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Discrete Dynamical Systems. Difference Equations

Recall that the change can be modeled using the formula

change = future value − present value.

If values that we monitor changes during discrete periods (for example, in discrete time intervals),
the formula above leads to a difference equation or a dynamical system. In this case, we are
dealing with a function that depends on discrete integer values – a sequence.

Recall that a sequence of real numbers (indexed by nonnegative integers) can be given by
listing its terms (for example, 1, 1

2
, 1
3
, . . .) or by the formula for its n-th term (for example an = 1

n
).

Alternatively, a sequence of real numbers {an} can be represented by a recursive equation

an+1 = f(an)

with some initial value a0. This relationship between terms of a sequence is called a dynamical
system.

A dynamical system allows us to describe the change from one state of the system to the next.
At n-th stage, the change is described by

change at stage n = future (n + 1)-st state − present n-th state = an+1 − an

The difference an+1 − an is frequently denoted by ∆an and is called a change or n-th first
difference.

A difference equation is an equation of the form

∆an = g(an)

A solution of a difference equation is a sequence an. The solution can be given analytically (i.e.
by the formula of an in terms of n), graphically, or numerically (i.e. as a table of an values for
various values of n).

Every dynamical system an+1 = f(an) determines a difference equation obtained by
subtracting an from both sides of the equation. We obtain an+1 − an = f(an)− an. Note that the
left side is ∆an. If we denote the right side by g(an), we obtain the difference equation ∆an = g(an).

Conversely, every difference equation ∆an = g(an) determines a dynamical system by
writing the left side as an+1−an and solving for an+1. We obtain that an+1 = g(an)+an. Denoting
the right side by f(an), we obtain the dynamical system an+1 = f(an).

The difference equation ∆an = g(an) is a discrete analogue of the autonomous differential
equation y′ = g(y). The stable equilibrium solutions of differential equation y′ = g(y) correspond to
the accumulation points of the sequence an that is the solution of difference equation ∆an = g(an)
with the initial value a0. Recall that the equilibrium solutions were obtained by solving g(y) = 0
for y. Analogously, we obtain the limiting values by solving g(a) = 0 for a.

This fact can be explained also by the following argument. Note that if limn→∞ an = a,
then the values of an+1 and of an will be close to each other for large values of n. Thus, ∆an =
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an+1 − an = g(an) is close to 0. So, when n → ∞, g(an) → 0. Thus, if a is the limiting value
limn→∞ an, a can be obtained as a solution of the equation g(a) = 0.

Let us consider a dynamical system an+1 = f(an). If a is the limiting value limn→∞ an, then
limn→∞ an+1 is equal to a as well. Thus, a can be obtained as a solution of the equation
a = f(a).

Note that a limit of sequence an also corresponds to the values of the sequence satisfying
an+1 = f(an) with initial value a0 = a. Namely, if a is such that a = f(a) and we consider a
dynamical system given by an+1 = f(an) and a0 = a, then

a1 = f(a0) = f(a) = a, a2 = f(a1) = f(a) = a, . . . an+1 = f(an) = f(a) = a . . .

We obtain a constant sequence with all terms equal to a. Because of this, the limiting value a of a
dynamical system an+1 = f(an) is also called a fixed point, a steady state or, using the same
terminology as in continuous case, equilibrium solution. Thus, a is a fixed point of an+1 = f(an)
if and only if a = f(a) when a0 = a. The same terminology regarding stability is used as in the
case of autonomous differential equations. To determine the stability, sketch the graph according
to the sign of f(a)− a.

Example 1. Consider the dynamical system given by an+1 =
√

6 + an. Find the fixed points
and check their stability. Using the graph, determine the limit of solutions with initial conditions
a0 = −3, a0 = 0, and a0 = 5 respectively.

Solution. The fixed points can be obtained from the equation a =
√

6 + a −→ a2 = 6+a −→
a2 − a − 6 = 0 −→ a = 3 and a = −2. Plugging a = −2 in the original equation, we conclude
that it is an extraneous root, (

√
6− 2 = 2, not -2) so a = 3 is the only fixed point. Considering

the sign of
√

6 + a− a, we conclude the following.

• The solutions with initial value with a0 > 3 decrease towards 3. If the initial value a0 = 3,
we obtain a constant solution with fixed point 3.

• The solutions with initial value such that −6 ≤ a0 < 3, increase towards 3. Thus 3 is a
stable equilibrium solution.

• The formula describing the dynamical system is not defined for the initial values with a0 <
−6.

Finally, from this analysis we can conclude that the solutions with initial conditions a0 = −3 and
a0 = 0 will increase to 3, and the solution with initial condition a0 = 5 will decrease to 3.

The relationship between terms of a sequence can be such that the next term depends on more
than one of the previous terms of the sequence. Thus, a dynamical system can be a function of
more than one variable. The most general recursive formula has the form

an+1 = f(a0, a1, . . . an)

Example 2. Fibonacci numbers are terms of the following recursive sequence.

f0 = 0, f1 = 1 and fn = fn−1 + fn−2

in other words: one starts with 0 and 1, and then produces the next Fibonacci number by adding
the two previous Fibonacci numbers. The following sequence is obtained

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, . . .
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This sequence is clearly divergent. However, sometimes one is interested in a sequence determined
by the quotient of two consecutive terms of the Fibonacci sequence. So, let us denote
an = fn

fn−1
. Dividing the equation fn = fn−1 + fn−2 by fn−1, we obtain fn

fn−1
= 1 + fn−2

fn−1
−→ an =

1 + 1
an−1

. Multiplying by an−1, we obtain anan−1 = an−1 + 1.

The fix point of this sequence is the solution of a2 = a + 1. Solving this equation gives us
1±
√
5

2
≈ 1.618 and −0.618. The positive solution is called the golden ratio and is a stable

equilibrium value (consider the sign of a + 1 − a2). In particular, the sequence an with initial

condition 1 decreases and converges to 1+
√
5

2
.

The golden ratio is defined as the ratio that results when a line segment is divided so that the
whole segment has the same ratio to the larger segment as the larger segment has to the smaller
segment. If we start with a line such that the larger part has length 1, and if x denotes the length
of the line segment, this gives us 1

x
= x−1

1
. Cross multiplying gives us 1 = x2 − x which is the

same quadratic equation as the one producing the fix point of the sequence defined by quotients
of consecutive terms of Fibonacci sequence.

Exponential growth or decay. Let k be a positive number. A frequently used dynamical
system is obtained when assuming that a certain quantity is changing by a multiple of k in
every time unit. Thus, this process can be modeled by the dynamical system

an+1 = kan

or, alternatively by the difference equation ∆an = (k − 1)an. If r denotes k − 1, the difference
equation becomes

∆an = ran.

The quantity r = k − 1 can be interpreted as the percent change.

The equilibrium solution is obtained from equation ra = 0 and is a = 0. We distinguish the
following cases.

- If r > 0 (k > 1), the equilibrium solution is unstable. The sequences with positive initial
values are increasing without bounds.

- If r < 0 (0 < k < 1), the equilibrium solution is stable. The sequences with positive initial
values are decreasing towards 0.

- If r = 0 (k = 1) the sequence is constant - every term is equal to the initial value.

It is not hard to determine the explicit formula describing the terms of the sequence. Let a0
denote the initial value. Then a1 = ka0, a2 = ka1 = k2a0, a3 = ka2 = k3a0, . . . Thus an = kna0 or

an = a0(r + 1)n

Discrete versus continuous. Let us compare the system from previous example (quantity
changing by factor k in each time interval) with the system that is changing by factor k continu-
ously throughout the time unit. The continuous analogue of the difference equation ∆an = ran,
with initial value a0 is the differential equation y′ = ry, y(0) = a0. Note that this is an autonomous
differential equation with equilibrium solution y = 0 that is unstable for r > 0 and stable for r < 0.
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The differential equation y′ = ry has solution y = a0e
rt. If we consider n as a measure of time

elapsed in the discrete case, the solution an = a0(r + 1)n of difference equation corresponds to the
exponential function y = a0(1 + r)t. Thus, if a0 is the initial size, we have that:

- A quantity increasing by percent r in discrete time intervals has the size given

y = a0(1 + r)t.

- A quantity increasing by percent r continuously, has the size given by

y = a0e
rt = a0 (er)t .

Both of these functions are exponential functions. The first one has base 1 + r and the second
base er. Note that the values of 1 + r and er are close for small values of r (compare the graphs
of these two functions near r = 0). That is 1 + r ≈ er. Note also that 1 + r are the first two terms
of the Taylor series of er centered at zero (er =

∑∞
n=0

rn

n!
= 1 + r + r2

2
+ r3

6
+ . . . ≈ 1 + r.)

Example 3. If one invests 1000 dollars to an account with annual interest rate of 5 percent,
find the amount on the account after 3 years if the interest is computed a) annually, b) continuously.

Solution. a) 1000 · 1.053 = 1157.625 b) 1000e.05·3 = 1161.834. Note that .05 is pretty close to
0 so the difference between two values is not that large. Also note that the amounts would differ
by more if either the number of years in question was larger, or the annual interest rate was larger.

Consider now a dynamical system with the positive initial value a0 that is defined by the
equation

an+1 = kan + b

where k is a positive proportionality constant. Let us again denote k − 1 with r. The difference
equation describing this system is ∆an = an+1− an = kan + b− an = (k− 1)an + b = ran + b. The
equilibrium solution is a = −b/r. The stability will depend on the sign of r again. We distinguish
two cases.

1. If r > 0 (k > 1) the equilibrium solution is unstable. The sequence is increasing without
bounds.

An example of the situation that can be modeled by such dynamical system is a bank account
with a monthly interest rate r > 0 (so k = 1+ r > 1) on which a fixed amount b is deposited
each month.

2. If r < 0 (0 < k < 1) the equilibrium solution is stable. The sequence is decreasing towards
b
−r = b

1−k .

An example of the situation that can be modeled by such dynamical system is the following:
a person is given the same dose b of a medicine at equally spaced time intervals. The body
metabolizes some of the drug so that, after some time, only a portion k of the original
amount remains.

Example 4. Determine the explicit formula of the sequence in the case when k < 1. If the
dynamical system describes the amount of drug given in the same dose b of a medicine at equally
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spaced time intervals, the body metabolizes some of the drug so that, after some time, only a
portion k of the original amount remains. Find the formula describing the amount of drug right
before and after the n-th dose. Sketch the graph of the concentration as function of time.

Solution. After the each dose, the amount of the drug in the body is equal to the amount
of the given dose b plus the amount remnant from the previous dose. The dynamical system
an+1 = kan + b with initial value b describes this situation. Let us calculate the first few terms of
the sequence.

Step 0 Size = b.

Step 1 Amount remaining of previous step: kb. Amount added: b. Total amount = b + kb

Step 2 Amount remaining of previous step: k(b + kb) = kb + k2b. Amount added: b. Total amount
=b + kb + k2b.

...

Step n Amount remaining of previous step: k(b+kb+ . . .+kn−1b). Amount added: b. Total amount
= b + kb + k2b + . . . + knb.

Consider the n-th term

an = b + kb + k2b + . . . + knb = b(1 + k + . . . + kn) =
b(1− kn+1)

1− k
.

Here we used the fact that (1−kn+1) factors as (1−k)(1+k+. . .+kn) and so 1+k+. . .+kn = 1−kn+1

1−k .
This formula describes the amount of the drug present in the body right after the n-th dose.

Letting n→∞, and noting that k < 1 and so kn+1 → 0, we obtain that

lim
n→∞

an = lim
n→∞

b(1− kn+1)

1− k
=

b(1− 0)

1− k
=

b

1− k

The value b
1−k is the same limiting value we obtained earlier as fixed point of an+1 = kan + b..

Note also that the limit b
1−k is the sum of the geometric series b

∑∞
n=0 k

n = b+bk+bk2 + . . . = b
1−k .

Thus, the amount of the drug in the body present after the new dose in the long run is A = b
1−k

and the amount of the drug present before the new dose is A − b. The amount A is sometimes
called the steady state.

Elimination rate. In some cases, the elimination rate p = 1− k will be of interest instead of
the retention rate k. In this case, p = −r is positive since r is negative and the equilibrium value
is b
−r = b

p
.

Discrete versus continuous. In continuous case, the value r is approximated by r =
r + 1 − 1 ≈ er − 1. Thus, the value p is approximated by p = −r ≈ 1 − er = 1 − e−p. Also,
substituting that 1 − k = p we obtain that 1 − k = p ≈ 1 − e−p = 1 − ek−1. In this case, the
equilibrium value is

A =
b

1− er
=

b

1− e−p
=

b

1− ek−1
.

Highest safe and lowest effective levels. Determining dose schedule. Above analysis
may be needed when determining the optimal time between the doses, called the dose schedule.
This can be determined by considering that:
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- The concentration should not exceed the highest safe level H.

- The concentration should not drop below the lowest effective level L.

Thus, we are interested in solutions that remain in the interval [L,H]. This gives us that A−b ≥ L
and A ≤ H.

In case when we want to maximize the time between the drug doses for patients convenience,
we might require that A − b = L and A = H. This way, we can determine the dose schedule
and the safe time between the doses to guarantees the effectiveness without compromising the
safety. Assuming that the new dose is given every T time units (in analysis above it was assumed
that T = 1), ek−1 in the previous analysis should be replaced by e(k−1)T . Thus A = b

1−e(k−1)T .

Considering the elimination rate p = 1− k instead of retention rate k, we obtain that A = b
1−e−pT .

Thus,

H = A =
b

1− e−pT
=

A− L

1− e−pT
=

H − L

1− e−pT
.

Solving for T gives us 1− e−pT = H−L
H

= 1− L
H
. Thus, −pT = ln L

H
and so pT = ln H

L
. This gives

us the dose schedule

T =
1

p
ln

H

L
.

Similar methods can be used to compute the amount of herbicides or pesticides accumulated
in humans, the time that the natural resources will last assuming that the current usage levels
increase at a constant rate, and other phenomena.

Example 5. Assume that a company is monitoring how the production level impact the
profit.

1. The profit becomes zero if it falls below a minimum effective level of $150,000.

2. If the profit is above the minimum effective level, then the growth is limited by $3,000,000.

3. If the profit is above $3,000,000 then it will decrease to the value of $3,000,000.

Consider the profit P to be a function of the number of items produced n (thus it depends on the
production level). Although this system could be modeled with a differential equation, a discrete
model is more realistic just due to the fact that the number of items produced is a positive integer.
Thus, we can describe this situation by a difference equation. Let P = Pn denote the profit when
n items are produced. We can use an autonomous difference equation with equilibrium solutions
Pn = 15, 000 and P = 3, 000, 000. The conditions determine that

1. If P0 < 15, 000, Pn is to decrease towards 0. Thus ∆Pn < 0.

2. If 15, 000 < P0 < 3, 000, 000, Pn is to increase towards 3, 000, 000. Thus ∆Pn > 0.

3. If P0 > 3, 000, 000, Pn is to decrease towards 3, 000, 000. Thus ∆Pn < 0.

These conditions are satisfied for the product (3, 000, 000 − P )(P − 15, 000). Thus the difference
equations

∆Pn = k(3, 000, 000− P )(P − 15, 000, 000)
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where k is a positive constant, models the given situation. Note that the continuous analogue is
a differential equation y′ = k(3, 000, 000− y)(y − 15, 000).

Example 6. In Analytical Chemistry, the following notation is frequently used:

- [X] = equilibrium concentration = molarity of X at equilibrium. CX = analytical concen-
tration of X = number of moles of X added to the solution per liter. pX = − log[X].

- Kw = water’s autoprotolysis constant = 1.01 · 10−14 at 25 degrees Centigrade. It is usually
rounded to 10−14. Ka = acid dissociation constant. Kb = base dissociation constant. Recall
that Kb=Kw /Ka.

When calculating the hydrogen ion concentration [H+] in a acid-base system, the problem
frequently boils down to finding the equilibrium value of a dynamical system.

For example 1, when hydrochloric acid HCl is dissolved in water, we have

HCl→ H+ + Cl− and H2O ⇀↽ H+ + OH−

[H+] coming from the first equation is equal to CHCl. To obtain the total concentration of H+,
we can use the successive approximations.

1st approximation: [H+]1 = CHCl, 2nd approximation: [H+]2 = CHCl + Kw/[H+]1,

3rd approximation: [H+]3 = CHCl + Kw/[H+]2 etc.

This creates the dynamical system [H+]n+1 = CHCl + Kw/[H+]n with the initial value CHCl.
The fixed point can be found by solving the equation [H+] = CHCl +Kw/[H+] for [H+]. For
example, for values of CHCl = 10−7 and Kw = 10−14, we obtain [H+] = 1.618 ·10−7, with pH value
of 6.7910.

Practice Problems.

1. Consider the following dynamical systems. Find the fixed points and check their stability.
Using the graph, determine the limit of solutions with initial conditions a0 = 0.

a) an+1 =
√

2 + an b) an+1 = 1/(1 + an)

2. A person with an ear infection takes 200 mg ampicillin tablet once every 4 hours. About
12% of the drug in the body at the start of a four hour period is still there at the end of
that period. What quantity of ampicillin is in the body

a) Right after taking the third tablet? b) Right after taking the sixth tablet?

c) At the steady state level right after taking a tablet?

d) At the steady state level right before taking a tablet?

3. A person takes 100 mg of a drug at regular time intervals. About 15% of the drug in the
body at the start of a new time period is still there at the end of that period. What quantity
of the drug is in the body a) right after taking the fourth dose; b) in the long run right after
taking a dose; c) in the long run right before taking a dose?

1The following examples are taken from ”Analytical Chemistry” by A. L. Soli and E. College.
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4. Every day person consumes 5 micrograms of a toxin which leaves the body at a rate of 2%
per day. How much toxin is accumulated in the body in the long run?

5. Dioxin is used in the treatment of heart patients. If 90% of the dose is eliminated from the
body during a day and if the highest effective level is 3 mg/ml and the lowest effective level
is .5 mg/ml, find the dose schedule.

6. A yeast culture initially has the biomass of 9.6 grams. It has the carrying capacity (the
limiting value of the population ) of 665 g and the increase in size in each hour is proportional
to the size of population and the difference between the current size and the carrying capacity.
Assuming that the proportionality constant is 0.00082, write a difference equation that
models the size of the yeast culture. Sketch the graph of the solution.

7. Write the dynamical system that models the value [H+] of a weak base HA using the following
approximations.

1st approx. [H+]1 =
√

KaCHA, 2nd approx. [H+]2 =
√

Ka(CHA − [H+]1),

3rd approx. [H+]3 =
√

Ka(CHA − [H+]2) etc.

Find the fixed value of the system for the hydrofluoric acid HF using the values Ka =
6.8× 10−4 and CHF =.01 M. Compute the pH value also.

Solutions

1. a) The equation
√

2 + a − a = 0 has only one solution a = 2. By analyzing the sign of√
2 + a− a, we obtain that 2 is a stable equilibrium solution. Thus, the solution with initial

condition 0 will increase towards 2.

b) The equilibriums solutions can be obtained from the equation 1
1+a
− a = 0 −→ 1−a−a2

1+a
=

0 −→ a = −1.618 and a = .618. The dynamical system is not defined for a = −1. Analyzing
the sign of 1−a−a2

1+a
, we obtain that both a = −1.618 and a = .618 are stable. Thus, the

solution with initial condition 0 will converge towards .618.

2. b = 200 and k = .12. a) b+kb+k2b or b(1−k3)
1−k = 226.88 mg; b) b(1−k6)

1−k = 227.27 mg; c) b
1−k =

227.27 mg; d) A− b = 27.27 mg.

3. b = 100 and k = .15. a) b(1−k4)
1−k = 117.59 mg b) b

1−k = 117.65 mg c) A− b = 17.65 mg.

4. b = 5 and k = .98 (so p = 0.2). Then A = 5
1−.98 = 250 micrograms. If using continuous

model (arguably more realistic in this case), get A = b
1−e−p = 252.51 micrograms.

5. p = 0.9, H = 3 and L = 0.5 so T = 1
p

ln H
L

= 1
0.9

ln 3
0.5

= 1.9991 ≈ 2 days.

6. ∆an = 0.00082an(665 − an). This equation has two equilibrium solutions, 0 and 665. 0 is
unstable and 665 is stable. Thus the solution with initial value 9.6 is increasing to 665 g.

7. [H+] value is .00229. pH value is 2.64.
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