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Modeling with differential equations

When trying to predict the future value, one follows the following basic idea.

Future value = present value + change.

From this idea, we obtain a differential or a difference equation by noting that

change = future value − present value.

If we monitor the values during discrete periods (for example, discrete time intervals), we obtain a
difference equation (to be discussed in next section). If the independent variable varies continuously
(for example, time increasing continuously), we arrive to a differential equation of first order.

dy = f(x, y)dx −→ dy

dx
= f(x, y).

The function y = y(x) is a solution of such equation if the equation is satisfied when y and its
derivative y′ are substituted into the equation.

General solution of such equation is a family of all functions that satisfy the equation.

A solution that satisfies the equation and the condition y(x0) = y0 is called particular solution.

The equation y′ = f(x, y) together with condition y(x0) = y0 is called initial value problem.

The equation y′ = f(x, y) is separable if we can separate the variables x and y. To solve such
equation, rewrite such equation so that x’s are on one and y’s are on the other side and integrate
both sides.

Example 1. A bacteria culture starts with 500 bacteria and grows at a rate proportional to its
size. After 3 hours there are 8000 bacteria. Find the number of bacteria after 4 hours.

Solution. Identifying variables: let y stands for the bacteria culture and t stands for time
passed. The first part of the problem “A bacteria culture starts with 500 bacteria..“ tells us that
y(0) = 500. The second part ”... and grows at a rate proportional to its size.“ is the key for getting
the mathematical model. Recall that the rate is the derivative and that ”...is proportional to..“
corresponds to ” equal to constant multiple of..“ So, the equation relating the variables is dy

dt
= ky.

This is a separable differential equation with the solution y = y0e
xt. Since y0 = 500, it remains to

determine the proportionality constant k. From the condition ”After 3 hours there are 8000 bacteria.“
we obtain that 8000 = 500e3k which gives us that k = 1

3
ln 16 = .924. Thus, the number of bacteria

after t hours can be described by y = 500e.924t. Using the function we have obtained, we find the
number of bacteria after 4 hours to be y(4) = 20159 bacteria.

Example 2. Suppose that an object is falling in the atmosphere near the sea level. Assume
that the drag is proportional to the velocity with the drag coefficient of 2 kg/sec. If the mass of the
object is 10 kg and the object is dropped from a height of 300 m, how long will it take for the object
to hit the ground and how fast will it go at the time of the impact?
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Solution. Identifying variables: Let v denotes the velocity and t denotes the time. Our goal is
to get the differential equation describing the fall. The physical law that governs the motion is the
Newton’s second law F = ma. As a = dv

dt
, we have that F = mdv

dt
. We have two forces acting on this

object: gravitational force equaling mg where g = 9.8 m/sec2 and drag force which is, by assumption
of the problem equal to 2v. Since these two forces act in the opposite directions, the total force is
equal to the difference of these two forces. Thus, we have that

m
dv

dt
= mg − 2v.

The mass of the object in question is 10 kg, so we have that dv
dt

= 9.8 − v
5
. The solution of this

equation is v = ce−t/5 + 49. As the object is dropped, the initial velocity is 0 and so 0 = c + 49.
So, v = 49− 49e−t/5. Graphing this solution, we can see that the velocity will increase to 49 m/sec
on the long run. Note that even without the restriction on the initial condition the graphing of the
general solution will give us that the velocity will

- Increase to 49 m/sec if the initial velocity is between 0 and 49;

- Stay constant at 49 m/sec if the initial velocity is 49; and

- Drop to 49 m/sec if the initial velocity is larger than 49.

Thus, v = 49 is a stable equilibrium solution in this case.
In order to determine the velocity and time of the impact, we need to find a formula describing

the distance x as a function of time t. As v = dx
dt
, x = 49t+245e−t/5+c. Note that here the coordinate

system is chosen so that gravity acts in a positive direction (downward) so, x measures the distance
of the object from the initial position. Thus, initial position of the object corresponds to x(0) = 0
(Explain how relations would change if we were to choose a different coordinate system). This gives
us that x = 49t + 245e−t/5 − 245.

So, if an object of mass 10 kg is dropped from 300 meters, the time it hits the ground can be
obtained from the equation

300 = 49t + 245e−t/5 − 245

Using Matlab or calculator (or any other technology) we obtain that the object will hit the ground
after t = 10.51 second. The velocity at that time is v(10.51) = 43.01 m/sec.

Example 3. A population of field mice inhabits a certain rural area. In the absence of predators,
the mice population increases so that each month, the population increases by 50%. However, several
owls live in the same area and they kill 15 mice per day. Find an equation describing the population
size and use it to predict the long term behavior of the population.

Solution. Identifying variables: Let y stands for the size of mice population and t be the time
in months. Note that without the predators, the equation describing the population of mice would
be dy

dt
= .5y. Incorporating the information about the owls, we must subtract the monthly loss in

the number of mice. As 15 are killed daily, 15 · 30 = 450 is killed monthly and so the equation is
dy
dt

= .5y − 450.
Solving the equation we obtain, y = ±cet/2 + 900. Graphing the equation for different initial

conditions we can see that the number of mice will

- Drop to 0 if the initial number is smaller than 900;
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- Stay constant at 900 if the initial number is equal to 900; and

- Keep increasing if the initial number is larger than 900.

Thus y = 900 is an unstable equilibrium solution in this case.

In the previous problem, the differential equation is obtained by considering the total rate to be

Total rate of change = rate in - rate out

The next example also illustrates this reasoning.

Example 4. A pond initially contains 8 million gallons of fresh water. Water containing an
undesirable chemical flows into the pond at the rate of 2 million gallons per year and the mixture
in the pond flows out at the same rate. The concentration of chemical in the incoming water is
increasing in time t according to the expression 0.02t grams per gallon.

Find the formula describing the amount of chemicals (in grams) as a function of time (in years)
and use it to determine the amount of chemical in the pond after 5 years.

Solution. If Q denotes the amount of chemical measured in grams and t the time measured in
years, the rate of change of Q (in grams per year) is equal to the difference of the rate of flow in

and the rate of flow out of the pond. Since the rate in is 2 · 106 gal
year0.02t g

gal and the rate out is

2 · 106 gal
year

Q
8·106

g
gal , the equation

dQ

dt
= 4 · 104t− 0.25Q

models this situation.
The equation Q′ = 4 · 104t − 0.25Q is linear. Write it in the form Q′ + 0.25Q = 4 · 104t and

find integrating factor to be e0.25t. So, Qe.25t = 4 · 104
∫
te.25tdt = 4 · 104( 1

0.25
te0.25t − 1

0.252
e0.25t) + c.

Thus Q = 1.6 · 105(t − 4) + ce−0.25t is the general solution. Since the pond initially contains no
undesirable chemical, Q(0) = 0. Thus, 0 = 0− 6.4 · 105 + c ⇒ c = 6.4 · 105. The particular solution
is Q = 1.6 · 105(t − 4) + 6.4 · 105e−0.25t = 1.6 · 105(t − 4 + 4e−0.25t). After five years, t = 5 and so
Q = 3.43 · 105 grams or 343 kg.

Autonomous Equations
If a differential equation is of the form

dy

dt
= f(y),

it is called autonomous. Note that an autonomous equation is a separable differential equation.

If f(y) = 0 is zero at y = a, then the horizontal line y = a is a solution. This solution is called
the equilibrium solution and a is called a critical point. After finding the equilibrium solutions,
check the sign of f . On intervals of y with y′ = f(y) positive, the solutions y are increasing and on
intervals of y with y′ = f(y) negative, the solutions y are decreasing. Thus, the analysis of the sign
of f(y) can tell us a lot about the graph of the solutions.

If the solutions asymptotically approach the equilibrium solution for t → ∞, regardless of the
values of initial conditions, then the equilibrium solution is called asymptotically stable solution.
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If the solutions are not converging towards the equilibrium solution for all values of initial conditions,
then the equilibrium solution is called unstable solution.

In some cases, it may be difficult to obtain an explicit formula of the solution. In those cases,
getting a graph of an autonomous equation may provide valuable information about the solution.

Applications - Models of population growth

1. Unlimited Growth. The simplest model of population growth is one describing the popula-
tion that changes at a rate proportional to its size. The differential equation model for that
situation is

dP

dt
= kP

We encounter this situation in examples when the percent birth rate is b and the percent death
rate is c so that dP

dt
= bP − cP. Let k = b − c. If b > c (so k > 0) the population will be

increasing, if b < c (so k < 0) the population will be decreasing and if b = c (so k = 0) the
population will remain constant.

If the initial size is P0, convince yourself that the solution of this equation is P = P0e
kt.

For a given set of data, a good way to test if the unlimited growth is a suitable modes is to
check if the dependence of ln y and x is linear.

2. Limited Growth. If a given environment has limited resources to support the population
growth, the population might not increase indefinitely. Suppose that the rate of increase is
proportional to the population size and the difference between a constant K (called carrying
capacity) limiting the growth. The differential equation model for that situation is

dP

dt
= kP (K − P )

Graphing the solution of this autonomous equation, we can see that the population size increases
to P if the initial size P0 is smaller than K but the growth does not increase the capacity K.
If P0 > K, the population size decreases to K as the population is too large to grow due to the
limiting resources of the environment. If P0 = K, the solution is constant P = K.

Note that in this case, the equilibrium solution P = K is stable since limt→∞ P = K regardless
of the initial size.

The analytic form of the general solution is P = K
1+(K/P0−1)e−kKt . Try to obtain this analytic

form without using Matlab (it is not that hard, use partial fractions for integral on the left side
when you separate the variables). This function is called the logistic curve and the growth
(if P0 < K) is referred to as logistic growth. Note that the maximal growth can be obtained
by considering the zero of the second derivative. Since P ′′ = k(KP ′ − 2PP ′) = kP ′(K − 2P ),
P ′′ = 0 when P = K/2. Thus, the increase of population keeps increasing until half of the
carrying capacity is reached. At the time when P = K/2 the growth is the largest. After that
time, the growth decreases towards zero.

For a given set of data, a good way to test if the limited growth is a suitable modes is to check
if the dependence of ln y

K−y and x is linear.
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3. A model with a threshold level. Suppose that a given population can keep increasing just
if the initial size is large enough and it dies out otherwise. The level that allows the increase
of population is called a threshold level. In this case the rate of increase is proportional to
the population size and the difference of the present population size and the threshold level T.
The differential equation model for that situation is

dP

dt
= kP (P − T )

Graphing the solution of this autonomous equation, we can see that the population size de-
creases to 0 if the initial size P0 is smaller than T . If P0 > T, the population size increases
unboundedly. If P0 = T, the solution is constant P = T. Note that in this case, the equilibrium
solution P = T is unstable.

Example 5. Assume that a whale population is such that

1. The population becomes extinct if the number of whales falls below a minimum survival level
m.

2. If the population is above the minimum survival level, then the growth is limited by the carrying
capacity M.

3. If the population is above M, then it will decline due to the environment that cannot sustain
such high population level.

Write a differential equation that models this situation.
Solution. Let P = P (t) denote the whale population at time t. We can use an autonomous

differential equation with equilibrium solutions P = m and P = M. The conditions determine that

1. If P0 < m, P is to decrease towards 0. Thus P ′ < 0.

2. If m < P0 < M, P is to increase towards M . Thus P ′ > 0.

3. If P0 > M, P is to decrease towards M . Thus P ′ < 0.

These conditions are satisfied for the product (M − P )(P −m). Thus the differential equations

dP

dt
= k(M − P )(P −m)

where k is a positive constant, models the given situation.

Practice Problems.

1. (a) Show that y = 2 + e−x
3

is a solution of differential equation y′ + 3x2y = 6x2.

(b) Show that y = ce2x is a solution of differential equation y′′−3y′+2y = 0 for every constant
c.

2. Solve the following differential equations.
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(a) y′x = y (b) y′y = −x (c) y′ =
√

4x + 3, y(0) = 4/3

(d) y′ = 2xy, y(0) = 1 (e) y′ = xy
x2+1

, y(0) = 2

3. (a) A population of protozoa develops with a constant relative growth rate of 0.7 per member
per day. Initially, the population consist of two members. Find the population size after
six days.

(b) A glucose solution is administered intravenously into the bloodstream at a constant rate
r. As the glucose is added, it is converted into other substances and removed from the
bloodstream at a rate proportional to the concentration at that time. i) Set up the
differential equation that models this situation. ii) If r = 4 and the proportionality
constant is 2, draw the solutions. What can we conclude about the concentration of the
glucose after a long period of time? Explain. iii) Suppose that the initial concentration is
1 mg. Solve the equation with this initial condition and draw the graph of the solution.

(c) Experiments show that if the chemical reaction N2O5 → 2NO2 + 1
2
O2 takes place at 45

degrees Celsius, the rate of reaction of dinitrogen pentoxide is proportional to its concen-
tration C(t) with proportionality constant equal to -.0005. How long will the reaction
take to reduce the concentration of N2O5 to 90% of its original value?

4. Consider an insect population whose size P is measured as biomass (mass of the population
members) in kilograms. The population is increasing by 30% per year. However, the population
is also controlled by a natural predator population that destroys 6 kg of insects per year. (a)
Find the model describing the population size P at any given time t. (b) Sketch the graphs
of the solutions (note that the equation is autonomous) and use the graph to estimate the
threshold level of the population (the minimum level of the initial size that will allow the
population to survive on the long run). Explain what happens with the population. (c) Find
the population size 4 years after if the initial biomass is 15 kg.

5. (a) Sketch the graph of solutions of y′ = y(y − 1)(y − 2).

(b) Sketch the graph of solutions of y′ = y(y − 1)2(y − 2).

(c) The size of a population of rabbits is modeled by differential equation y′ = −ky(1− y/T )
where T = 100 and k = 0.8 per year. i) Estimate the number of rabbits after a long
period of time if the initial size of the population is 103 rabbits. ii) Estimate the number
of rabbits after long period of time if the initial size of the population is 99 rabbits.

(d) The Pacific halibut fishery is modeled by differential equation y′ = ky(1 − y/K) where
y(t) is the biomass (total mass of the members of the population) in kilograms at time t,
K = 8 · 107 kg and k = 0.71 per year. i) Estimate the biomass after many years if the
initial biomass is 3 · 106. ii) Estimate the biomass after many years if the initial biomass
is 9 · 107. iii) If the biomass is 2 · 107 kg initially, find the biomass a year later (use Matlab
for part iii).

6. Let A(t) be the area of tissue culture at time t (in days). Let the final area of the tissue when
the growth is complete be 8 cm2. Most cell divisions occur on the periphery of the tissue and
the number of cells on the periphery is proportional to

√
A. So, a reasonable model for the

growth of tissue is obtained by assuming that the rate of growth is jointly proportional to
√
A
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and 8−A. Write down a differential equation that models this situation. If the proportionality
constant is 1/3 and the area of tissue culture initially is 1.5 cm2, approximate the area of the
culture after 10 days using Matlab.

7. The use of mathematical methods to study the spread of contagious disease goes back to
some work of Daniel Bernoulli in 1760 on smallpox. In more recent years, many mathematical
models have been proposed and studied for many different diseases. Suppose that a given
population can be divided in two parts: those who have a given disease and can infect others
and those who do not have it but are susceptible. Let x be the proportion of susceptible
individuals and y be the proportion of infectious individuals. Then x + y = 1 = 100%.
If the disease spreads by the contact, the rate dy/dt is proportional to both the number of
susceptible (because they are getting in contact with infected individuals) and the number of
infected individuals (because their increase increases the rate of change also). i) Write down a
differential equation that models this situation. ii) Use the graph to determine the proportion
of infectious individuals for large values of t (i.e. when t → ∞). Explain what your answer
means.

Solutions.

1. Plug the given function and its derivative(s) into the given differential equation and show that
it reduces into a true equality.

2. (a) lines y = cx (b) circles x2 + y2 = c (c) y = 1/6 · (4x + 3)3/2 + 0.47 (d) y = ex
2

(e)
y = e1/2 ln(x

2+1)+ln 2 = 2
√
x2 + 1

3. (a) y(6) = 133 protozoa (b) i) dC/dt = r − kC ii) C = 2 is the stable equilibrium
solution, so concentration will be approximately 2 mg after a long period of time. iii) C(t) =
2− e−2t (c) C(t) = C0e

−.0005t It takes 211 seconds to reduce the concentration of N2O5

to 90% of the initial size.

4. (a) The differential equation modeling the situation is dP
dt

= 0.3P − 6 = 0.3(P − 20). To solve
it, separate the variables: dP

P−20 = 0.3dt. Integrate both sides: ln |P − 20| = 0.3t+ c and get the
general solution P = ce0.3t + 20.

(b) To sketch the graph, find the equilibrium solution. Solving 0.3(P − 20) = 0, get the
equilibrium value P = 20 kg. It is an unstable equilibrium solution: if the initial size is below
20 kg, the population will eventually die out. If the initial size is above 20 kg, the population
will increase without bound. So, the threshold level is 20 kg.

(c) If P (0) = 15, 15 = c + 20 so c = −5. Thus, P = −5e0.3t + 20. When t = 4, P = 3.4 kg.

5. (a) y = 1 stable, y = 0 and y = 2 unstable solutions. (b) y = 0 stable, y = 1 semistable, y = 2
unstable solution. (c). i) infinity ii) 0 (d). i) 8 · 107 ii) 8 · 107

6. The differential equation dA
dt

= k
√
A(8 − A), where k is the proportionality constant, models

this situation. Using Euler’s method, A(10) = 7.9997 cm2.

7. Since x = 1− y, the differential equation dy
dt

= ky(1− y) y(0) = y0, where k is the proportion-
ality constant, models the situation. Graphing the solutions, we can see that 0 is unstable and
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1 is stable solution. This means that the percent of infected individuals keeps growing towards
100%.
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