
Differential Equations
Lia Vas

Nonhomogeneous equations with constant coefficients.
Methods. Applications

Consider a nonhomogeneous linear equation

any
(n) + an−1y

(n−1) + . . .+ a0y = g(x).

The general solution of such equation is of the form

y = yh + yp

where yh is the general solution of homogeneous equation and yp is called the particular solution
and depends on the nonhomogeneous part. There are two main methods for finding a particular
solutions of nonhomogeneous equations.

1. Variation of parameters. This method is completely general, but sometimes tends to lead
to difficult integrals.

2. Undetermined coefficients. This method is easier, but it works just when the function g(x)
is of a specific form and, thus, it is not general.

We present the methods for the case n = 2. Both methods can be generalized to higher orders.

Variation of parameters

Consider the equation ay′′ + by′ + cy = g(x) and assume that y1 and y2 are solutions of the
homogeneous part so that yh = c1y1 + c2y2 is the general solution of the homogeneous part. The
particular solution yp is obtained by assuming that c1 and c2 are not constants but functions that
depend on x. Since there is just one equation and we are introducing two new functions, we can
impose one condition on them with no risk of loosing generality. Let us denote the two new functions
by v1 and v2 so that

yp = v1y1 + v2y2.

To find the unknown functions v1 and v2, find the derivatives of yp.

y′p = v′1y1 + v1y
′
1 + v′2y2 + v2y

′
2

and impose the condition that v′1y1 + v′2y2 = 0. Thus y′p = v1y
′
1 + v2y

′
2 and so

y′′p = v′1y
′
1 + v1y

′′
1 + v′2y

′
2 + v2y

′′
2

Substituting derivatives in the equation and keeping in mind that y1 and y2 are solutions of homo-
geneous part, we obtain

av′1y
′
1 + av1y

′′
1 + av′2y

′
2 + av2y

′′
2 + bv1y

′
1 + bv2y

′
2 + cv1y1 + cv2y2 =

1



= v1(ay
′′
1 + by′1 + cy1) + v2(ay

′′
2 + by′2 + cy2) + av′1y

′
1 + av′2y

′
2 =

= av′1y
′
1 + av′2y

′
2 = g.

Thus, to determine the functions v1 and v2, we need to solve two equations

v′1y1 + v′2y2 = 0 and av′1y
′
1 + av′2y

′
2 = g

First, solve the equations algebraically for v′1 and v′2 and then obtain v1 and v2 by integrating.

This illustrates that the steps of this method are the following.

1. Find the solution yh of the homogeneous part in the form c1y1 + c2y2.

2. To find a particular solution yp, replace c1 and c2 in yh with two unknown functions v1 and v2
and write down the two equations in v′1 and v′2.

3. Solve the equations for v′1 and v′2 and then obtain v1 and v2 by integrating.

4. Finally, put v1 and v2 back into yp = v1y1 + v2y2.

We illustrate this method in the following example.

Example. Solve the equation y′′ − y′ − 2y = e3x.

Solution. The characteristic equation is r2−r−2 = 0. The roots are 2 and −1, so that y1 = e2x,
y2 = e−x and the homogeneous solution is yh = c1y

2x + c2y
−x and we can find a particular solution

yp in the form yp = v1y
2x + v2y

−x. The two equations for the unknown functions are

v′1e
2x + v′2e

−x = 0 and 2v′1e
2x − v′2e−x = e3x

Solving the first equation for v′2 produces v′2e
−x = −v′1e2x ⇒ v′2 = −v′1e2xex = −v1e3x. Substitute

that in the second equation to get 2v′1e
2x + v′1e

2x = e3x ⇒ 3v′1e
2x = e3x ⇒ v′1 = 1

3
ex. Hence,

v′2 = −v1e3x = −1
3
e4x.

Integrate v′1 and v′2 to obtain v1 and v2, respectively. We have that v1 =
∫ 1

3
ex dx = 1

3
ex and v2 =∫

−1
3
e4xdx = − 1

12
e4x. This gives a particular solution yp = 1

3
exe2x − 1

12
e4xe−x = 1

3
e3x − 1

12
e3x = 1

4
e3x.

Hence, the general solution of the differential equation is

y = c1e
2x + c2e

−x +
1

4
e3x.

Practice Problems. Solve the differential equations.

1. y′′ − 6y′ + 9y = x−3e3x.

2. y′′ − 5y′ + 6y = 2ex

3. y′′ + 4y′ + 4y = x−2e−2x

Solutions.
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1. The characteristic equation is r2 − 6r + 9 = 0. It factors as (r − 3)(r − 3) = 0 and so 3 is a
double zero. Thus, y1 = e3x and y2 = xe3x and the homogeneous solution is yh = c1e

3x+c2xe
3x.

We can find yp in the form yp = v1e
3x + v2xe

3x. Two equations in derivatives v′1 and v′2 are

v′1e
3x + v′2xe

3x = 0 and 3v′1e
3x + v′2e

3x + 3v′2xe
3x = x−3e3x.

Cancelling e3x we have that

v′1 + v′2x = 0 and 3v′1 + v′2 + 3v′2x = x−3.

From the first equation, v′1 = −xv′2. Plugging that in the second produces −3xv′2 + v′2 +
3xv′2 = x−3 ⇒ v′2 = x−3. Substituting back in v′1 = −xv′2 gives us that v′1 = −x−2. Hence,
v2 =

∫
x−3dx = − 1

2x2
and v1 =

∫
−x−2dx = 1

x
. So, the general solution is y = c1e

3x + c2xe
3x +

1
x
e3x − 1

2x2
xe3x = c1e

3x + c2xe
3x + 1

2x
e3x.

2. The characteristic equation is r2 − 5r + 6 = 0. The roots are 2 and 3, so that y1 = e2x,
y2 = e3x and the homogeneous solution is yh = c1y

2x + c2y
3x and we can find yp in the form

yp = v1y
2x + v2y

3x. The two equations for the unknown functions are

v′1e
2x + v′2e

3x = 0 and 2v′1e
2x + 3v′2e

3x = 2ex

Solving the first equation for v′2 produces v′2e
3x = −v′1e2x ⇒ v′2 = −v′1e2xe−3x = −v1e−x.

Substitute that in the second equation to get 2v′1e
2x − 3v′1e

2x = 2ex ⇒ −v′1e2x = 2ex ⇒
v′1 = −2e−x. Hence, v′2 = −v1e−x = 2e−2x.

Integrate v′1 and v′2 to obtain v1 and v2, respectively. We have that v1 =
∫
−2e−x dx = 2e−x and

v2 =
∫

2e−2xdx = −e−2x. This gives a particular solution yp = 2e−xe2x−e−2xe3x = 2ex−ex = ex.
Hence, the general solution of the differential equation is y = c1e

2x + c2e
3x + ex.

3. The characteristic equation is r2 + 4r+ 4 = 0. It factors as (r+ 2)(r+ 2) = 0 so −2 is a double
zero. Thus, y1 = e−2x and y2 = xe−2x and the homogeneous solution is yh = c1e

−2x + c2xe
−2x.

We can find yp in the form yp = v1e
−2x + v2xe

−2x. Two equations in derivatives v′1 and v′2 are

v′1e
−2x + v′2xe

−2x = 0 and − 2v′1e
−2x + v′2e

−2x − 2xv′2e
−2x = x−2e−2x

Cancelling e−2x we have that

v′1 + v′2x = 0 and − 2v′1 + v′2 − 2xv′2 = x−2.

From the first equation, v′1 = −xv′2. Plugging that in the second produces 2xv′2 + v′2 − 2xv′2 =
x−2 ⇒ v′2 = x−2. Substituting back in v′1 = −xv′2 gives us that v′1 = −x−1 = − 1

x
. Hence, v2 =∫

x−2dx = −x−1 and v1 =
∫
− 1
x
dx = − lnx. This gives a particular solution yp = − lnxe−2x −

x−1xe−2x = − lnxe−2x− e−2x. So, the general solution is y = c1e
−2x+ c2xe

−2x− lnxe−2x− e−2x.
This is completely acceptable as your final answer. Note, though, that you can combine the
terms c1e

−2x and −e−2x as (c1 − 1)e−2x and still use c1e
−2x for this term. Thus, the solution

can also be written as y = c1e
−2x + c2xe

−2x − lnxe−2x.
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Undetermined Coefficients

The method of Undetermined Coefficients determines the particular solution yp of a nonhomoge-
neous linear equation

any
(n) + an−1y

(n−1) + . . .+ a0y = g(x)

in case when one of the two cases below hold.

Case 1 g(x) is a product of a polynomial and exponential function.

Case 2 g(x) is a product of a polynomial, exponential function and a trigonometric function.

In particular, let pk(x) be a polynomial akx
k + ak−1x

k−1 + . . . + a0 of degree k and let p and q be
real numbers.

Case 1 If g(x) = pk(x)epx, then

yp = xs(Akx
k + Ak−1x

k−1 + . . .+ A0)e
px

where s is the number of times p appears on the list of zeros of the characteristic equation and
A0, . . . , Ak are undetermined coefficients of a general polynomial of the same degree k as pk(x).

Case 2 g(x) = pk(x)epx cos qx or g(x) = pk(x)epx sin qx, then

yp = xs(Akx
k + Ak−1x

k−1 + . . .+ A0)e
px cos qx+ xs(Bkx

k +Bk−1x
k−1 + . . .+B0)e

px sin qx

where s is the number of times p+ iq appears on the list of zeros of the characteristic equation
and A0, . . . , Ak and B0, . . . , Bk are undetermined coefficients of two different general polyno-
mials of the same degree k as pk(x).

Note that while g(x) can contain only sine or only cosine term, the solution yp should contain
both sine and cosine terms.

To find the undetermined coefficients, plug the particular solution and its derivatives into the
original equation and determine the coefficients from there by equating the polynomials (on the same
way as when solving partial fractions in a Calculus 2 course). The number of unknown coefficients
should always be the same as the number of equations you get by equating the coefficients of the
same powers of x or of the same trigonometric function. This is an indicator that the form of the
particular solution you are trying to compute is correct.

If g(x) is a sum of functions g(x) = g1(x)+g2(x)+ . . .+gm(x) and each function g1(x), g2(x), . . . ,
gm(x) is a function described under two cases above, then the particular solution yp is the sum of
particular solutions

yp = yp1 + yp2 + . . .+ ypm

where each solution ypi, i = 1, . . . ,m is obtained as in Case 1 or 2 described above.

In the first example, we illustrate the method itself. By using an example from the previous
section, we also illustrate that this method, if applicable, is much shorter and simpler than the
Variations of Parameters.

Case 1 Example. Solve the differential equation y′′ − y′ − 2y = e3x.
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Solution. The characteristic equation is 0 = r2 − r − 2 = (r − 2)(r + 1) so yh = c1e
2x + c2e

−x.
The function g(x) is e3x and so p = 3 and the polynomial pk(x) is 1 so it is a constant polynomial
(i.e. of degree zero). Hence, yp = xsAe3x for some constant A. To determine s, note that p = 3 is
not a zero of the characteristic equation. Thus, s = 0 and a particular solution is of the form

yp = Ae3x

Finding the derivatives y′p = 3Ae3x and y′′p = 9Ae3x and substituting them into the equation yields

9Ae3x − 3Ae3x − 2Ae3x = e3x ⇒ 9A− 3A− 2A = 1 ⇒ 4A = 1⇒ A =
1

4
.

Thus, yp = 1
4
e3x and the general solution is y = c1e

2x + c2e
−x + 1

4
e3x.

Comparing the length and the amount of algebra involved in the solution of this example and in
the example of the previous section, you can see that the Undetermined Coefficients is much shorter
and simpler. We emphasize that it is not applicable to use this method in practice problems 1 and
3 of the previous section since the parts x−3 and x−2 are not polynomials. This illustrates that the
Variation of Parameters is also necessary.

The next example illustrates the second case.

Case 2 Example. Solve the differential equation y′′ − 3y′ − 4y = 25 sin 3x.

Solution. The characteristic equation is 0 = r2 − 3r − 4 = (r − 4)(r + 1) so 4 and −1 are zeros
and yh = c1e

4x + c2e
−x. The function g(x) is 25 sin 3x = 25e0x sin 3x and so p+ qi = 0 + 3i = 3i and

the polynomial pk(x) is 25 so it is a constant polynomial (i.e. of degree zero). Hence,

yp = xsAe0x cos 3x+ xsBe0x sin 3x = xsA cos 3x+ xsB sin 3x

for some constants A and B. To determine s, note that p+ iq = i is not a zero of the characteristic
equation. Thus, s = 0 and a particular solution is of the form

yp = A cos 3x+B sin 3x.

Finding the derivatives y′p = −3A sin 3x+ 3B cos 3x and y′′p = −9A cos 3x− 9B sin 3x and substi-
tuting them into the equation produces

−9A cos 3x− 9B sin 3x+ 9A sin 3x− 9B cos 3x− 4A cos 3x− 4B sin 3x = 25 sin 3x

Equate the terms with cos 3x and the terms with sin 3x. This produces two equations in two un-
knowns.

−9A− 9B − 4A = 0 and − 9B + 9A− 4B = 25

From the first equation B = −13
9
A and from the second 9A + 169

9
A = 25 so 250

9
A = 25 ⇒ A = 9

10
.

Thus B = −13
10

and yp = 9
10

cos 3x− 13
10

sin 3x and the general solution is y = c1e
4x+c2e

−x+ 9
10

cos 3x−
13
10

sin 3x.

Case s = 1 Example. Solve the differential equation y′′ − 3y′ − 4y = 5xe4x.

Solution. From previous examples, 4 and −1 are zeros of characteristic equation and yh =
c1e

4x+c2e
−x. The function g(x) is 5xe4x and so p = 4 and the polynomial pk(x) is a linear polynomial.
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Hence, yp = xs(Ax + B)e4x for some constants A and B. To determine s, note that 4 is a (single)
zero of the characteristic equation. Thus, s = 1 and so a particular solution is of the form

yp = x1(Ax+B)e4x = (Ax2 +Bx)e4x.

Finding the derivatives y′p = (2Ax + B)e4x + 4(Ax2 + Bx)e4x = (4Ax2 + 4Bx + 2Ax + B)e4x and
y′′p = (8Ax+ 4B + 2A)e4x + 4(4Ax2 + 4Bx+ 2Ax+B)e4x = (16Ax2 + 16Ax+ 16Bx+ 8B + 2A)e4x

and substituting them into the equation yields

(16Ax2 + 16Ax+ 16Bx+ 8B + 2A− 12Ax2 − 12Bx− 6Ax− 3B − 4Ax2 − 4Bx)e4x = 5xe4x

Thus 16Ax2 + 16Ax+ 16Bx+ 8B + 2A− 12Ax2− 12Bx− 6Ax− 3B − 4Ax2− 4Bx = 5x. Equating
the similar terms of the polynomials on the left and right side yields two equations in two unknowns

+16A+ 16B − 12B − 6A− 4B = 5 and 8B + 2A− 3B = 0

Thus 10A = 5 and 5B = 2A giving us that A = 1
2

and B = 1
5
. So, yp = (1

2
x2 + 1

5
x)e4x and the general

solution is y = c1e
4x + c2e

−x + (1
2
x2 + 1

5
x)e4x.

Two non-homogeneous functions Example. Solve the differential equation y′′ − 3y′ − 4y =
5xe4x + 25 sin 3x.

Solution. Consider the function g(x) as the sum of two separate parts: 5xe4x and 25 sin 3x.
Then look for the particular solution in the form yp1 + yp2 where the particular solution yp1 is
determined by the function 5xe4x and the particular solution yp2 is determined by the function
25 sinx as in the previous two examples. By these examples, yh = c1e

4x + c2e
−x, yp1 = (1

2
x2 + 1

5
x)e4x

and yp2 = 9
10

cos 3x− 13
10

sin 3x Thus, the general solution is

y = c1e
4x + c2e

−x + (
1

2
x2 +

1

5
x)e4x +

9

10
cos 3x− 13

10
sin 3x.

Case s = 2 Example. Solve the differential equation y′′ − 4y′ + 4y = 6e2x.

Solution. The characteristic equation is 0 = r2 − 4r+ 4 = (r− 2)(r− 2) so yh = c1e
2x + c2xe

2x.
The function g(x) is 6e2x and so p = 2 and the polynomial pk(x) is 6 so it is a constant polynomial.
Hence, yp = xsAe2x for some constant A. To determine s, note that p = 2 is a double zero of the
characteristic equation. Thus, s = 2 and a particular solution is of the form

yp = Ax2e2x

Finding the derivatives y′p = 2Axe2x + 2Ax2e2x and y′′p = 2Ae2x + 4Axe2x + 4Axe2x + 4Ax2e2x and
substituting them into the equation yields

2Ae2x + 4Axe2x + 4Axe2x + 4Ax2e2x − 8Axe2x − 8Ax2e2x + 4Ax2e2x = 6e2x ⇒

2A+ 4Ax+ 4Ax+ 4Ax2 − 8Ax− 8Ax2 + 4Ax2 = 6⇒ 2A = 6⇒ A = 3.

Thus, yp = 3x2e2x and the general solution is y = c1e
2x + c2xe

2x + 3x2e2x.

Practice Problems. Find the general solutions of problems 1 – 6. In problems 7 – 9, find
the form of particular solutions and the general solutions. You do not have to solve for unknown
coefficients in particular solutions.
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1. y′′ + y = 3e−x 2. y′′ − 5y′ − 6y = 4e2x 3. y′′ − 5y′ + 6y = 4e2x

4. y′′ + 4y = 5x2ex 5. y′′ − 2y′ + y = 7xex 6. y′′ + 2y′ − 3y = 5 sin 3x

7. y′′ − 3y′ − 10y = 3xe2x + 5e−2x 8. y′′ − 8y′ + 16y = 3x2 − 5e4x

9. y′′ + 4y′ + 13y = −2 sin 3x+ e−2x cos 3x

Solutions.

1. The zeros of the characteristic equation are r = ±i and so yh = c1 cosx + c2 sinx. We have
that p = −1 and pk(x) = 3 so yp = xsAe−x. Since −1 is not a zero of the characteristic
equation, s = 0 and so yp = Ae−x. Find the derivatives y′p = −Ae−x and y′′p = Ae−x and plug
the derivatives and yp the into the equation. Obtain that Ae−x + Ae−x = 3e−x ⇒ 2A = 3 ⇒
A = 3

2
. Thus, yp = 3

2
e−x and the general solution is y = c1 cosx+ c2 sinx+ 3

2
e−x.

2. The zeros of the characteristic equation are r = 6 and r = −1 and so yh = c1e
6x + c2e

−x.
We have that p = 2 and pk(x) = 4 so yp = xsAe2x. Since 2 is not a zero of the characteristic
equation, s = 0 and so yp = Ae2x. Find the derivatives y′p = 2Ae2x and y′′p = 4Ae2x and
plug them and yp the into the equation. Obtain that 4Ae2x − 10Ae2x − 6Ae2x = 4e2x ⇒
4A − 10A − 6A = 4 ⇒ −12A = 4 ⇒ A = −1

3
. Thus, yp = −1

3
e2x and the general solution is

y = c1e
6x + c2e

−x − 1
3
e2x.

3. The zeros of the characteristic equation are r = 2 and r = 3 and yh = c1e
2x + c2e

3x. We
have that p = 2 and pk(x) = 4 so yp = xsAe2x. Since 2 is a (single) zero of the characteristic
equation, s = 1 and so yp = Axe2x. Find the derivatives y′p = Ae2x + 2Axe2x and y′′p =
2Ae2x+2Ae2x+4Axe2x = 4Ae2x+4Axe2x and plug them and yp the into the equation. Obtain
that 4Ae2x+4Axe2x−5Ae2x−10Axe2x+6Axe2x = 4e2x ⇒ 4A+4Ax−5A−10Ax+6Ax = 4⇒
4A−5A = 4⇒ A = −4. Thus, yp = −4xe2x and the general solution is y = c1e

2x+c2e
3x−4xe2x.

4. The zeros of the characteristic equation are r = ±2i and so yh = c1 cos 2x + c2 sin 2x. We
have that p = 1 and pk(x) = 5x2 so yp = xs(Ax2 + Bx + C)ex. Since 1 is not a zero of
the characteristic equation, s = 0 and so yp = (Ax2 + Bx + C)ex. Find the derivatives y′p =
(2Ax + B)ex + (Ax2 + Bx + C)ex = (2Ax + B + Ax2 + Bx + C)ex and y′′p = (2A + 2Ax +
B)ex + (2Ax+B+Ax2 +Bx+C)ex and plug them and yp the into the equation. Obtain that
(2A+ 2Ax+B)ex + (2Ax+B + Ax2 +Bx+ C)ex + (4Ax2 + 4Bx+ 4C)ex = 5x2ex ⇒

2A+ 2Ax+B + 2Ax+B + Ax2 +Bx+ C + 4Ax2 + 4Bx+ 4C = 5x2

Equating the terms with x2, we obtain that 5A = 5 so A = 1. Equating the terms with x, we
obtain that 4A+5B = 0⇒ 5B = −4A = −4 since A = 1. Hence, B = −4

5
. Equating the terms

with no x, we obtain that = 2A+2B+5C = 0⇒ 5C = −2A−2B = −2+ 8
5

= −2
5

so C = − 2
25
.

Thus, yp = (x2− 4
5
x− 2

25
)ex and the general solution is y = c1 cos 2x+c2 sin 2x+(x2− 4

5
x− 2

25
)ex.

5. The characteristic equation is r2 − 2r + 1 = 0 ⇒ (r − 1)(r − 1) = 0 so r = 1 is a double zero
and yh = c1e

x + c2xe
x. We have that p = 1 and pk(x) = 7x so yp = xs(Ax+B)ex. Since 1 is a

double zero of the characteristic equation s = 2 and so yp = x2(Ax + B)ex = (Ax3 + Bx2)ex.
Similarly as in previous problems, find the derivatives y′p and y′′p and plug them and yp into
the equation. Obtain that A = 7

6
, and B = 0 so yp = 7

6
x3ex and the general solution is

y = c1e
x + c2xe

x + 7
6
x3ex.
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6. The zeros of the characteristic equation are r = −3 and r = 1 and so yh = c1e
−3x + c2e

x.
We have that p + iq = 0 + 3i and pk(x) = 5 so yp = xsAe0x cos 3x + xsBe0x sin 3x. Since
3i is not a zero of the characteristic equation, s = 0 and so yp = A cos 3x + B sin 3x. From
here y′p = −3A sin 3x + 3B cos 3x and y′′p = −9A cos 3x − 9B sin 3x and the equation becomes
−9A cos 3x − 9B sin 3x − 6A sin 3x + 6B cos 3x − 3A cos 3x − 3B sin 3x = 5 sin 3x. Equate the
terms with cos 3x and the terms with sin 3x to obtain two equations in two unknowns.

−9A+ 6B − 3A = 0 and − 9B − 6A− 3B = 5

From the first equation B = 2A and from the second −6A−24A = 5⇒ −30A = 5⇒ A = −1
6
.

Thus B = −1
3

and yp = −1
6

cos 3x − 1
3

sin 3x. The general solution is y = c1e
−3x + c2e

x −
1
6

cos 3x− 1
3

sin 3x.

7. The roots of the characteristic equation r2 − 3r − 10 = (r − 5)(r + 2) = 0 are 5 and −2 so the
homogeneous solution is yh = c1e

5x + c2e
−2x.

You have to consider functions g1(x) = 3xe2x and g2(x) = 5e−2x separately and obtain two
separate particular solutions yp1 and yp2.

For g1(x) = 3xe2x, p = 2 and pk(x) = 3x so yp1 = xs(Ax + B)e2x. Since 2 is not a solution of
the characteristic equation, s = 0 and so yp1 = (Ax+B)e2x.

For g2(x) = 5e−2x, p = −2 and pk(x) = 5 so yp2 = xsCe−2x. Since −2 is a (single) solution of
the characteristic equation, s = 1 and so yp2 = x1Ce−2x = Cxe−2x.

The general solution has the form y = c1e
5x + c2e

−2x + (Ax+B)e2x + Cxe−2x.

8. The characteristic equation is r2 − 8r + 16 = (r − 4)(r − 4) = 0, so r = 4 is a double zero.
The homogeneous solution is yh = c1e

4x + c2xe
4x. Consider the functions g1(x) = 3x2 and

g2(x) = −5e4x separately and obtain two separate particular solutions yp1 and yp2.

For g1(x) = 3x2 = 3x2e0x, p = 0 and pk(x) = 3x2 so yp1 = xs(Ax2 +Bx+C)e0x. Since 0 is not
a solution of the characteristic equation, s = 0 and so yp1 = Ax2 +Bx+ C.

For g2(x) = −5e4x, p = 4 and pk(x) = −5 so yp2 = xsDe4x. Since 4 is a double zero of the
characteristic equation, s = 2, and so yp2 = x2De4x = Dx2e4x.

The general solution has the form y = c1e
4x + c2xe

4x + Ax2 +Bx+ C +Dx2e4x.

9. The characteristic equation r2 + 4r + 13 = 0 has solutions r = −4±
√
16−52
2

= −4±6i
2

= −2 ± 3i.
So, the homogeneous solution is yh = c1e

−2x cos 3x+ c2e
−2x sin 3x.

For g1(x) = −2 sin 3x = −2e0i sin 3x, p + iq = 0 + 3i and pk(x) = −2 so yp1 = xsAe0x cos 3x +
xsBe0x sin 3x. Since 0 + 3i is not a solution of the characteristic equation, s = 0 and so yp1 =
A cos 3x+B sin 3x.

For g2(x) = e−2x cos 3x, p+ iq = 0 + 3i and pk(x) = 1 so yp1 = xsCe−2x cos 3x+xsDe−2x sin 3x.
Since −2 + 3i is a solution of the characteristic equation, s = 1 and so yp2 = x(Ce−2x cos 3x+
De−2x sin 3x) = Cxe−2x cos 3x+Dxe−2x sin 3x.

The general solution has the form y = c1e
−2x cos 3x + c2e

−2x sin 3x + A cos 3x + B sin 3x +
Cxe−2x cos 3x+Dxe−2x sin 3x.
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Applications

Many physical processes can be modeled by linear differential equations. For example, mechanical
oscillations, electric circuits and more.

Mechanical oscillations. Consider a mass m on a spring. Let u(t) denotes the position at time
t. The following forces act on the mass.

1. The gravitational force mg.

2. The spring force Fs that is proportional to the natural length L plus any additional elongation
u(t), so Fs = −k(L+ u) By Hooke’s law, mg = kL where k is a spring constant

k =
mg

L

so that this force is Fs = −mg − ku.

3. The damping or resistive force Fd that may arise because of resistance from the air, internal
energy dissipation, friction between the mass and possible guides etc. It is proportional to the
speed of the mass Fd = ±γu′(t). The constant γ is called the damping constant, and the sign
± depends on the choice of the coordinate system for the motion (recall the problem with a
falling object from the First Order Diff. Eq. handout – the same consideration applies here).
We can choose the coordinate system so that this force acts in the opposite direction from mg
and so Fd = −γu′(t).

4. A possible external force F (t).

The total force F = ma = mu′′, the product of the mass and the acceleration, is equal to the
sum of all four acting forces

mu′′ = mg − k(L+ u)− γu′ + F (t) = mg −mg − ku− γu′ + F (t) = −ku− γu′ + F (t).

Placing all the terms with u, u′ or u′′ on the same side, produces the following equation.

mu′′ + γu′ + ku = F (t)

If γ = 0, the oscillations are said to be undamped, otherwise they are damped.
If F (t) = 0, the oscillations are said to be free, otherwise they are forced.

Undamped free oscillations. The equation
of motion for undamped free oscillations is

mu′′ + ku = 0

Note that the characteristic equation of this
differential equation is mr2 + k = 0 and has so-

lutions r = ±
√

k
m
i. If we denote

√
k
m

by ω0, the
general solution of this equation is

u = c1 cosω0t+ c2 sinω0t
Undamped Free Oscillations
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The graph of such function is a periodic function with constant amplitude. The values of c1
and c2 impact the values of the amplitude and the phase 1 The constant ω0 is called the natural
frequency the constant 2π

ω0
represents the period of the motion.

Damped free oscillations. The equation of motion for damped free oscillations is

mu′′ + γu′ + ku = 0

The solutions of the characteristic equations are r1, r2 =
−γ±
√
γ2−4mk
2m

. Let us consider the sign of the
term under the root.

(i) If γ2 − 4mk > 0, the solutions are
real, different and negative (because γ2 −
4mk < γ2 ⇒

√
γ2 − 4mk < γ ⇒ −γ +√

γ2 − 4mk < 0). So, the solution is u =
c1e

r1t + c2e
r2t for some r1, r2 < 0. The limit

of u is zero when t → ∞ since r1, r2 < 0.
Hence, the mass goes back to original posi-
tion and does not oscillate because no peri-
odic functions are present. This motion is
said to be overdamped.

Overdamped Case

(ii) γ2 − 4mk = 0, the solutions are real, equal
(r1 = r2) and negative. The solution is
u = c1e

r1t + c2te
r1t and u also converges

to zero when t → ∞. Just as in the pre-
vious case, there are no periodic functions
present in the solution so the mass also does
not oscillate. The value of γ that makes
γ2 − 4mk = 0 is called the critical damp-
ing.

In these two cases, there are no oscillations.

Critically damped Case

(iii) γ2 − 4mk < 0, the solutions are complex

r1, r2 = −γ
2m
± i

√
4km−γ2
2m

. So, the solutions
is u = e−γt/(2m)(c1 cosµt + c2 sinµt) where

µ =

√
4km−γ2
2m

. The presence of periodic
functions in the solution indicates the os-
cillations. The term e−γt/(2m) converges to
zero when t→∞, and so do the solution u
as well as its amplitude. Underdamped Case

1In particular, if we put c1 = R cos δ and c2 = R sin δ, then R is the amplitude, δ is the phase, and the solution is

u = R cos δ cosω0t+R sin δ sinω0t = R cos(ω0t− δ).
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So, the mass oscillates about the original position with a decreasing amplitude and the oscil-
lations are getting smaller and smaller as time passes by.

This case occurs when the damping is relatively small (i.e. γ <
√

4mk) and it is referred to
as underdamping. The parameter µ is called the quasi frequency and 2π

µ
is called the quasi

period. The values of c1 and c2 impact the amplitude and the phase. 2

Undamped forced oscillations. The equation of motion for undamped forced oscillations is

mu′′ + ku = F (t)

If the force F is periodic, we can write it as F = F0 cosωt (or F0 sinωt). Recall that the characteristic

equation has solutions ±
√

k
m
i = ±ω0i so that the homogeneous solution is uh = c1 cosω0t+c2 sinω0t.

The particular solution can be found using the Undetermined Coefficients method. The particular
solution has the form

up = ts(A cosωt+B sinωt)
where

• s = 0 if ωi is not a solution of the characteristic equation i.e ω 6= ω0 and

• s = 1 if ωi is a solution of the characteristic equation i.e ω = ω0.

Case ω0 6= ω. In this case, the general solu-
tion has the form

u = c1 cosω0t+ c2 sinω0t+ A cosωt+B sinωt

A function of this form is a periodic function with
periodic amplitude. This type of motion is
known as oscillations with beats.

Case ω0 = ω. In this case, the frequency of
the force is the same as the natural frequency and
the general solution has the form
u = c1 cosω0t+ c2 sinω0t+ t(A cosωt+B sinωt)
Because of the term t which multiplies the
trigonometric functions in the particular solu-
tion, the amplitude of the solution increases when
t → ∞. Thus, a function of this form is a pe-
riodic function with an increasing amplitude.
This type of motion is known as oscillations with
a resonance. Examples of such motion can be
found in mechanics and acoustics. Mechanical
resonance may cause swaying motions leading to a
catastrophic failure of structures such as bridges,
buildings, and vehicles. To prevent this from hap-
pening, such objects should

Beats

Resonance

2In particular, if we put c1 = R cos δ and c2 = R sin δ, the amplitude is given by the function Re−γt/(2m).
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be designed so that the mechanical resonance frequencies of the component parts do not match the
frequencies of any oscillating parts. Like mechanical resonance, acoustic resonance can result in
catastrophic failure of the object at resonance, such as breaking a glass with sound. This happens
when the sound wave has the same frequency as the natural frequency of the glass, the frequency
at which the glass easily vibrates. If the force from the sound wave making the glass vibrate is big
enough, the size of the vibration becomes so large that the glass fractures.

Example 1. Consider a motion of an object modeled by the equation u′′ + 1
4
u′ + u = 0 where

the position u (in meters) is a function of time (in seconds). Assume that the object is set in motion
from equilibrium with an initial velocity of 1 meter per second.

(a) Determine the position u as a function of time.

(b) Graph the solution and classify the type of motion the graph displays by noting what happens
with the amplitude of the solution.

(c) Find the time when the amplitude of the oscillations becomes smaller than .1 meter.

(d) Find the time the mass returns to the equilibrium position for the first time.

Solution. (a) The characteristic equation is r2+ 1
4
r+1 = 0 and it has solutions

− 1
4
±
√

1
16
−4

2
= −1

8
±√

−63
16

2
= −1

8
±
√
63i
8
−.125±.992i. Thus, the general solution is u = c1e

−.125t cos .992t+c2e
−.125t sin .992t.

Since the object is set in motion from the equilibrium position, u(0) = 0. Since it is set in motion
with an initial velocity of 1 m/s, u′(0) = 1. Use the condition u(0) = 0 (plug 0 for t and set u equal
to 0), we have that 0 = c1(1) + c2(0) = c1. To use the condition u′(0) = 1, find u′ first, then set it to
1 and plug 0 for t. As u′ = −.125c1e

−.125t cos .992t − .992c1e
−.125t sin .992t − .125c2e

−.125t sin .992t +
.992c2e

−.125t cos .992t and c1 = 0, we have that 1 = −.125(0)(1)− .992(0)(0)− .125c2(0)+ .992c2(1) =
.992c2 ⇒ c2 = 1

.992
= 1.008. Hence, u = 1.008e−.125t sin .992t.

(b) The presence of sine and cosine in the solu-
tion means that the motion is not overdamped so
there are oscillations. Since e−.125t → 0 for t→∞
and e−.125t is present in both terms, u converges
to 0 meaning that the oscillations have a decreas-
ing amplitude. Thus, this is an underdamped free
oscillator.

(c) The expression 1.008e−.125t represents the
amplitude of the solution. Thus, the oscillations

become smaller than .1 meter after the time when 1.008e−.125t = .1 ⇒ e−.125t = .0992 ⇒ −.125t =
−2.31 ⇒ t = 18.48. So, about 18.5 seconds after the mass is set in motion, the oscillations become
smaller than .1 meter.

(d) The mass is at the equilibrium position when u = 0 ⇒ 1.008e−.125t sin .992t = 0. Since
1.008e−.125t is never zero, this is possible only when sin .992t = 0. Solving for t produces .992t =
sin−1(0) = 0 and, the second solution .992t = π − 0 = π. The first solution corresponds to the
starting position and the second solution t = π

.992
≈ 3.17 seconds is the time when the mass returns

to the equilibrium position for the first time after the starting position.
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Example 2. Consider a motion of a 1-kg mass which stretches a spring by 9.8 meters. Use the
value of 9.8 m/sec2 for g. Assume that there is no damping and that the mass is acted on by an
external force of 1

2
cos 0.8t newtons.

(a) Write down an equation which models the motion.

(b) Assume that the mass is set in motion from resting at its equilibrium position. Determine the
position u as a function of time t.

(c) Graph the solution, and classify the type of motion the graph displays by noting what happens
with the amplitude of the solution.

Solution. (a) The general equation of motion is mu′′+ γu′+ ku = F (t). We are given that m =

1, γ = 0, L = 9.8, and F (t) = 1
2

cos 0.8t. Compute k using the formula k = mg
L
. Thus, k = 1(9.8)

9.8
= 1.

Hence the equation u′′ + u = 1
2

cos 0.8t models this motion.
(b) The characteristic equation is r2 + 1 = 0 and has solutions r = ±i. Hence, the homogeneous

solution is uh = c1 cos t + c2 sin t. For F (t) = 1
2

cos 0.8t, p + iq = 0 + 0.8i, pk(t) = 1
2

and so
up = ts(A cos 0.8t + B sin 0.8t). Since 0.8i is not a solution of the characteristic equation, s = 0
and up = A cos 0.8t + B sin 0.8t. Find u′p = −.8A sin 0.8t + .8B cos 0.8t and u′′p = −.64A cos 0.8t −
.64B sin 0.8t and plug them in the equation to have

−.64A cos 0.8t− .64B sin 0.8t+A cos 0.8t+B sin 0.8t =
1

2
cos 0.8t⇒ .36A cos 0.8t+ .36B sin 0.8t =

1

2
cos 0.8t.

Equating the terms with cosine, .36A = 1
2
⇒ A = 25

18
≈ 1.39. Equating the terms with sine, B = 0.

Thus u = c1 cos t+ c2 sin t+ 25
18

cos 0.8t.
Since the object is set in motion from the equilibrium position, u(0) = 0. Since it is set in motion

from rest, u′(0) = 0. Use the condition u(0) = 0 (plug 0 for t and set u equal to 0), we have that
0 = c1(1) + c2(0) + 25

18
(1) = c1 + 25

18
⇒ c1 = −25

18
. To use the condition u′(0) = 0, find u′ first, then set

it to zero and plug 0 for t. As u′ = −c1 sin t +
c2 cos t − 0.8 25

18
sin 0.8t and c1 = −25

18
, we have

that 0 = −c1(0)+c2(1)−0.8 25
18

(0) = c2 ⇒ c2 = 0.
Hence,

u = −25

18
cos t+

25

18
cos 0.8t.

(c) The presence of trigonometric functions in-
dicate oscillations. The presence of two different
frequencies 1 and 0.8 indicate oscillates with a
periodic amplitude. So, the oscillations are with
beats.

Electric circuits. Consider an electric circuit with the resistance R, the capacitance C and
the inductance L containing a battery producing the voltage E(t) at time t. The current I and the
charge Q are related by I = dQ

dt
. The second Kirchhoff’s law tells us that the applied voltage E(t) is

equal to the sum of voltage drops in the rest of the circuit. Since

• The voltage drop across the resistor is IR,
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• The voltage drop across the capacitor is Q
C
, and

• The voltage drop across the inductor is LdI
dt
,

the following equation models this set up.

L
dI

dt
+RI +

1

C
Q = E(t)

Since I = dQ
dt
, dI
dt

= d2Q
dt2

and so we have a second order linear differential equation

LQ′′ +RQ′ +
1

C
Q = E(t).

The analysis of this equation is completely analogous to the analysis of the equation of mechanical
motion mu′′ + γu′ + ku = F (t).

Example 3. A series circuit has capacitor of C = 0.25 · 10−6 farad and inductor of L = 1 henry.
If the initial charge on the capacitor is 10−6 coulomb and there is no initial current, find the charge
Q as a function of t. Graph the solution and classify the type of motion the graph displays by noting
what happens with the amplitude of the solution.

Solution. Note that R = 0, 1
C

= 4 · 106, and there is no applied voltage so E(t) = 0. Thus, the
general circuit equation LQ′′+RQ′+ 1

C
Q = E(t) becomesQ′′+4·106Q = 0. The characteristic equation

r2 +4 ·106 = 0 has solutions r = ±2000i and so the general solution is Q = c1 cos 2000t+ c2 sin 2000t.

The initial conditions are Q(0) = 10−6 and
Q′(0) = 0. Plugging the first in the equation pro-
duces 106 = c1(1) + c2(0) = c1. The derivative
is Q′ = −2000c1 sin 2000t + 2000c2 cos 2000t so
the second condition produces 0 = −2000c1(0) +
2000c2(1) = 2000c2 ⇒ c2 = 0. Thus, Q =
10−6 cos 2000t. This is an undamped free oscilla-
tor and the solution is a periodic function with a
constant amplitude.

Hyperbolic Sine and Cosine. In many cases, the solutions of differential equations are rep-
resented in terms of hyperbolic sine and cosine rather than in terms of exponential functions. The
hyperbolic sine and cosine are defined as

sinh t =
et − e−t

2
and cosh t =

et + e−t

2

The name “hyperbolic” comes from the fact that (cosh t, sinh t) form a hyperbola, analogously to
the fact that the points (cos t, sin t) form a circle.

Using the definitions of the hyperbolic functions, the following identities can be obtained.

sinh t+ cosh t = et and cosh t− sinh t = e−t

14



Thus,
sinh at+ cosh at = eat and cosh at− sinh at = e−at

Using the hyperbolic functions, we can see the solutions of the equation y′′−a2y = 0 as completely
analogous to y′′ + a2y = 0, where a is positive. Let us compare these solutions.

Recall that the equation y′′ + a2y = 0 has characteristic roots ±ai yielding the general solution
y = c1 cos at + c2 sin at. The equation, y′′ − a2y = 0 has characteristic roots ±a yielding the general
solution y = c1e

at+c2e
−at. Represent this solution using hyperbolic functions and the above identities:

y = c1(sinh at+cosh at)+c2(cosh at−sinh at) = (c1+c2) cosh at+(c1−c2) sinh at. Denoting C1 = c1+c2
and C2 = c1 − c2, we obtain the solution in the form

y = C1 cosh at+ C2 sinh at

that parallels the solutions y = c1 cos at+ c2 sin at of y′′ + a2y = 0.

Converting Higher Order Equations into Systems of First Order
Equations

Recall that a system of n first order differential equations has the form

y′1 = F1(t, y1, . . . , yn), y′2 = F2(t, y1, . . . , yn), . . . , y′n = Fn(t, y1, . . . , yn),

Every differential equation of order n can be converted into a system of n first order
equations. Thus, studying systems encompasses the study of higher order differential equations
as well. In particular, finding numerical solution of higher order equations using Matlab command
ode45 requires this procedure.

A general n-th order differential equation F (y(n), y(n−1), . . . , y′, y, t) = 0 can be converted into a
system of n differential equations of the first order in unknown functions y1, y2, . . . , yn by considering

the substitution y1 = y, y2 = y′ = y′1, y3 = y′′ = y′2, . . . , yn = y(n−1) = y′n−1.

The n− 1 equations above starting from the second to the last one represent n− 1 equations of
the new first order system. The n-th equation of the system is obtained from the original equation
which, using the substitution becomes

F (y′n, yn, yn−1, . . . , y2, y1, t) = 0.

If solving for y′n produces the equation y′n = f(xn, xn−1, . . . , x2, x1, t), this becomes the n-th equation
of the new system. So, the new system of n first order equations is the following.

y′1 = y2
y′2 = y3

. . .
y′n−1 = yn
y′n = = f(yn, yn−1, . . . , y2, y1, t)

Example 4. Convert the following differential equations into a system of first order equations.
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1. y′′ − ty′ + 7y = sin t+ t2 2. y′′′ + 3y′ − 2y = et

Solution. (1) We need to convert the given second order differential equation into a system of
two first order equations. The substitution y1 = y and y2 = y′ converts the given equation in y into
a system in y1 and y2. The two new variables are related by y′1 = y2 and this relation is the first
equation of the new system. With this substitution the given equation becomes y′2 − ty2 + 7y1 =
sin t+ t2 ⇒ y′2 = ty2−7y1 +sin t+ t2 and this last equation is the second equation of the new system.
So, the new system is

y′1 = y2, y′2 = ty2 − 7y1 + sin t+ t2.

(2) We need to convert the given third order differential equation into a system of three first
order equations. The substitution y1 = y, y2 = y′, and y3 = y′′ converts the given equation in y into
a system in y1, y2, and y3. The three new variables are related by y′1 = y2 and y′2 = y3 these two
relations are the first two equations of the new system. With this substitution the given equation
becomes y′3 + 3y2 − 2y1 = et ⇒ y′3 = −3y2 + 2y1 + et and this last equation is the third equation of
the new system. So, the new system is

y′1 = y2, y′2 = y3, and y′3 = −3y2 + 2y1 + et.

Practice Problems.

1. Consider a motion of an object modeled by the equation u′′ + 2u′ + u = 0 where the position
u (in meters) is a function of time (in seconds). Assume that the object is set in motion from
resting at 1 meter from the equilibrium position. Determine the position u as a function of
time. Graph the solution and classify the type of motion the graph displays by noting what
happens with the amplitude of the solution.

2. Consider a motion of a 1-kg mass which stretches a spring by 9.8 meters. Use the value of 9.8
m/sec2 for g. Assume that there is no damping and that the mass is acted on by an external
force of 1

2
cos t newtons.

(a) Write down an equation which models the motion.

(b) Assume that the mass is set in motion by pulling it 1 meter from the equilibrium position
and then releasing it from rest. Determine the position u as a function of time t.

(c) Graph the solution, and classify the type of motion the graph displays by noting what
happens with the amplitude of the solution.

3. Determine the values of γ for which the equation u′′+ γu′+ 9u = 0 has solutions which are not
overdamped.

4. A mass of 0.1 kg stretches a spring 0.05 m. If the mass is set in motion from its equilibrium
position with a downward velocity of 10 m/sec, and if there is no damping, determine the
position u as the function of time t. Graph the solution and classify the type of motion the
graph displays by noting what happens with the amplitude of the solution. Note the period
and the frequency and find the time when the mass first returns to its equilibrium position.
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5. A mass of 20 kg is oscillating on a spring with the spring constant of 3920 N/m in a medium
with the damping constant of 400 kg/sec. If the mass is pulled down additional 2 m and then
released, determine the position u as the function of time t. Graph the solution and classify the
type of motion the graph displays by noting what happens with the amplitude of the solution.

6. A mass of 0.5 kg stretches a spring .1 m. The mass is acted on by an external force of sin t
2

newtons and moves in a medium that impacts a viscous force with the damping constant of 5
kg/sec. If the mass is set in motion from its equilibrium position with an initial velocity of 0.03
m/sec, determine the position u as the function of time t. Graph the solution and classify the
type of motion the graph displays by noting what happens with the amplitude of the solution.

Solutions.

1. The characteristic equation is r2 + 2r + 1 = 0⇒ (r + 1)(r + 1) = 0 so −1 is a double zero and
the general solution is u = c1e

−t + c2te
−t. Since the mass is set in motion from 1 meter from

the equilibrium, u(0) = 1. Since the mass is set from resting, the initial velocity is zero and so
u′(0) = 0.

The condition u(0) = 1 implies 1 = c1(1) +
c2(0) ⇒ c1 = 1. Find the derivative u′ =
−c1e−t + c2e

−t − c2te−t and use u′(0) = 0 and
c1 = 1 to have 0 = −1 + c2(1) − c2(0) =
−1+c2 ⇒ c2 = 1. Thus, u = e−t+te−t. The ab-
sence of trigonometric functions indicates that
there are no oscillations. Hence, this is the
overdamped case. The mass returns to equi-
librium position without oscillations.

2. (a) The general equation of motion is mu′′ + γu′ + ku = F (t). We are given that m = 1, γ =

0, L = 9.8, and F (t) = 1
2

cos t. Compute k using the formula k = mg
L
. Thus, k = 1(9.8)

9.8
= 1.

Hence the equation u′′ + u = 1
2

cos t models this motion.

(b) The characteristic equation is r2 +1 = 0 and has solutions r = ±i. Hence, the homogeneous
solution is uh = c1 cos t + c2 sin t. For F (t) = 1

2
cos t, p + qi = 0 + 1i, pk(t) = 1

2
and so

up = ts(A cos t + B sin t). Since i is a solution of the characteristic equation, s = 1 and up =
At cos t+Bt sin t. Find u′p = A cos t−At sin t+B sin t+Bt cos t and u′′p = −A sin t−A sin t−
At cos t+B cos t+B cos t−Bt sin t and plug them in the equation to have

−A sin t− A sin t− At cos t+B cos t+B cos t−Bt sin t+ At cos t+Bt sin t =
1

2
cos t⇒

−2A sin t+ 2B cos t =
1

2
cos t⇒ −2A = 0 and 2B =

1

2
⇒ A = 0 and B =

1

4
.

Thus, u = c1 cos t+ c2 sin t+ 1
4
t sin t. This example illustrates that the presence of cos function

only in the external force does not exclude the presence if sine function only in the particular
solution.

Since the object is set in motion at 1 meter from the equilibrium position, u(0) = 1. Since it is
set in motion from rest, u′(0) = 0. Using u(0) = 1, 1 = c1(1) + c2(0) + 1

4
(0) = c1 ⇒ c1 = 1.
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Find the derivative u′ = −c1 sin t + c2 cos t +
1
4

sin t+ 1
4
t cos t and use the condition u′(0) = 0.

Thus 0 = −c1(0) + c2(1) + 0 − 0 ⇒ c2 = 0.
Hence,

u = cos t+
1

4
t sin t.

(c) The presence of trigonometric functions in-
dicate oscillations. The presence of t in front of
the sine function indicates an increasing ampli-
tude. So, the oscillations are with a resonance.

3. The solutions are not overdamped if the characteristic equation has complex solutions (since
just in this case the solution has periodic functions present). The characteristic equation is

r2 + γr + 9 = 0. The solutions are r =
−γ±
√
γ2−36

2
. Thus, the complex solutions are present

just if the expression under the root is negative. So, γ2 − 36 < 0 ⇒ (γ − 6)(γ + 6) < 0. This
inequality has the solution −6 < γ < 6. In addition, since γ is nonnegative, this corresponds
to the interval 0 ≤ γ < 6.

4. Find k first by k = mg
L

. So, k = 0.1(9.8)
0.05

= 19.6. Since there is no damping and the oscillations
are free, the equation of motion is mu′′ + ku = 0. Thus, 0.1u′′ + 19.6u = 0 ⇒ u′′ + 196u = 0.
The characteristic equation has solutions r = ±14i and the general solution is u = c1 cos 14t+
c2 sin 14t. Since the mass is set in motion from the equilibrium position u(0) = 0. The initial
velocity is 10 m/sec so u′(0) = 10. From the first initial condition, 0 = c1(1) + c2(0) ⇒
c1 = 0. Since u′ = −14c1 sin 14t + 14c2 cos 14t, the second initial condition produces 10 =
−14c1(0) + 14c2(1)⇒ c2 = 10

14
= 5

7
.

Hence,

u =
5

7
sin 14t.

These are undamped free oscillations: the so-
lution is a periodic function with a constant
amplitude.

The frequency of oscillations is 14 and the pe-
riod is 2π

14
= π

7
.

The mass is at the equilibrium when u = 0.
5
7

sin 14t = 0⇒ sin 14t = 0.

The first solution of this equation is 14t = sin−1(0) = 0 ⇒ t = 0 which just denotes the first
initial condition. The second solution is 14t = π − 0⇒ t = π

14
= .22 seconds which is the time

when the mass first returns to equilibrium position after it is set in motion.

5. The equation of motion is 20u′′ + 400u′ + 3920u = 0. The roots of characteristic equation
20r2 + 400r + 3920 = 0 are −10 ± 4

√
6i. So, the general solution is u = c1e

−10t cos 4
√

6t +
c2e
−10t sin 4

√
6t. The initial condition are u(0) = 2 and u′(0) = 0. From the first condition,

2 = c1(1)+c2(0)⇒ c1 = 2. Find the derivative u′ = −10c1e
−10t cos 4

√
6t−4

√
6c1e

−10t sin 4
√

6t−
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10c2e
−10t sin 4

√
6t + 4

√
6c2e

−10t cos 4
√

6t and use u′(0) = 0 and c1 = 2 to get 0 = −10(2)(1)−
(0) − (0) + 4

√
6c2(1) ⇒ 20 = 4

√
6c2(1) ⇒ c2 = 20

4
√
6

= 5√
6
. Thus, the solution is u =

2e−10t cos 4
√

6t+ 5√
6
e−10t sin 4

√
6t.

(b) The presence of sine and cosine in the solution means that the motion is not overdamped
and that there are oscillations. Since e−10t → 0 for t→∞ and e−10t is present in both terms

of the solution, u converges to 0 meaning that
the oscillations have a decreasing amplitude.

The term e−10t converges to zero rather fast,
so the oscillations become negligible in size
fast too and the graph resembles that of an
overdamped oscillator. Still, the presence of
trigonometric functions indicates that there
are oscillations so the motion is underdamped,
not overdamped.

6. k = 0.5·9.8
.1

= 49, and γ = 5 so the equation of motion is 0.5u′′ + 5u′ + 49u = sin t
2

or, to avoid
fractions, u′′ + 10u′ + 98u = 2 sin t

2
. The characteristic equation is r2 + 10r + 98 = 0 and has

zeros r = −5 ±
√

73i. So, the solution of the homogeneous part is uh = c1e
−5t cos(

√
73t) +

c2e
−5t sin(

√
73t). Since 1

2
i is not a zero of the characteristic equation, s = 0 and a particular

solution is of the form up = A cos t
2

+ B sin t
2
. Find the derivatives, substitute them in the

equation and equate the terms with sines and cosines. The cos-terms equation produces −A
4

+
5B+98A = 0 and the sine equation produces −B

4
−5A+98B = 2. From the first, 391A+20B =

0⇒ B = −391A
20

. Plugging that in the second produces (−400− 3912)A = 160⇒ A = −0.001.

Hence, B = 0.0204 and so u = c1e
−5t cos(

√
73t) + c2e

−5t sin(
√

73t)− 0.001 cos t
2

+ 0.02 sin t
2
.

The initial conditions are u(0) = 0, u′(0) = .03. Using the first one, 0 = c1(1) + c2(0) −
0.001(1) + 0.02(0) ⇒ c1 = 0.001. Find u′ and use the second condition and c1 = .001. Get
0.03 = −5c1 +

√
73c2 + 0.01⇒

√
73c2 = 0.025⇒ c2 = 0.0029.

Thus, u = 0.001e−5t cos(
√

73t) +
0.0029e−5t sin(

√
73t)− 0.001 cos t

2
+ 0.02 sin t

2
.

Since e−5t → 0 for t → ∞, uh converges to 0.
So, after some time only up remains relevant.
Note that the graph looks like that of an un-
damped free oscillator (this is how a graph of
up also looks like) except of the small part at
the beginning (this is the only part where the
presence of uh is visible).
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