Differential Equations

Lia Vas

The Third Exam Review

1. Use the definition of the Laplace transform to show that $\mathcal{L}[t]=\frac{1}{s^{2}}$.
2. Find the Laplace transform of the following functions.
(a) $t^{4} e^{-2 t}+\cos 5 t-7$
(b) $\int_{0}^{t} \tau^{3} e^{t-\tau} d \tau$
(c) $\int_{0}^{t} \sin (2 \tau) \cos (2 t-2 \tau) d \tau$
3. Find the inverse Laplace transform of the following functions.
(a) $\frac{5}{s^{2}+4}$,
(b) $\frac{s^{2}}{(s+1)^{3}}$,
(c) $\frac{10}{s^{2}+3 s-4}$,
(d) $\frac{s+4}{s^{2}+2 s+5}$,
(e) $\frac{5 s^{2}+3 s-2}{s^{3}+2 s^{2}}$
(f) $\frac{3 s^{2}-4 s+5}{(s-1)\left(s^{2}+1\right)}$
4. Use the Laplace transform to solve the equation $y^{\prime \prime}-6 y^{\prime}+5 y=2, y(0)=0, y^{\prime}(0)=-1$.
5. Assume that an undamped harmonic oscillator is described by the following differential equation where y is in cm and t is in seconds. Find the solution, write your answer as a piecewise function, sketch its graph and describe the motion.
(a) $y^{\prime \prime}+y=\left\{\begin{array}{l}1, \quad 5 \leq t<20, \\ 0, \\ 0 \quad t<5 \text { and } t \geq 20 .\end{array} \quad y(0)=0, y^{\prime}(0)=0\right.$.
(b) $y^{\prime \prime}+4 y=\left\{\begin{array}{cc}0, & t<5, \\ t-5, & 5 \leq t<10, \quad y(0)=0, y^{\prime}(0)=0 \\ 5, & t \geq 10 .\end{array}\right.$

The function on the right side of the equation is known as ramp loading and can be represented as $u_{5}(t)(t-5)-u_{10}(t)(t-10)$.

(c) $y^{\prime \prime}+4 y=\delta(t-4 \pi), y(0)=1, y^{\prime}(0)=0$.
(d) $y^{\prime \prime}+3 y^{\prime}+4 y=\delta(t-3), y(0)=0, y^{\prime}(0)=0$.
6. Solve the following equations.
(a) $y(t)+\int_{0}^{t}(t-\tau) y(\tau) d \tau=t$
(b) $y^{\prime}(t)+\int_{0}^{t} y(t-\tau) e^{-2 \tau} d \tau=1, y(0)=1$
7. Solve the following systems.
(a) $x^{\prime}=-x+y \quad y^{\prime}=-x-y, \quad x(0)=1, y(0)=2$
(b) $x^{\prime}=-x-3 y \quad y^{\prime}=-x+y, \quad x(0)=1, y(0)=0$

Solutions

1. $\mathcal{L}[t]=\int_{0}^{\infty} t e^{-s t} d t$ To evaluate this integral, use the integration by parts with $u=t$ and $d v=e^{-s t}$. We have $\frac{-t}{s} e^{-s t}-\left.\frac{1}{s^{2}} e^{-s t}\right|_{0} ^{\infty}$. The limit of the first term for $t \rightarrow \infty$ is 0 (you may use L'Hopital's rule to see that). The limit of the second terms is also zero for $t \rightarrow \infty$ since $e^{-\infty}=\frac{1}{e^{\infty}}=\frac{1}{\infty}=0$. At $t=0$, the antiderivative is $\frac{-1}{s^{2}}$. So, $\mathcal{L}[t]=0-\frac{-1}{s^{2}}=\frac{1}{s^{2}}$.
2. (a) $\frac{24}{(s+2)^{5}}+\frac{s}{s^{2}+25}-\frac{7}{s} \quad$ (b) The function is the convolution of t^{3} and e^{t}. Thus the Laplace transform is $\mathcal{L}\left[t^{3}\right] \mathcal{L}\left[e^{t}\right]=\frac{6}{s^{4}} \frac{1}{s-1}=\frac{6}{s^{4}(s-1)}$. (c) The function is the convolution of $\sin 2 t$ and $\cos 2 t$. Thus the Laplace transform is $\mathcal{L}[\sin 2 t] \mathcal{L}[\cos 2 t]=\frac{2}{s^{2}+4} \frac{s}{s^{2}+4}=\frac{2 s}{\left(s^{2}+4\right)^{2}}$.
3. (a) $\mathcal{L}^{-1}\left[\frac{5}{s^{2}+4}\right]=\frac{5}{2} \mathcal{L}^{-1}\left[\frac{2}{s^{2}+4}\right]=\frac{5}{2} \sin 2 t \quad$ (b) $\mathcal{L}^{-1}\left[\frac{s^{2}}{(s+1)^{3}}\right]=\mathcal{L}^{-1}\left[\frac{1}{s+1}+\frac{-2}{(s+1)^{2}}+\frac{1}{(s+1)^{3}}\right]=$ $\mathcal{L}^{-1}\left[\frac{1}{s+1}\right]-2 \mathcal{L}^{-1}\left[\frac{1}{(s+1)^{2}}\right]+\frac{1}{2} \mathcal{L}^{-1}\left[\frac{2}{(s+1)^{3}}\right]=e^{-t}-2 t e^{-t}+\frac{1}{2} t^{2} e^{-t}$
(c) Since $s^{2}+3 s-4$ factors as $(s+4)(s-1)$, in order to find the Laplace transform, we need to find the partial fractions $\frac{A}{s+4}+\frac{B}{s-1}$. We obtain $A=-2, B=2$. So, $\mathcal{L}^{-1}\left[\frac{-2}{s+4}+\frac{2}{s-1}\right]=-2 e^{-4 t}+2 e^{t}$. (d) $s^{2}+2 s+5$ cannot be factored in a product of two linear real terms, so you need to write it as sum of squares as $s^{2}+2 s+5=(s+2 s+1)+4=(s+1)^{2}+2^{2}$. Then $\frac{s+4}{s^{2}+2 s+5}=\frac{s+1+3}{(s+1)^{2}+2^{2}}=$ $\frac{s+1}{(s+1)^{2}+2^{2}}+\frac{3}{2} \frac{2}{(s+1)^{2}+2^{2}}$. Hence the inverse Laplace is $e^{-t} \cos 2 t+\frac{3}{2} e^{-t} \sin 2 t$.
(e) Using the partial fractions, $\frac{5 s^{2}+3 s-2}{s^{3}+2 s^{2}}=\frac{A}{s}+\frac{B}{s^{2}}+\frac{C}{s+2}=\frac{2}{s}-\frac{1}{s^{2}}+\frac{3}{s+2} \cdot \mathcal{L}^{-1}$ is $2-t+3 e^{-2 t}$.
(f) Using the partial fractions, $\frac{3 s^{2}-4 s+5}{(s-1)\left(s^{2}+1\right)}=\frac{A}{s-1}+\frac{B s+C}{s^{2}+1}=\frac{2}{s-1}+\frac{s-3}{s^{2}+1} \mathcal{L}^{-1}$ is $2 e^{t}+\cos t-3 \sin t$.
4. The Laplace transform of the equation is $s^{2} Y+1-6 s Y+5 Y=\frac{2}{s} \Rightarrow Y\left(s^{2}-6 s+5\right)=$ $\frac{2}{s}-1 \Rightarrow Y(s-1)(s-5)=\frac{2-s}{s} \Rightarrow Y=\frac{2-s}{s(s-5)(s-1)}$. The partial fraction decomposition is $Y=\frac{2}{5 s}-\frac{3}{20(s-5)}-\frac{1}{4(s-1)}$. Thus $y=\frac{2}{5}-\frac{3}{20} e^{5 t}-\frac{1}{4} e^{t}$.
5. (a) The function on the right side is a boxcar function given by $u_{5}(t)-u_{20}(t)$. Taking the Laplace transform of the equation with $\mathcal{L}[y]=Y$, we obtain $s^{2} Y+Y=\frac{e^{-5 s}}{s}-\frac{e^{-20 s}}{s}$. From here $Y=\left(e^{-5 s}-e^{-20 s}\right) \frac{1}{s\left(s^{2}+1\right)}$. Let $F(s)=\frac{1}{s\left(s^{2}+1\right)}=\frac{A}{s}+\frac{B s+C}{s^{2}+1}$. Find the coefficients to be $A=1, B=-1$, and $C=0$ so that $F(s)=\frac{1}{s}-\frac{s}{s^{2}+1} \Rightarrow f(t)=\mathcal{L}^{-1}[F(s)]=1-\cos t$.

Thus, the solution is $y=\mathcal{L}^{-1}[Y]=$ $\mathcal{L}^{-1}\left[\left(e^{-5 s} F(s)-e^{-20 s} F(s)\right]=u_{5}(t) f(t-5)-\right.$ $u_{20}(t) f(t-20)=u_{5}(t)(1-\cos (t-5))-$ $u_{20}(t)(1-\cos (t-20))$. See the handout for more details on getting the piecewise representation and the graph.

$$
y=\left\{\begin{array}{cc}
0, & t<5 \\
1-\cos (t-5), & 5 \leq t<20 \\
-\cos (t-5)+\cos (t-20), & t \geq 20
\end{array}\right.
$$

(b) The Laplace transform of the equation is $s^{2} Y+4 Y=e^{-5 s} \frac{1}{s^{2}}-e^{-10 s} \frac{1}{s^{2}}$. Thus $Y=\left(e^{-5 s}-\right.$ $\left.e^{-10 s}\right)_{\frac{1}{s^{2}\left(s^{2}+4\right)}}$. Let $F(s)=\frac{1}{s^{2}\left(s^{2}+4\right)}=\frac{A}{s}+\frac{B}{s^{2}}+\frac{C s+D}{s^{2}+4}$. Determine that $A=C=0, B=\frac{1}{4}$, and $D=\frac{-1}{4}$. So, $F(s)=\frac{1 / 4}{s^{2}}-\frac{1 / 4}{s^{2}+4}$ and $f(t)=\mathcal{L}^{-1}[F(s)]=\frac{1}{4} t-\frac{1}{8} \sin 2 t$. Thus,

$$
\begin{gathered}
y=\mathcal{L}^{-1}[Y]=u_{5}(t) f(t-5)-u_{10}(t) f(t-10)= \\
u_{5}(t)\left(\frac{1}{4}(t-5)-\frac{1}{8} \sin 2(t-5)\right)-u_{10}(t)\left(\frac{1}{4}(t-10)-\frac{1}{8} \sin 2(t-10)\right)
\end{gathered}
$$

See the handout for more details on getting the piecewise representation and the graph.
$y=\left\{\begin{array}{cc}0, & 0 \leq t<5, \\ \frac{1}{4}(t-5)-\frac{1}{8} \sin 2(t-5), & 5 \leq t<10, \\ \frac{5}{4}-\frac{1}{8} \sin 2(t-5)+\frac{1}{8} \sin 2(t-10), & t \geq 10 .\end{array}\right.$
Thus, there are no oscillations before 5 . Between 5 and 10 seconds, the mass oscillates about the line $\frac{1}{4}(t-5)$. After 10 seconds, the mass oscillates about $\frac{5}{4}$ with a constant amplitude.
(c) The Laplace transform of the equation is $s^{2} Y-s+4 Y=e^{-4 \pi s}$. Thus $Y=\frac{e^{-4 \pi}+s}{s^{2}+4}$. Then $y=u_{4 \pi}(t) \frac{1}{2} \sin 2(t-4 \pi)+\cos 2 t=$

$$
\begin{cases}\cos 2 t & t<4 \pi \\ \cos 2 t+\frac{1}{2} \sin 2(t-4 \pi) & t \geq 4 \pi\end{cases}
$$

(d) Let $Y=\mathcal{L}[y]$. Applying the Laplace transform to the equation $y^{\prime \prime}+3 y^{\prime}+4 y=\delta(t-3)$ with $y(0)=y^{\prime}(0)=0$ produces $s^{2} Y+3 s Y+4 Y=e^{-3 s}$. From here $Y=\frac{e^{-3 s}}{s^{2}+3 s+4}$. Complete the denominator of $F(s)=\frac{1}{s^{2}+3 s+4}$ to a sum of squares. $s^{2}+3 s+4=s^{2}+2 s\left(\frac{3}{2}\right)+\frac{9}{4}+4-\frac{9}{4}=$ $\left(s+\frac{3}{2}\right)^{2}+\frac{7}{4}$. Thus $f(t)=\mathcal{L}^{-1}[F(s)]=\mathcal{L}^{-1}\left[\frac{1}{\left(s+\frac{3}{2}\right)^{2}+\frac{7}{4}}\right]=\frac{2}{\sqrt{7}} \mathcal{L}^{-1}\left[\frac{\frac{\sqrt{7}}{2}}{\left(s+\frac{3}{2}\right)^{2}+\frac{7}{4}}\right]=\frac{2}{\sqrt{7}} e^{-3 t / 2} \sin \frac{\sqrt{7}}{2} t$. $y=\mathcal{L}^{-1}[Y]=\quad \mathcal{L}^{-1}\left[\frac{e^{-3 s}}{s^{2}+3 s+4}\right]=$ $\mathcal{L}^{-1}\left[e^{-3 s} F(s)\right]=u_{3}(t) f(t-3)=$ $u_{3}(t) \frac{2}{\sqrt{7}} e^{-3(t-3) / 2} \sin \frac{\sqrt{7}}{2}(t-3)=$

$$
\begin{cases}0, & t<3 \\ \frac{2}{\sqrt{7}} e^{-3(t-3) / 2} \sin \frac{\sqrt{7}}{2}(t-3), & t \geq 3\end{cases}
$$

Thus, the object starts oscillating only after 3 seconds. It oscillates with a decreasing

amplitude given by $\frac{2}{\sqrt{7}} e^{-3(t-3) / 2}$ converging to 0 and the oscillations become negligible in time.
6. (a) The equation is $y+t * y=t$. Taking \mathcal{L}, obtain $Y+\frac{1}{s^{2}} Y=\frac{1}{s^{2}} \Rightarrow Y=\frac{1}{s^{2}+1} \Rightarrow y=\sin t$.
(b) The equation is $y^{\prime}+y * e^{-2 t}=1$. Thus $s Y-1+Y \frac{1}{s+2}=\frac{1}{s} \Rightarrow Y\left(s+\frac{1}{s+2}\right)=\frac{1}{s}+1 \Rightarrow$ $Y \frac{s(s+2)+1}{s+2}=\frac{1+s}{s} \Rightarrow Y=\frac{(1+s)(s+2)}{s\left(s^{2}+2 s+1\right)}=\frac{(1+s)(s+2)}{s(s+1)^{2}}=\frac{s+2}{s(s+1)}$. Find the partial fraction decomposition to be $Y=\frac{2}{s}-\frac{1}{s+1} \Rightarrow y=2-e^{-t}$.
7. (a) Let $X=\mathcal{L}[x]$ and $Y=\mathcal{L}[y]$. Taking \mathcal{L} of both equations produces $s X-1=-X+Y$ and $s Y-2=-X-Y$. From the first equation $Y=s X+X-1$. Plugging that in the second gives
you $s(s X+X-1)-2=-X-(s X+X-1) \Rightarrow s^{2} X+2 s X+2 X=s+3 \Rightarrow X=\frac{s+3}{s^{2}+2 s+2}$. Thus $Y=\frac{s^{2}+3 s+s+3-s^{2}-2 s-2}{s^{2}+2 s+2}=\frac{2 s+1}{s^{2}+2 s+2}$.
Then $x=\mathcal{L}^{-1}[X]=\mathcal{L}^{-1}\left[\frac{s+1+2}{(s+1)^{2}+1}\right]=\mathcal{L}^{-1}\left[\frac{s+1}{(s+1)^{2}+1}+2 \frac{1}{(s+1)^{2}+1}\right]=e^{-t} \cos t+2 e^{-t} \sin t$ and $y=\mathcal{L}^{-1}[Y]=\mathcal{L}^{-1}\left[\frac{2 s+1}{s^{2}+2 s+2}\right]=\mathcal{L}^{-1}\left[\frac{2 s+2-1}{(s+1)^{2}+1}\right]=\mathcal{L}^{-1}\left[2 \frac{s+1}{(s+1)^{2}+1}-\frac{1}{(s+1)^{2}+1}\right]=2 e^{-t} \cos t-e^{-t} \sin t$.
(b) If $X=\mathcal{L}[x]$ and $Y=\mathcal{L}[y]$, taking \mathcal{L} of both equations produces $s X-1=-X-3 Y$ and $s Y=-X+Y$. From the second equation, $X=Y-s Y$. Substitute that in the first equation. $s(Y-s Y)-1=-(Y-s Y)-3 Y \Rightarrow s Y-s^{2} Y-1=s Y-4 Y \Rightarrow-1=\left(s^{2}-4\right) Y \Rightarrow Y=\frac{-1}{s^{2}-4}$. Thus $X=Y-s Y=\frac{s-1}{s^{2}-4}$. The partial fractions decomposition produces $Y=\frac{-1 / 4}{s-2}+\frac{1 / 4}{s+2}$ and $X=\frac{1 / 4}{s-2}+\frac{3 / 4}{s+2}$. Thus, $x=\mathcal{L}^{-1}[X]=\frac{1}{4} e^{2 t}+\frac{3}{4} e^{-2 t}$ and $y=\mathcal{L}^{-1}[Y]=\frac{-1}{4} e^{2 t}+\frac{1}{4} e^{-2 t}$.

