Differential Equations

Lia Vas

The Second Exam Review

1. Homogeneous equations with constant coefficients. Solve the following equations.
(a) $y^{\prime \prime}-2 y^{\prime}+5 y=0$
(b) $y^{\prime \prime \prime}-2 y^{\prime \prime}+y^{\prime}=0$
(c) $y^{(4)}-y=0$
(d) $y^{(4)}-5 y^{\prime \prime}-36 y=0$
(e) $y^{(5)}-32 y=0$.
(f) $y^{(5)}+32 y=0$.
2. Non-homogeneous equations with constant coefficients. Variation of Parameters. Solve the following differential equations. Note that parts (a) and (c) cannot be solved using Undetermined Coefficients method.
(a) $y^{\prime \prime}-6 y^{\prime}+9 y=x^{-3} e^{3 x}$.
(b) $y^{\prime \prime}-5 y^{\prime}+6 y=2 e^{x}$
(c) $y^{\prime \prime}+4 y^{\prime}+4 y=x^{-2} e^{-2 x}$
3. Non-homogeneous equations with constant coefficients. Undetermined Coefficients. Find general solution of problems (a)-(d). In problems (e)-(g), find the form of particular solutions and the general solutions. For (e)-(g), you do not have to solve for unknown coefficients in particular solutions.
(a) $y^{\prime \prime}-5 y^{\prime}+6 y=4 e^{2 x}$
(b) $y^{\prime \prime}+4 y=5 x^{2} e^{x}$
(c) $y^{\prime \prime}-2 y^{\prime}+y=7 x e^{x}$
(d) $y^{\prime \prime}+2 y^{\prime}-3 y=5 \sin 3 x$
(e) $y^{\prime \prime}-3 y^{\prime}-10 y=3 x e^{2 x}+5 e^{-2 x}$
(f) $y^{\prime \prime}-8 y^{\prime}+16 y=3 x^{2}-5 e^{4 x}$
(g) $y^{\prime \prime}+4 y^{\prime}+13 y=-2 \sin 3 x+e^{-2 x} \cos 3 x$

4. Applications of higher order differential equations.

(a) Consider a motion of an object modeled by the equation $u^{\prime \prime}+\frac{1}{4} u^{\prime}+u=0$ where the position u (in meters) is a function of time (in seconds). Assume that the object is set in motion from equilibrium with an initial velocity of 1 meter per second. (i) Determine the position u as a function of time. (ii) Graph the solution and classify the type of motion the graph displays by noting what happens with the amplitude of the solution.
(b) Consider a motion of a 1 - kg mass which stretches a spring by 9.8 meters. Use the value of $9.8 \mathrm{~m} / \mathrm{sec}^{2}$ for g. Assume that there is no damping and that the mass is acted on by an external force of $\frac{1}{2} \cos 0.8 t$ newtons. (i) Write down an equation which models the motion. (ii) Assume that the mass is set in motion from resting at its equilibrium position. Determine the position u as a function of time t. (iii) Graph the solution, and classify the type of motion the graph displays by noting what happens with the amplitude of the solution.
(c) Assume that the force in the previous problem changes to $\frac{1}{2} \cos t$ newtons and that the initial conditions are determined by assuming that the mass is set in motion by pulling it 1 meter from the equilibrium position and then releasing it from rest. Do the parts (i) to (iii) of the previous problem in this case.
(d) Consider a motion of an object modeled by the equation $u^{\prime \prime}+2 u^{\prime}+u=0$ where the position u (in meters) is a function of time (in seconds). Assume that the object is set in motion from resting at 1 meter from the equilibrium position. Determine the position u as a function of time. Graph the solution and classify the type of motion the graph displays by noting what happens with the amplitude of the solution.
(e) A series circuit has capacitor of $C=0.25 \cdot 10^{-6}$ farad and inductor of $L=1$ henry. If the initial charge on the capacitor is 10^{-6} coulomb and there is no initial current, find the charge Q as a function of t. Graph the solution and classify the type of motion the graph displays by noting what happens with the amplitude of the solution.
(f) Determine the values of γ for which the equation $u^{\prime \prime}+\gamma u^{\prime}+9 u=0$ has solutions which are not overdamped.

Solutions

1. Homogeneous Equations.
(a) $y^{\prime \prime}-2 y^{\prime}+5 y=0 \Rightarrow r^{2}-2 r+5=0 \Rightarrow r=\frac{2 \pm \sqrt{-16}}{2 x}=1 \pm 2 i \Rightarrow y_{1}=e^{x} \cos 2 x$ and $y_{2}=e^{x} \sin 2 x$. General solution $y=c_{1} e^{x} \cos 2 x+c_{2} e^{x} \sin 2 x$.
(b) $y^{\prime \prime \prime}-2 y^{\prime \prime}+y^{\prime}=0 \Rightarrow r^{3}-2 r^{2}+r=0 \Rightarrow r(r-1)^{2}=0 \Rightarrow r=0$ is a zero and $r=1$ is a double zero $\Rightarrow y_{1}=e^{0 x}=1, y_{2}=e^{x}$ and $y_{3}=x e^{x}$. The general solution is $y=c_{1}+c_{2} e^{x}+c_{3} x e^{x}$.
(c) $y^{(4)}-y=0 \Rightarrow r^{4}-1=0 \Rightarrow\left(r^{2}-1\right)\left(r^{2}+1\right)=0 \Rightarrow r= \pm 1$ and $r= \pm i \Rightarrow$ the general solution is $y=c_{1} e^{x}+c_{2} e^{-x}+c_{3} \cos x+c_{4} \sin x$.
Alternatively, you can find the four solutions by considering $\sqrt[4]{1}=\sqrt[4]{1 e^{0 i}}=1 e^{\frac{2 k \pi}{4} i}=e^{\frac{k \pi}{2} i}$ for $k=0,1,2,3$. Then $r_{0}=1, r_{1}=i, r_{2}=-1$ and $r_{3}=-i$ yield the same general solution.
(d) $y^{(4)}-5 y^{\prime \prime}-36 y=0 \Rightarrow r^{4}-5 r^{2}-36=0 \Rightarrow\left(r^{2}-9\right)\left(r^{2}+4\right)=0 \Rightarrow r= \pm 3$ and $r= \pm 2 i \Rightarrow$ the general solution is $y=c_{1} e^{3 x}+c_{2} e^{-3 x}+c_{3} \cos 2 x+c_{4} \sin 2 x$.
(e) $y^{(5)}-32 y=0 \Rightarrow r^{5}-32=0 \Rightarrow r^{5}=32=32 e^{0 i} \Rightarrow r_{k}=\sqrt[5]{32} e^{\frac{0+2 k \pi}{5} i}=2 e^{\frac{2 k \pi}{5} i}$ for $k=0,1, \ldots, 4 . r_{0}=2 e^{0 i}=2, r_{1}=2 e^{2 \pi i / 5}=2\left(\cos \frac{2 \pi}{5}+i \sin \frac{2 \pi}{5}\right)=0.618+1.902 i$, $r_{2}=2 e^{4 \pi i / 5}=2\left(\cos \frac{4 \pi}{5}+i \sin \frac{4 \pi}{5}\right)=-1.618+1.176 i, r_{3}=2 e^{6 \pi i / 5}=2\left(\cos \frac{6 \pi}{5}+i \sin \frac{6 \pi}{5}\right)=$ $-1.618-1.176 i, r_{4}=2 e^{8 \pi i / 5}=2\left(\cos \frac{8 \pi}{5}+i \sin \frac{8 \pi}{5}\right)=0.618-1.902 i$.
r_{1} and r_{4} are conjugated and r_{2} and r_{3} are conjugated. The general solution is $y=$ $c_{1} e^{2 x}+c_{2} e^{0.618 x} \cos 1.902 x+c_{3} e^{0.618 x} \sin 1.902 x+c_{4} e^{-1.618 x} \cos 1.176 x+c_{5} e^{-1.618 x} \sin 1.176 x$.
(f) $y^{(5)}+32 y=0 \Rightarrow r^{5}+32=0 \Rightarrow r^{5}=-32=32 e^{\pi i} \Rightarrow r_{k}=\sqrt[5]{32} e^{\frac{\pi+2 k \pi}{5} i}=2 e^{\frac{(2 k+1) \pi}{5} i}$ for $k=0,1, \ldots, 4 . r_{0}=2 e^{\pi i / 5}=2\left(\cos \frac{\pi}{5}+i \sin \frac{\pi}{5}\right)=1.618+1.176 i, r_{1}=2 e^{3 \pi i / 5}=$ $2\left(\cos \frac{3 \pi}{5}+i \sin \frac{3 \pi}{5}\right)=-0.618+1.902 i, r_{2}=2 e^{\pi i}=2(\cos \pi+i \sin \pi)=-2, r_{3}=2 e^{7 \pi i / 5}=$ $2\left(\cos \frac{7 \pi}{5}+i \sin \frac{7 \pi}{5}\right)=-0.618-1.902 i, r_{4}=2 e^{9 \pi i / 5}=2\left(\cos \frac{9 \pi}{5}+i \sin \frac{9 \pi}{5}\right)=1.618-1.176 i$. r_{0} and r_{4} are conjugated and r_{1} and r_{3} are conjugated. The general solution is $y=$ $c_{1} e^{-2 x}+c_{2} e^{1.618 x} \cos 1.176 x+c_{3} e^{1.618 x} \sin 1.176 x+c_{4} e^{-0.618 x} \cos 1.902 x+c_{5} e^{-0.618 x} \sin 1.902 x$.
2. Variation of Parameters. See more detailed solutions on the class handout.
(a) $y_{h}=c_{1} e^{3 x}+c_{2} x e^{3 x}$ and $y_{p}=\frac{1}{2} x^{-1} e^{3 x}$. The general solution is $y=c_{1} e^{3 x}+c_{2} x e^{3 x}+\frac{1}{2} x^{-1} e^{3 x}$.
(b) $y_{h}=c_{1} e^{2 x}+c_{2} e^{3 x}$ and $y_{p}=e^{x}$. The general solution is $y=c_{1} e^{2 x}+c_{2} e^{3 x}+e^{x}$.
(c) $y_{h}=c_{1} e^{-2 x}+c_{2} x e^{-2 x}$ and $y_{p}=-\ln x e^{-2 x}-e^{-2 x}$. The general solution is $y=\left(c_{1}-\right.$ 1) $e^{-2 x}+c_{2} x e^{-2 x}-\ln x e^{-2 x}$ which is the same as $y=c_{1} e^{-2 x}+c_{2} x e^{-2 x}-\ln x e^{-2 x}$.
3. Undetermined Coefficients.
(a) The zeros of the characteristic equation are $r=2$ and $r=3$ and $y_{h}=c_{1} e^{2 x}+c_{2} e^{3 x}$. We have that $p=2$ and $p_{k}(x)=4$ so $y_{p}=x^{s} A e^{2 x}$. Since 2 is a (single) zero of the characteristic equation, $s=1$ and so $y_{p}=A x e^{2 x}$. Find the derivatives $y_{p}^{\prime}=A e^{2 x}+2 A x e^{2 x}$ and $y_{p}^{\prime \prime}=2 A e^{2 x}+2 A e^{2 x}+4 A x e^{2 x}=4 A e^{2 x}+4 A x e^{2 x}$ and plug them and y_{p} the into the equation. Obtain that $4 A e^{2 x}+4 A x e^{2 x}-5 A e^{2 x}-10 A x e^{2 x}+6 A x e^{2 x}=4 e^{2 x} \Rightarrow 4 A+4 A x-$ $5 A-10 A x+6 A x=4 \Rightarrow 4 A-5 A=4 \Rightarrow A=-4$. Thus, $y_{p}=-4 x e^{2 x}$ and the general solution is $y=c_{1} e^{2 x}+c_{2} e^{3 x}-4 x e^{2 x}$.
(b) The zeros of the characteristic equation are $r= \pm 2 i$ and so $y_{h}=c_{1} \cos 2 x+c_{2} \sin 2 x$. We have that $p=1$ and $p_{k}(x)=5 x^{2}$ so $y_{p}=x^{s}\left(A x^{2}+B x+C\right) e^{x}$. Since 1 is not a zero of the characteristic equation, $s=0$ and so $y_{p}=\left(A x^{2}+B x+C\right) e^{x}$. Find the derivatives $y_{p}^{\prime}=(2 A x+B) e^{x}+\left(A x^{2}+B x+C\right) e^{x}=\left(2 A x+B+A x^{2}+B x+C\right) e^{x}$ and $y_{p}^{\prime \prime}=(2 A+2 A x+$ $B) e^{x}+\left(2 A x+B+A x^{2}+B x+C\right) e^{x}$ and plug them and y_{p} the into the equation. Obtain that $(2 A+2 A x+B) e^{x}+\left(2 A x+B+A x^{2}+B x+C\right) e^{x}+\left(4 A x^{2}+4 B x+4 C\right) e^{x}=5 x^{2} e^{x} \Rightarrow$ $2 A+2 A x+B+2 A x+B+A x^{2}+B x+C+4 A x^{2}+4 B x+4 C=5 x^{2}$. Equating the terms with x^{2}, we obtain that $5 A=5$ so $A=1$. Equating the terms with x, we obtain that $4 A+5 B=0 \Rightarrow 5 B=-4 A=-4$ since $A=1$. Hence, $B=-\frac{4}{5}$. Equating the terms with no x, we obtain that $=2 A+2 B+5 C=0 \Rightarrow 5 C=-2 A-2 B=-2+\frac{8}{5}=\frac{-2}{5}$ so $C=-\frac{2}{25}$. Thus, $y_{p}=\left(x^{2}-\frac{4}{5} x-\frac{2}{25}\right) e^{x}$ and the general solution is $y=c_{1} \cos 2 x+c_{2} \sin 2 x+\left(x^{2}-\frac{4}{5} x-\frac{2}{25}\right) e^{x}$.
(c) The characteristic equation is $r^{2}-2 r+1=0 \Rightarrow(r-1)(r-1)=0$ so $r=1$ is a double zero and $y_{h}=c_{1} e^{x}+c_{2} x e^{x}$. We have that $p=1$ and $p_{k}(x)=7 x$ so $y_{p}=x^{s}(A x+B) e^{x}$. Since 1 is a double zero of the characteristic equation $s=2$ and so $y_{p}=x^{2}(A x+B) e^{x}=\left(A x^{3}+B x^{2}\right) e^{x}$. Find the derivatives y_{p}^{\prime} and $y_{p}^{\prime \prime}$ and plug them and y_{p} into the equation. Obtain that $A=\frac{7}{6}$, and $B=0$ so $y_{p}=\frac{7}{6} x^{3} e^{x}$ and the general solution is $y=c_{1} e^{x}+c_{2} x e^{x}+\frac{7}{6} x^{3} e^{x}$.
(d) The zeros of the characteristic equation are $r=-3$ and $r=1$ and so $y_{h}=c_{1} e^{-3 x}+c_{2} e^{x}$. We have that $p+i q=0+3 i$ and $p_{k}(x)=5$ so $y_{p}=x^{s} A e^{0 x} \cos 3 x+x^{s} B e^{0 x} \sin 3 x$. Since $3 i$ is not a zero of the characteristic equation, $s=0$ and so $y_{p}=A \cos 3 x+B \sin 3 x$. From here $y_{p}^{\prime}=-3 A \sin 3 x+3 B \cos 3 x$ and $y_{p}^{\prime \prime}=-9 A \cos 3 x-9 B \sin 3 x$ and the equation becomes $-9 A \cos 3 x-9 B \sin 3 x-6 A \sin 3 x+6 B \cos 3 x-3 A \cos 3 x-3 B \sin 3 x=5 \sin 3 x$. Equating the terms with $\cos 3 x$ and the terms with $\sin 3 x$ obtain $-9 A+6 B-3 A=0$ and $-9 B-6 A-3 B=5$. From the first equation $B=2 A$ and from the second $-6 A-24 A=$ $5 \Rightarrow-30 A=5 \Rightarrow A=-\frac{1}{6}$. Thus $B=-\frac{1}{3}$ and $y_{p}=-\frac{1}{6} \cos 3 x-\frac{1}{3} \sin 3 x$. The general solution is $y=c_{1} e^{-3 x}+c_{2} e^{x}-\frac{1}{6} \cos 3 x-\frac{1}{3} \sin 3 x$.
(e) The roots of the characteristic equation $r^{2}-3 r-10=(r-5)(r+2)=0$ are 5 and -2 so the homogeneous solution is $y_{h}=c_{1} e^{5 x}+c_{2} e^{-2 x}$.
You have to consider functions $g_{1}(x)=3 x e^{2 x}$ and $g_{2}(x)=5 e^{-2 x}$ separately and obtain two separate particular solutions $y_{p 1}$ and $y_{p 2}$.
For $g_{1}(x)=3 x e^{2 x}, p=2$ and $p_{k}(x)=3 x$ so $y_{p 1}=x^{s}(A x+B) e^{2 x}$. Since 2 is not a solution of the characteristic equation, $s=0$ and so $y_{p 1}=(A x+B) e^{2 x}$.

For $g_{2}(x)=5 e^{-2 x}, p=-2$ and $p_{k}(x)=5$ so $y_{p 2}=x^{s} C e^{-2 x}$. Since -2 is a (single) solution of the characteristic equation, $s=1$ and so $y_{p 2}=x^{1} C e^{-2 x}=C x e^{-2 x}$.
The general solution has the form $y=c_{1} e^{5 x}+c_{2} e^{-2 x}+(A x+B) e^{2 x}+C x e^{-2 x}$.
(f) The characteristic equation is $r^{2}-8 r+16=(r-4)(r-4)=0$, so $r=4$ is a double zero. The homogeneous solution is $y_{h}=c_{1} e^{4 x}+c_{2} x e^{4 x}$. Consider the functions $g_{1}(x)=3 x^{2}$ and $g_{2}(x)=-5 e^{4 x}$ separately and obtain two separate particular solutions $y_{p 1}$ and $y_{p 2}$.
For $g_{1}(x)=3 x^{2}=3 x^{2} e^{0 x}, p=0$ and $p_{k}(x)=3 x^{2}$ so $y_{p 1}=x^{s}\left(A x^{2}+B x+C\right) e^{0 x}$. Since 0 is not a solution of the characteristic equation, $s=0$ and so $y_{p 1}=A x^{2}+B x+C$.
For $g_{2}(x)=-5 e^{4 x}, p=4$ and $p_{k}(x)=-5$ so $y_{p 2}=x^{s} D e^{4 x}$. Since 4 is a double zero of the characteristic equation, $s=2$, and so $y_{p 2}=x^{2} D e^{4 x}=D x^{2} e^{4 x}$.
The general solution has the form $y=c_{1} e^{4 x}+c_{2} x e^{4 x}+A x^{2}+B x+C+D x^{2} e^{4 x}$.
(g) The characteristic equation $r^{2}+4 r+13=0$ has solutions $r=\frac{-4 \pm \sqrt{16-52}}{2}=\frac{-4 \pm 6 i}{2}=-2 \pm 3 i$. So, the homogeneous solution is $y_{h}=c_{1} e^{-2 x} \cos 3 x+c_{2} e^{-2 x} \sin 3 x$.
For $g_{1}(x)=-2 \sin 3 x=-2 e^{0 i} \sin 3 x, p+i q=0+3 i$ and $p_{k}(x)=-2$ so $y_{p 1}=$ $x^{s} A e^{0 x} \cos 3 x+x^{s} B e^{0 x} \sin 3 x$. Since $0+3 i$ is not a solution of the characteristic equation, $s=0$ and so $y_{p 1}=A \cos 3 x+B \sin 3 x$.
For $g_{2}(x)=e^{-2 x} \cos 3 x, p+i q=0+3 i$ and $p_{k}(x)=1$ so $y_{p 1}=x^{s} C e^{-2 x} \cos 3 x+$ $x^{s} D e^{-2 x} \sin 3 x$. Since $-2+3 i$ is a solution of the characteristic equation, $s=1$ and so $y_{p 2}=x\left(C e^{-2 x} \cos 3 x+D e^{-2 x} \sin 3 x\right)=C x e^{-2 x} \cos 3 x+D x e^{-2 x} \sin 3 x$.
The general solution has the form $y=c_{1} e^{-2 x} \cos 3 x+c_{2} e^{-2 x} \sin 3 x+A \cos 3 x+B \sin 3 x+$ $C x e^{-2 x} \cos 3 x+D x e^{-2 x} \sin 3 x$.
4. Applications.
(a) (i) The characteristic equation is $r^{2}+\frac{1}{4} r+1=0$ and it has solutions $\frac{-\frac{1}{4} \pm \sqrt{\frac{1}{16}-4}}{2}=$ $\frac{-1}{8} \pm \frac{\sqrt{\frac{-63}{16}}}{2}=\frac{-1}{8} \pm \frac{\sqrt{633}}{8}-.125 \pm .992 i$. Thus, the general solution is $u=c_{1} e^{-.125 t} \cos .992 t+$ $c_{2} e^{-.125 t} \sin .992 t$. Since the object is set in motion from the equilibrium position, $u(0)=0$. Since it is set in motion with an initial velocity of $1 \mathrm{~m} / \mathrm{s}, u^{\prime}(0)=1$. Use the condition $u(0)=0$ (plug 0 for t and set u equal to 0), we have that $0=c_{1}(1)+c_{2}(0)=c_{1}$. To use the condition $u^{\prime}(0)=1$, find u^{\prime} first, then set it to 1 and plug 0 for t. As $u^{\prime}=$ $-.125 c_{1} e^{-.125 t} \cos .992 t-.992 c_{1} e^{-.125 t} \sin .992 t-.125 c_{2} e^{-.125 t} \sin .992 t+.992 c_{2} e^{-.125 t} \cos .992 t$ and $c_{1}=0$, we have that $1=-.125(0)(1)-.992(0)(0)-.125 c_{2}(0)+.992 c_{2}(1)=.992 c_{2} \Rightarrow$ $c_{2}=\frac{1}{.992}=1.008$. Hence, $u=1.008 e^{-.125 t} \sin .992 t$
(ii) The presence of sine and cosine in the solution means that the motion is not overdamped so there are oscillations. Since $e^{-.125 t} \rightarrow 0$ for $t \rightarrow \infty$ and $e^{-.125 t}$ is present in both terms, u converges to 0 meaning that the oscillations have a decreasing amplitude. Thus, this is an underdamped free oscillator.

(b) (i) The general equation of motion is $m u^{\prime \prime}+\gamma u^{\prime}+k u=F(t)$. We are given that $m=$ $1, \gamma=0, L=9.8$, and $F(t)=\frac{1}{2} \cos 0.8 t$. Compute k using the formula $k=\frac{m g}{L}$. Thus,
$k=\frac{1(9.8)}{9.8}=1$. Hence the equation $u^{\prime \prime}+u=\frac{1}{2} \cos 0.8 t$ models this motion. (ii) The characteristic equation is $r^{2}+1=0$ and has solutions $r= \pm i$. Hence, the homogeneous solution is $u_{h}=c_{1} \cos t+c_{2} \sin t$. For $F(t)=\frac{1}{2} \cos 0.8 t, p+i q=0+0.8 i, p_{k}(t)=\frac{1}{2}$ and so $u_{p}=t^{s}(A \cos 0.8 t+B \sin 0.8 t)$. Since $0.8 i$ is not a solution of the characteristic equation, $s=0$ and $u_{p}=A \cos 0.8 t+B \sin 0.8 t$. Find $u_{p}^{\prime}=-.8 A \sin 0.8 t+.8 B \cos 0.8 t$ and $u_{p}^{\prime \prime}=-.64 A \cos 0.8 t-.64 B \sin 0.8 t$ and plug them in the equation to have $-.64 A \cos 0.8 t-$ $.64 B \sin 0.8 t+A \cos 0.8 t+B \sin 0.8 t=\frac{1}{2} \cos 0.8 t \Rightarrow .36 A \cos 0.8 t+.36 B \sin 0.8 t=\frac{1}{2} \cos 0.8 t$. Equating the terms with cosine, $.36 A=\frac{1}{2} \Rightarrow A=\frac{25}{18} \approx 1.39$. Equating the terms with sine, $B=0$. Thus $u=c_{1} \cos t+c_{2} \sin t+\frac{25}{18} \cos 0.8 t$.
The initial conditions are $u(0)=1$ and $u^{\prime}(0)=0$. Using the first condition, we have that $0=c_{1}(1)+c_{2}(0)+\frac{25}{18}(1)=c_{1}+\frac{25}{18} \Rightarrow c_{1}=-\frac{25}{18}$. As $u^{\prime}=-c_{1} \sin t+c_{2} \cos t-0.8 \frac{25}{18} \sin 0.8 t$, $u^{\prime}(0)=0$,
and $c_{1}=-\frac{25}{18}$, we have that $0=-c_{1}(0)+$ $c_{2}(1)-0.8 \frac{25}{18}(0)=c_{2} \Rightarrow c_{2}=0$. Hence, $u=-\frac{25}{18} \cos t+\frac{25}{18} \cos 0.8 t$.
(iii) The presence of trigonometric functions indicate oscillations. The presence of two different frequencies 1 and 0.8 indicate oscillates with a periodic amplitude. So, the oscillations are with beats.

(c) (i) The equation is $u^{\prime \prime}+u=\frac{1}{2} \cos t$. (ii) The homogeneous solution is $u_{h}=c_{1} \cos t+c_{2} \sin t$. For $F(t)=\frac{1}{2} \cos t, p+q i=0+1 i, p_{k}(t)=\frac{1}{2}$ and so $u_{p}=t^{s}(A \cos t+B \sin t)$. Since i is a solution of the characteristic equation, $s=1$ and $u_{p}=A t \cos t+B t \sin t$. Find $u_{p}^{\prime}=A \cos t-A t \sin t+B \sin t+B t \cos t$ and $u_{p}^{\prime \prime}=-A \sin t-A \sin t-A t \cos t+B \cos t+$ $B \cos t-B t \sin t$ and plug them in the equation to have $-A \sin t-A \sin t-A t \cos t+$ $B \cos t+B \cos t-B t \sin t+A t \cos t+B t \sin t=\frac{1}{2} \cos t \Rightarrow-2 A \sin t+2 B \cos t=\frac{1}{2} \cos t \Rightarrow$ $-2 A=0$ and $2 B=\frac{1}{2} \Rightarrow A=0$ and $B=\frac{1}{4}$. Thus, $u=c_{1} \cos t+c_{2} \sin t+\frac{1}{4} t \sin t$. Since the object is set in motion at 1 meter from the equilibrium position, $u(0)=1$. Since it is set in motion from rest, $u^{\prime}(0)=0$. Using $u(0)=1,1=c_{1}(1)+c_{2}(0)+\frac{1}{4}(0)=c_{1} \Rightarrow c_{1}=1$.

Find the derivative $u^{\prime}=-c_{1} \sin t+c_{2} \cos t+$ $\frac{1}{4} \sin t+\frac{1}{4} t \cos t$ and use the condition $u^{\prime}(0)=$ 0 . Thus $0=-c_{1}(0)+c_{2}(1)+0-0 \Rightarrow c_{2}=0$. Hence, $u=\cos t+\frac{1}{4} t \sin t$.
(iii) The presence of trigonometric functions indicate oscillations. The presence of t in front of the sine function indicates an increasing amplitude. So, the oscillations are with a resonance.

(d) The characteristic equation is $r^{2}+2 r+1=0 \Rightarrow(r+1)(r+1)=0$ so -1 is a double zero and the general solution is $u=c_{1} e^{-t}+c_{2} t e^{-t}$. Since the mass is set in motion from 1 meter from the equilibrium, $u(0)=1$. Since the mass is set from resting, the initial velocity is zero and so $u^{\prime}(0)=0$. Using $u(0)=1$, obtain $1=c_{1}(1)+c_{2}(0) \Rightarrow c_{1}=1$.

As $u^{\prime}=-c_{1} e^{-t}+c_{2} e^{-t}-c_{2} t e^{-t}, u^{\prime}(0)=0$, and $c_{1}=1,0=-1+c_{2}(1)-c_{2}(0)=$ $-1+c_{2} \Rightarrow c_{2}=1$. Thus, $u=e^{-t}+t e^{-t}$. The absence of trigonometric functions indicates that there are no oscillations. Hence, this is the overdamped case. The mass returns to equilibrium position without oscillations.

(e) Note that $R=0, \frac{1}{C}=4 \cdot 10^{6}$, and there is no applied voltage so $E(t)=0$. Thus, the general circuit equation $L Q^{\prime \prime}+R Q^{\prime}+\frac{1}{C} Q=E(t)$ becomes $Q^{\prime \prime}+4 \cdot 10^{6} Q=0$. The characteristic equation $r^{2}+4 \cdot 10^{6}=0$ has solutions $r= \pm 2000 i$ and so the general solution is $Q=c_{1} \cos 2000 t+c_{2} \sin 2000 t$.

The initial conditions are $Q(0)=10^{-6}$ and $Q^{\prime}(0)=0$. The first implies $10^{6}=c_{1}(1)+$ $c_{2}(0)=c_{1}$. As $Q^{\prime}=-2000 c_{1} \sin 2000 t+$ $2000 c_{2} \cos 2000 t$, the second implies $0=$ $-2000 c_{1}(0)+2000 c_{2}(1)=2000 c_{2} \Rightarrow c_{2}=0$. Thus, $Q=10^{-6} \cos 2000 t$. This is an undamped free oscillator and the solution is a periodic function with a constant amplitude.

(f) The solutions are not overdamped if the characteristic equation has complex solutions (since just in this case the solution has periodic functions present). The characteristic equation is $r^{2}+\gamma r+9=0$. The solutions are $r=\frac{-\gamma \pm \sqrt{\gamma^{2}-36}}{2}$. Thus, the complex solutions are present just if the expression under the root is negative. So, $\gamma^{2}-36<0 \Rightarrow(\gamma-6)(\gamma+$ $6)<0$. This inequality has the solution $-6<\gamma<6$. In addition, since γ is nonnegative, this corresponds to the interval $0 \leq \gamma<6$.

