e) One can obtain the graphs in the tx-plane
and  the  ty-plane  by  changing  the  command
plot(y(:,1), y(:,2)) of the above script to plot(t,
y(:,1)) and plot(t,  y(:,2)) respectively.  One
should also change the axis command in the
end to match the t-initial and t-final values from
the ode45 command. For example, to get the
graphs of several solutions of this system in the
tx-plane, one can use the following script.  

close all; hold on
for a = 0:.2:5
  for b = 0:.2:5
    [t, y] = ode45(f, 0:0.2:20, [a; b]);
    plot(t, y(:,1))
  end
end
hold off
axis([0 20 0 2])

Analogous script, with  plot(t, y(:,2)) instead of
plot(t, y(:,1)) can be used for graphs in  the ty-plane.  The second graph on the right is the
outcome of  such script.  Note that  the two graphs indicate that  the point  (2,0)  is  also an
equilibrium point. 

Practice problems 3

1. Consider the system dx/dt = 3x-y and dy/dt = 4x-2y. 
a) Show that the point (0,0) is the only equilibrium point of the system. 
b) Graph a number of the solution in the phase plane and use the graph to determine
the type of the equilibrium point (0,0) and its stability. 
c) Graph the solution with initial conditions x(0)=1 and y(0)=2 as a function of t and use
the graphs to determine the orientation of the solution in the phase plane. 
d) Use your conclusions to determine the limiting values of the general solutions x and
y for t →∞ for various values of initial conditions of x and y.

2. The sizes R and W of a population of rabbits and a population of wolves are described
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using the predator-prey model 
dR/dt=0.08R-0.001RW    and    dW/dt=-0.02W+0.00002RW.

a) Find the equilibrium points. 
b) Graph a number of solutions in the phase plane. Classify the equilibrium points and
determine their stability. 
c) Graph the solutions with initial conditions R(0)=400 and W(0)=100 as functions of t.
Use this graph to indicate the direction in which the curves in the phase place are
traced as the parameter increases. Discuss the long term tendencies of the system. 
d) Using the second graph, estimate the values in between which the solutions on it
oscillate.

Solutions

1. a) Solve the equations 3x-y=0 and 4x-2y=0 to obtain that x=0 and y=0 is the only solution.
Thus, (0,0) is the only equilibrium point.

b)  Modify  the  script  for  graphs  in  the
phase plane to make it centered at 0 and
sufficiently many solutions displayed. For
example, 
close all; hold on
for a = -3:.2:3
   for b = -3:.2:3 
      [t, y] = ode45(f, 0:0.2:20, [a; b]);
      plot(y(:,1), y(:,2))
   end
end
hold off
axis([-3 3 -3 3]) 
Then  represent  the  right  side  as  a
function f by f=@(t,y)[3*y(1)-y(2); 4*y(1)-
2*y(2)], execute the script and obtain the
graph on the right. We see that (0,0) is a saddle
point and, as such, unstable. 

c) Graph by  [t,y]=ode45(f,[0 20],[1;2]); plot(t,y). From
the graph, we can see that y →∞ when t →∞. Find the
point (1,2) on the phase plane graph and note that y-
value  increase  to  infinity  when  the  curve  is  traced
moving  to  the  right  so  that  both  x  and  y  values  are
increasing to infinity.
d) The previous part tells us that the solution visible as a
green line “halving” the solutions is a separatrix. If  the
initial point (x(0), y(0)) is on the left side of it, both x and
y decrease to negative infinity when t →∞. If the initial
point (x(0), y(0)) is on the right side of the separatrix, both x and y increase to positive infinity
when t →∞. 
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2. a) Solve the system  0.08R-0.001RW=0 and -0.02W+0.00002RW=0. The first  equation
produces two cases R=0 and W=80. In the first case, the second equation implies W=0. In
the  second  case,  the  second  equation  becomes  -1.6+.0016R=0  which  implies  R=1000.
Hence, the equilibrium points are (0,0) and (1000, 80).
b) Modify the script for graphs in the phase plane to make both critical points visible. Since
negative  numbers  of  rabbits  and  wolves  are  not  relevant,  you  can  display  only  the  first
quadrant. Do not make the step size too small since the x-values are large because it may
take a long time for the graph to appear
otherwise. For example, 
close all; hold on
for a = 0:50:2000
   for b = 0:10:160 
      [t, y] = ode45(f, 0:0.2:100, [a; b]);
      plot(y(:,1), y(:,2))
   end
end
hold off
axis([0 2000 0 160]) 
Then use
f=@(t,y)[.08*y(1)-.001*y(1)*y(2);
-.02*y(2)+.00002*y(1)*y(2)],  execute  the
script,  and  obtain  the  first  graph  on  the
right. We see that (0,0) is a saddle point
and, as such, unstable and that (1000, 80)
is  a  center  and,  as  such,  stable  but  not
asymptotically stable. 
The  solutions  oscillate:  x-values  about  1000  and  y-
values about 80. The amplitude of a solution depends
on the initial conditions. 
b) Graph by [t,y]=ode45(f,[0 20],[400;100]); plot(t,y).
The graph enables us to determine the direction of the
trajectories on the first graph: since starting with 400,
the x-values decrease a bit at first but then increase
and the y-values decrease first starting at 100. Hence,
we can conclude that the curves in the phase plane are
traversed in the counter clock-wise direction.
c) With 400 rabbits and 100 wolves initially, the number
of rabbits oscillates between about 460 and 2300 and
the number of wolves between about 50 and 200.
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