Differential Equations Lia Vas

The Second Exam Review

- 1. Homogeneous equations with constant coefficients. Solve the following equations.
 - (a) y'' 2y' + 5y = 0(b) y''' - 2y'' + y' = 0(c) $y^{(4)} - y = 0$ (d) $y^{(4)} - 5y'' - 36y = 0$ (e) $y^{(5)} - 32y = 0$. (f) $y^{(5)} + 32y = 0$.
- 2. Non-homogeneous equations with constant coefficients. Variation of Parameters. Solve the following differential equations. Note that parts (a) and (c) cannot be solved using Undetermined Coefficients method.

(a)
$$y'' - 6y' + 9y = x^{-3}e^{3x}$$
. (b) $y'' - 5y' + 6y = 2e^x$ (c) $y'' + 4y' + 4y = x^{-2}e^{-2x}$

- 3. Non-homogeneous equations with constant coefficients. Undetermined Coefficients. Find general solution of problems (a)–(d). In problems (e)–(g), find the *form* of particular solutions and the general solutions. For (e)–(g), you **do not** have to solve for unknown coefficients in particular solutions.
 - (a) $y'' 5y' + 6y = 4e^{2x}$ (b) $y'' + 4y = 5x^2e^x$ (c) $y'' - 2y' + y = 7xe^x$ (d) $y'' + 2y' - 3y = 5\sin 3x$ (e) $y'' - 3y' - 10y = 3xe^{2x} + 5e^{-2x}$ (f) $y'' - 8y' + 16y = 3x^2 - 5e^{4x}$ (g) $y'' + 4y' + 13y = -2\sin 3x + e^{-2x}\cos 3x$

4. Applications of higher order differential equations.

- (a) Consider a motion of an object modeled by the equation $u'' + \frac{1}{4}u' + u = 0$ where the position u (in meters) is a function of time (in seconds). Assume that the object is set in motion from equilibrium with an initial velocity of 1 meter per second. (i) Determine the position u as a function of time. (ii) Graph the solution and classify the type of motion the graph displays by noting what happens with the amplitude of the solution.
- (b) Consider a motion of a 1-kg mass which stretches a spring by 9.8 meters. Use the value of 9.8 m/sec² for g. Assume that there is no damping and that the mass is acted on by an external force of $\frac{1}{2}\cos 0.8t$ newtons. (i) Write down an equation which models the motion. (ii) Assume that the mass is set in motion from resting at its equilibrium position. Determine the position u as a function of time t. (iii) Graph the solution, and classify the type of motion the graph displays by noting what happens with the amplitude of the solution.
- (c) Assume that the force in the previous problem changes to $\frac{1}{2}\cos t$ newtons and that the initial conditions are determined by assuming that the mass is set in motion by pulling it 1 meter from the equilibrium position and then releasing it from rest. Do the parts (i) to (iii) of the previous problem in this case.

- (d) Consider a motion of an object modeled by the equation u'' + 2u' + u = 0 where the position u (in meters) is a function of time (in seconds). Assume that the object is set in motion from resting at 1 meter from the equilibrium position. Determine the position u as a function of time. Graph the solution and classify the type of motion the graph displays by noting what happens with the amplitude of the solution.
- (e) A series circuit has capacitor of $C = 0.25 \cdot 10^{-6}$ farad and inductor of L = 1 henry. If the initial charge on the capacitor is 10^{-6} coulomb and there is no initial current, find the charge Q as a function of t. Graph the solution and classify the type of motion the graph displays by noting what happens with the amplitude of the solution.
- (f) Determine the values of γ for which the equation $u'' + \gamma u' + 9u = 0$ has solutions which are not overdamped.

Solutions

- 1. Homogeneous Equations.
 - (a) $y'' 2y' + 5y = 0 \Rightarrow r^2 2r + 5 = 0 \Rightarrow r = \frac{2\pm\sqrt{-16}}{2} = 1 \pm 2i \Rightarrow y_1 = e^x \cos 2x$ and $y_2 = e^x \sin 2x$. General solution $y = c_1 e^x \cos 2x + c_2 e^x \sin 2x$.
 - (b) $y''' 2y'' + y' = 0 \Rightarrow r^3 2r^2 + r = 0 \Rightarrow r(r-1)^2 = 0 \Rightarrow r = 0$ is a zero and r = 1 is a double zero $\Rightarrow y_1 = e^{0x} = 1$, $y_2 = e^x$ and $y_3 = xe^x$. The general solution is $y = c_1 + c_2e^x + c_3xe^x$.
 - (c) $y^{(4)} y = 0 \Rightarrow r^4 1 = 0 \Rightarrow (r^2 1)(r^2 + 1) = 0 \Rightarrow r = \pm 1$ and $r = \pm i \Rightarrow$ the general solution is $y = c_1 e^x + c_2 e^{-x} + c_3 \cos x + c_4 \sin x$. Alternatively, you can find the four solutions by considering $\sqrt[4]{1} = \sqrt[4]{1e^{0i}} = 1 e^{\frac{2k\pi}{4}i} = e^{\frac{k\pi}{2}i}$ for k = 0, 1, 2, 3. Then $r_0 = 1, r_1 = i, r_2 = -1$ and $r_3 = -i$ yield the same general solution.
 - (d) $y^{(4)} 5y'' 36y = 0 \Rightarrow r^4 5r^2 36 = 0 \Rightarrow (r^2 9)(r^2 + 4) = 0 \Rightarrow r = \pm 3 \text{ and } r = \pm 2i \Rightarrow$ the general solution is $y = c_1 e^{3x} + c_2 e^{-3x} + c_3 \cos 2x + c_4 \sin 2x$.
 - (e) $y^{(5)} 32y = 0 \Rightarrow r^5 32 = 0 \Rightarrow r^5 = 32 = 32e^{0i} \Rightarrow r_k = \sqrt[5]{32}e^{\frac{0+2k\pi}{5}i} = 2e^{\frac{2k\pi}{5}i}$ for $k = 0, 1, \dots, 4$. $r_0 = 2e^{0i} = 2$, $r_1 = 2e^{2\pi i/5} = 2(\cos\frac{2\pi}{5} + i\sin\frac{2\pi}{5}) = 0.618 + 1.902i$, $r_2 = 2e^{4\pi i/5} = 2(\cos\frac{4\pi}{5} + i\sin\frac{4\pi}{5}) = -1.618 + 1.176i$, $r_3 = 2e^{6\pi i/5} = 2(\cos\frac{6\pi}{5} + i\sin\frac{6\pi}{5}) = -1.618 1.176i$, $r_4 = 2e^{8\pi i/5} = 2(\cos\frac{8\pi}{5} + i\sin\frac{8\pi}{5}) = 0.618 1.902i$.

 r_1 and r_4 are conjugated and r_2 and r_3 are conjugated. The general solution is $y = c_1 e^{2x} + c_2 e^{0.618x} \cos 1.902x + c_3 e^{0.618x} \sin 1.902x + c_4 e^{-1.618x} \cos 1.176x + c_5 e^{-1.618x} \sin 1.176x$.

- (f) $y^{(5)} + 32y = 0 \Rightarrow r^5 + 32 = 0 \Rightarrow r^5 = -32 = 32e^{\pi i} \Rightarrow r_k = \sqrt[5]{32}e^{\frac{\pi i + 2k\pi}{5}i} = 2e^{\frac{(2k+1)\pi}{5}i}$ for $k = 0, 1, \dots, 4$. $r_0 = 2e^{\pi i/5} = 2(\cos\frac{\pi}{5} + i\sin\frac{\pi}{5}) = 1.618 + 1.176i$, $r_1 = 2e^{3\pi i/5} = 2(\cos\frac{3\pi}{5} + i\sin\frac{3\pi}{5}) = -0.618 + 1.902i$, $r_2 = 2e^{\pi i} = 2(\cos\pi + i\sin\pi) = -2$, $r_3 = 2e^{7\pi i/5} = 2(\cos\frac{7\pi}{5} + i\sin\frac{7\pi}{5}) = -0.618 - 1.902i$, $r_4 = 2e^{9\pi i/5} = 2(\cos\frac{9\pi}{5} + i\sin\frac{9\pi}{5}) = 1.618 - 1.176i$. r_0 and r_4 are conjugated and r_1 and r_3 are conjugated. The general solution is $y = c_1e^{-2x} + c_2e^{1.618x}\cos 1.176x + c_3e^{1.618x}\sin 1.176x + c_4e^{-0.618x}\cos 1.902x + c_5e^{-0.618x}\sin 1.902x$.
- 2. Variation of Parameters. See more detailed solutions on the class handout.

(a)
$$y_h = c_1 e^{3x} + c_2 x e^{3x}$$
 and $y_p = \frac{1}{2} x^{-1} e^{3x}$. The general solution is $y = c_1 e^{3x} + c_2 x e^{3x} + \frac{1}{2} x^{-1} e^{3x}$.

- (b) $y_h = c_1 e^{2x} + c_2 e^{3x}$ and $y_p = e^x$. The general solution is $y = c_1 e^{2x} + c_2 e^{3x} + e^x$.
- (c) $y_h = c_1 e^{-2x} + c_2 x e^{-2x}$ and $y_p = -\ln x \ e^{-2x} e^{-2x}$. The general solution is $y = (c_1 1)e^{-2x} + c_2 x e^{-2x} \ln x \ e^{-2x}$ which is the same as $y = c_1 e^{-2x} + c_2 x e^{-2x} \ln x \ e^{-2x}$.
- 3. Undetermined Coefficients.
 - (a) The zeros of the characteristic equation are r = 2 and r = 3 and $y_h = c_1 e^{2x} + c_2 e^{3x}$. We have that p = 2 and $p_k(x) = 4$ so $y_p = x^s A e^{2x}$. Since 2 is a (single) zero of the characteristic equation, s = 1 and so $y_p = Axe^{2x}$. Find the derivatives $y'_p = Ae^{2x} + 2Axe^{2x}$ and $y''_p = 2Ae^{2x} + 2Ae^{2x} + 4Axe^{2x} = 4Ae^{2x} + 4Axe^{2x}$ and plug them and y_p the into the equation. Obtain that $4Ae^{2x} + 4Axe^{2x} - 5Ae^{2x} - 10Axe^{2x} + 6Axe^{2x} = 4e^{2x} \Rightarrow 4A + 4Ax - 5A - 10Ax + 6Ax = 4 \Rightarrow 4A - 5A = 4 \Rightarrow A = -4$. Thus, $y_p = -4xe^{2x}$ and the general solution is $y = c_1e^{2x} + c_2e^{3x} - 4xe^{2x}$.
 - (b) The zeros of the characteristic equation are $r = \pm 2i$ and so $y_h = c_1 \cos 2x + c_2 \sin 2x$. We have that p = 1 and $p_k(x) = 5x^2$ so $y_p = x^s(Ax^2 + Bx + C)e^x$. Since 1 is not a zero of the characteristic equation, s = 0 and so $y_p = (Ax^2 + Bx + C)e^x$. Find the derivatives $y'_p = (2Ax + B)e^x + (Ax^2 + Bx + C)e^x = (2Ax + B + Ax^2 + Bx + C)e^x$ and $y''_p = (2A + 2Ax + B)e^x + (2Ax + B + Ax^2 + Bx + C)e^x$ and plug them and y_p the into the equation. Obtain that $(2A + 2Ax + B)e^x + (2Ax + B + Ax^2 + Bx + C)e^x + (4Ax^2 + 4Bx + 4C)e^x = 5x^2e^x \Rightarrow 2A + 2Ax + B + 2Ax + B + Ax^2 + Bx + C + 4Ax^2 + 4Bx + 4C = 5x^2$. Equating the terms with x^2 , we obtain that 5A = 5 so A = 1. Equating the terms with x, we obtain that $4A + 5B = 0 \Rightarrow 5B = -4A = -4$ since A = 1. Hence, $B = -\frac{4}{5}$. Equating the terms with no x, we obtain that $2A + 2B + 5C = 0 \Rightarrow 5C = -2A 2B = -2 + \frac{8}{5} = \frac{-2}{5}$ so $C = -\frac{2}{25}$. Thus, $y_p = (x^2 \frac{4}{5}x \frac{2}{25})e^x$ and the general solution is $y = c_1 \cos 2x + c_2 \sin 2x + (x^2 \frac{4}{5}x \frac{2}{25})e^x$.
 - (c) The characteristic equation is $r^2 2r + 1 = 0 \Rightarrow (r-1)(r-1) = 0$ so r = 1 is a double zero and $y_h = c_1 e^x + c_2 x e^x$. We have that p = 1 and $p_k(x) = 7x$ so $y_p = x^s (Ax+B)e^x$. Since 1 is a double zero of the characteristic equation s = 2 and so $y_p = x^2 (Ax+B)e^x = (Ax^3+Bx^2)e^x$. Find the derivatives y'_p and y''_p and plug them and y_p into the equation. Obtain that $A = \frac{7}{6}$, and B = 0 so $y_p = \frac{7}{6}x^3e^x$ and the general solution is $y = c_1e^x + c_2xe^x + \frac{7}{6}x^3e^x$.
 - (d) The zeros of the characteristic equation are r = -3 and r = 1 and so $y_h = c_1 e^{-3x} + c_2 e^x$. We have that p + iq = 0 + 3i and $p_k(x) = 5$ so $y_p = x^s A e^{0x} \cos 3x + x^s B e^{0x} \sin 3x$. Since 3i is not a zero of the characteristic equation, s = 0 and so $y_p = A \cos 3x + B \sin 3x$. From here $y'_p = -3A \sin 3x + 3B \cos 3x$ and $y''_p = -9A \cos 3x - 9B \sin 3x$ and the equation becomes $-9A \cos 3x - 9B \sin 3x - 6A \sin 3x + 6B \cos 3x - 3A \cos 3x - 3B \sin 3x = 5 \sin 3x$. Equating the terms with $\cos 3x$ and the terms with $\sin 3x$ obtain -9A + 6B - 3A = 0 and -9B - 6A - 3B = 5. From the first equation B = 2A and from the second $-6A - 24A = 5 \Rightarrow -30A = 5 \Rightarrow A = -\frac{1}{6}$. Thus $B = -\frac{1}{3}$ and $y_p = -\frac{1}{6} \cos 3x - \frac{1}{3} \sin 3x$. The general solution is $y = c_1 e^{-3x} + c_2 e^x - \frac{1}{6} \cos 3x - \frac{1}{3} \sin 3x$.
 - (e) The roots of the characteristic equation r² 3r 10 = (r 5)(r + 2) = 0 are 5 and -2 so the homogeneous solution is y_h = c₁e^{5x} + c₂e^{-2x}. You have to consider functions g₁(x) = 3xe^{2x} and g₂(x) = 5e^{-2x} separately and obtain two separate particular solutions y_{p1} and y_{p2}. For g₁(x) = 3xe^{2x}, p = 2 and p_k(x) = 3x so y_{p1} = x^s(Ax + B)e^{2x}. Since 2 is not a solution

For $g_1(x) = 3xe^{2x}$, p = 2 and $p_k(x) = 3x$ so $y_{p1} = x^s(Ax + B)e^{2x}$. Since 2 is not a solution of the characteristic equation, s = 0 and so $y_{p1} = (Ax + B)e^{2x}$.

For $g_2(x) = 5e^{-2x}$, p = -2 and $p_k(x) = 5$ so $y_{p2} = x^s C e^{-2x}$. Since -2 is a (single) solution of the characteristic equation, s = 1 and so $y_{p2} = x^1 C e^{-2x} = Cx e^{-2x}$. The general solution has the form $y = c_1 e^{5x} + c_2 e^{-2x} + (Ax + B)e^{2x} + Cx e^{-2x}$.

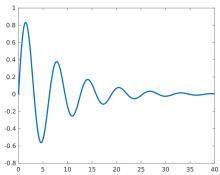
- (f) The characteristic equation is $r^2 8r + 16 = (r 4)(r 4) = 0$, so r = 4 is a double zero. The homogeneous solution is $y_h = c_1 e^{4x} + c_2 x e^{4x}$. Consider the functions $g_1(x) = 3x^2$ and $g_2(x) = -5e^{4x}$ separately and obtain two separate particular solutions y_{p1} and y_{p2} . For $g_1(x) = 3x^2 = 3x^2e^{0x}$, p = 0 and $p_k(x) = 3x^2$ so $y_{p1} = x^s(Ax^2 + Bx + C)e^{0x}$. Since 0 is not a solution of the characteristic equation, s = 0 and so $y_{p1} = Ax^2 + Bx + C$. For $g_2(x) = -5e^{4x}$, p = 4 and $p_k(x) = -5$ so $y_{p2} = x^s De^{4x}$. Since 4 is a double zero of the characteristic equation, s = 2, and so $y_{p2} = x^2 De^{4x} = Dx^2 e^{4x}$. The general solution has the form $y = c_1 e^{4x} + c_2 x e^{4x} + Ax^2 + Bx + C + Dx^2 e^{4x}$.
- (g) The characteristic equation $r^2 + 4r + 13 = 0$ has solutions $r = \frac{-4\pm\sqrt{16-52}}{2} = \frac{-4\pm6i}{2} = -2\pm3i$. So, the homogeneous solution is $y_h = c_1 e^{-2x} \cos 3x + c_2 e^{-2x} \sin 3x$. For $g_1(x) = -2\sin 3x = -2e^{0i}\sin 3x$, p + iq = 0 + 3i and $p_k(x) = -2$ so $y_{p1} = x^s A e^{0x} \cos 3x + x^s B e^{0x} \sin 3x$. Since 0 + 3i is not a solution of the characteristic equa-

tion, s = 0 and so $y_{p1} = A \cos 3x + B \sin 3x$. For $g_2(x) = e^{-2x} \cos 3x$, p + iq = 0 + 3i and $p_k(x) = 1$ so $y_{p1} = x^s C e^{-2x} \cos 3x + x^s D e^{-2x} \sin 3x$. Since -2 + 3i is a solution of the characteristic equation, s = 1 and so $y_{p2} = x(C e^{-2x} \cos 3x + D e^{-2x} \sin 3x) = C x e^{-2x} \cos 3x + D x e^{-2x} \sin 3x$.

The general solution has the form $y = c_1 e^{-2x} \cos 3x + c_2 e^{-2x} \sin 3x + A \cos 3x + B \sin 3x + Cx e^{-2x} \cos 3x + Dx e^{-2x} \sin 3x$.

- 4. Applications.
 - (a) (i) The characteristic equation is $r^2 + \frac{1}{4}r + 1 = 0$ and it has solutions $\frac{-\frac{1}{4} \pm \sqrt{\frac{1}{16} 4}}{2} = \frac{-1}{8} \pm \frac{\sqrt{\frac{-63}{16}}}{2} = \frac{-1}{8} \pm \frac{\sqrt{63}i}{8} .125 \pm .992i$. Thus, the general solution is $u = c_1 e^{-.125t} \cos .992t + c_2 e^{-.125t} \sin .992t$. Since the object is set in motion from the equilibrium position, u(0) = 0. Since it is set in motion with an initial velocity of 1 m/s, u'(0) = 1. Use the condition u(0) = 0 (plug 0 for t and set u equal to 0), we have that $0 = c_1(1) + c_2(0) = c_1$. To use the condition u'(0) = 1, find u' first, then set it to 1 and plug 0 for t. As $u' = -.125c_1e^{-.125t}\cos .992t - .992c_1e^{-.125t}\sin .992t - .125c_2e^{-.125t}\sin .992t + .992c_2e^{-.125t}\cos .992t$ and $c_1 = 0$, we have that $1 = -.125(0)(1) - .992(0)(0) - .125c_2(0) + .992c_2(1) = .992c_2 \Rightarrow c_2 = \frac{1}{.992} = 1.008$. Hence, $u = 1.008e^{-.125t}\sin .992t$

(ii) The presence of sine and cosine in the solution means that the motion is not overdamped so there are oscillations. Since $e^{-.125t} \rightarrow 0$ for $t \rightarrow \infty$ and $e^{-.125t}$ is present in both terms, u converges to 0 meaning that the oscillations have a *decreasing amplitude*. Thus, this is an underdamped free oscillator.



(b) (i) The general equation of motion is $mu'' + \gamma u' + ku = F(t)$. We are given that $m = 1, \gamma = 0, L = 9.8$, and $F(t) = \frac{1}{2}\cos 0.8t$. Compute k using the formula $k = \frac{mg}{L}$. Thus,

 $k = \frac{1(9.8)}{9.8} = 1$. Hence the equation $u'' + u = \frac{1}{2}\cos 0.8t$ models this motion. (ii) The characteristic equation is $r^2 + 1 = 0$ and has solutions $r = \pm i$. Hence, the homogeneous solution is $u_h = c_1 \cos t + c_2 \sin t$. For $F(t) = \frac{1}{2}\cos 0.8t$, p + iq = 0 + 0.8i, $p_k(t) = \frac{1}{2}$ and so $u_p = t^s(A\cos 0.8t + B\sin 0.8t)$. Since 0.8i is not a solution of the characteristic equation, s = 0 and $u_p = A\cos 0.8t + B\sin 0.8t$. Find $u'_p = -.8A\sin 0.8t + .8B\cos 0.8t$ and $u''_p = -.64A\cos 0.8t - .64B\sin 0.8t$ and plug them in the equation to have $-.64A\cos 0.8t - .64B\sin 0.8t = \frac{1}{2}\cos 0.8t \Rightarrow .36A\cos 0.8t + .36B\sin 0.8t = \frac{1}{2}\cos 0.8t$. Equating the terms with cosine, $.36A = \frac{1}{2} \Rightarrow A = \frac{25}{18} \approx 1.39$. Equating the terms with sine, B = 0. Thus $u = c_1 \cos t + c_2 \sin t + \frac{25}{18}\cos 0.8t$.

The initial conditions are u(0) = 1 and u'(0) = 0. Using the first condition, we have that $0 = c_1(1) + c_2(0) + \frac{25}{18}(1) = c_1 + \frac{25}{18} \Rightarrow c_1 = -\frac{25}{18}$. As $u' = -c_1 \sin t + c_2 \cos t - 0.8 \frac{25}{18} \sin 0.8t$, u'(0) = 0,

and $c_1 = -\frac{25}{18}$, we have that $0 = -c_1(0) + c_2(1) - 0.8 \frac{25}{18}(0) = c_2 \Rightarrow c_2 = 0$. Hence, $u = -\frac{25}{18} \cos t + \frac{25}{18} \cos 0.8t$.

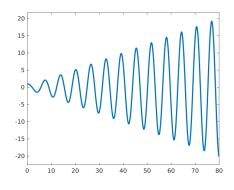
(iii) The presence of trigonometric functions indicate oscillations. The presence of two different frequencies 1 and 0.8 indicate oscillates with a *periodic amplitude*. So, the oscillations are with *beats*.



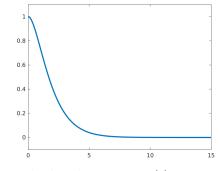
(c) (i) The equation is $u'' + u = \frac{1}{2}\cos t$. (ii) The homogeneous solution is $u_h = c_1\cos t + c_2\sin t$. For $F(t) = \frac{1}{2}\cos t$, p + qi = 0 + 1i, $p_k(t) = \frac{1}{2}$ and so $u_p = t^s(A\cos t + B\sin t)$. Since *i* is a solution of the characteristic equation, s = 1 and $u_p = At\cos t + Bt\sin t$. Find $u'_p = A\cos t - At\sin t + B\sin t + Bt\cos t$ and $u''_p = -A\sin t - A\sin t - At\cos t + B\cos t + Bt\sin t$ and plug them in the equation to have $-A\sin t - A\sin t - At\cos t + B\cos t + B\cos t + B\cos t + Bt\sin t + At\cos t + Bt\sin t = \frac{1}{2}\cos t \Rightarrow -2A\sin t + 2B\cos t = \frac{1}{2}\cos t \Rightarrow -2A = 0$ and $2B = \frac{1}{2} \Rightarrow A = 0$ and $B = \frac{1}{4}$. Thus, $u = c_1\cos t + c_2\sin t + \frac{1}{4}t\sin t$. Since it is set in motion from rest, u'(0) = 0. Using u(0) = 1, $1 = c_1(1) + c_2(0) + \frac{1}{4}(0) = c_1 \Rightarrow c_1 = 1$.

Find the derivative $u' = -c_1 \sin t + c_2 \cos t + \frac{1}{4} \sin t + \frac{1}{4} t \cos t$ and use the condition u'(0) = 0. Thus $0 = -c_1(0) + c_2(1) + 0 - 0 \Rightarrow c_2 = 0$. Hence, $u = \cos t + \frac{1}{4} t \sin t$. (iii) The presence of trigonometric functions

(iii) The presence of trigonometric functions indicate oscillations. The presence of t in front of the sine function indicates an *increasing amplitude*. So, the oscillations are with a *resonance*.

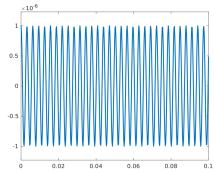


(d) The characteristic equation is $r^2 + 2r + 1 = 0 \Rightarrow (r+1)(r+1) = 0$ so -1 is a double zero and the general solution is $u = c_1 e^{-t} + c_2 t e^{-t}$. Since the mass is set in motion from 1 meter from the equilibrium, u(0) = 1. Since the mass is set from resting, the initial velocity is zero and so u'(0) = 0. Using u(0) = 1, obtain $1 = c_1(1) + c_2(0) \Rightarrow c_1 = 1$. As $u' = -c_1 e^{-t} + c_2 e^{-t} - c_2 t e^{-t}$, u'(0) = 0, and $c_1 = 1$, $0 = -1 + c_2(1) - c_2(0) = -1 + c_2 \Rightarrow c_2 = 1$. Thus, $u = e^{-t} + t e^{-t}$. The absence of trigonometric functions indicates that there are *no oscillations*. Hence, this is the overdamped case. The mass returns to equilibrium position without oscillations.



(e) Note that R = 0, $\frac{1}{C} = 4 \cdot 10^6$, and there is no applied voltage so E(t) = 0. Thus, the general circuit equation $LQ'' + RQ' + \frac{1}{C}Q = E(t)$ becomes $Q'' + 4 \cdot 10^6Q = 0$. The characteristic equation $r^2 + 4 \cdot 10^6 = 0$ has solutions $r = \pm 2000i$ and so the general solution is $Q = c_1 \cos 2000t + c_2 \sin 2000t$.

The initial conditions are $Q(0) = 10^{-6}$ and Q'(0) = 0. The first implies $10^6 = c_1(1) + c_2(0) = c_1$. As $Q' = -2000c_1 \sin 2000t + 2000c_2 \cos 2000t$, the second implies $0 = -2000c_1(0) + 2000c_2(1) = 2000c_2 \Rightarrow c_2 = 0$. Thus, $Q = 10^{-6} \cos 2000t$. This is an undamped free oscillator and the solution is a periodic function with a *constant amplitude*.



(f) The solutions are not overdamped if the characteristic equation has complex solutions (since just in this case the solution has periodic functions present). The characteristic equation is $r^2 + \gamma r + 9 = 0$. The solutions are $r = \frac{-\gamma \pm \sqrt{\gamma^2 - 36}}{2}$. Thus, the complex solutions are present just if the expression under the root is negative. So, $\gamma^2 - 36 < 0 \Rightarrow (\gamma - 6)(\gamma + 6) < 0$. This inequality has the solution $-6 < \gamma < 6$. In addition, since γ is nonnegative, this corresponds to the interval $0 \le \gamma < 6$.