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Empirical Models

Data Collection.

It is possible to built a mathematical model solely out of the abstract concepts. However, if
the models are to be made to confront reality it is through the data that the confrontation hap-
pens. By data we mean measurements or observations collected in the real world. Interaction
between data and models occurs in a couple of ways:

1. Data are needed to suggest a right model. The models called empirical are based
entirely on data.

2. Data are needed to estimate the values of the parameters appearing in a model. This is
sometimes called calibrating a model.

3. Data are needed to test a model.

It happens very often that the data given at the beginning is not sufficient for making a good
model. In these cases further data collection is needed. Considering the following questions
might be useful:

- What is the relevant data? Exactly what kind of data is needed?

- How can the relevant data be obtained?

- In what form do you need the data?

Once the data is collected, you need to decide on the techniques you want to use in order
to find an appropriate model. There are two major groups of techniques based on two different
ideas

1. Interpolation – finding a function that contains all the data points.

2. Model fitting – finding a function that is as close as possible to containing all the data
points. Such function is also called a regression curve.

Sometimes you would need to combine these methods since the interpolation curve might be
too complex and the best fit model might not be sufficiently accurate.

Model Fitting. Modeling using Regressions.

Most of the technology used (e.g. Excel, graphing calculators, Matlab) can be used to
find regression curves and a variable monitoring the validity of the model, the coefficient
of determination usually denoted by R2. This coefficient takes values in interval [0,1] and
indicates how close the data points are to be exactly on the regression curve. If R2 is close to
1, the model is reliable. If R2 is close to 0, other model should be considered.
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- Linear y = ax+b. Easiest, simplest, used very frequently. A simple test can be performed
in order to determine if data is linear: if independent variable values are equally spaced,
simply check if difference of consecutive y-values is the same.

If b is sufficiently small, y is said to be proportional to x (y ∝ x)

- Quadratic y = ax2 + bx + c. Appropriate for fitting data with one minimum or one
maximum. To find out if equally spaced data is quadratic, check if the differences of the
successive differences of consecutive y-values are constant.

If a > 0, this function is concave up, if a < 0, it is concave down.

- Cubic y = ax3 + bx2 + cx + d. Appropriate for fitting data with one minimum and one
maximum.

- Quartic y = ax4 + bx3 + cx2 + dx+ e. Convenient for fitting data with two minima and
one maximum or two maxima and one minimum. When working with polynomial models
a thing to keep in mind: balance between complexity and precision. For examples, see
section Testing the effectiveness of a model. Also, monitor the long term behavior and
check how realistic it is. For example, see sections Testing the validity and Choosing the
right model.

- Exponential y = abx or y = aekx. While a linear function has constant average rate
of change (a constant difference of two consecutive y-values), an exponential function
has constant percent (relative) rate of change (a constant quotient of two consecutive y-
values). Thus, an easy test to check if data is linear: if independent variable values are
equally spaced, simply check if quotient of consecutive y-values is the same.

If k > 0, then the function is increasing and concave up. If k < 0, then the function is
decreasing and concave up. This model is appropriate if the increase is slow at first but
then it speeds up (or, if k < 0 if the decrease is fast at first but then slows down).

- Logarithmic y = a + b lnx. If b > 0, then the function is increasing and concave down.
If b < 0, then the function is decreasing and concave up. If the data indicates an increase,
this model is appropriate if the increase is fast at first but then it slows down.

- Logistic y = c
1+ae−bx . Increasing for b > 0. In this case, the increase is slow at first, then

it speeds up and then it slows down again and approaches the y-value c for x→∞.

- Power axb. If a > 0,I it is increasing for b > 0 and decreasing for b < 0. It is called a
power model since an increase of x by factor of t causes an increase of y by the power tb

of t (for b > 0). Increasing power function will not increase as rapidly as an increasing
exponential function.

Connection with linear model: If y = axb, then ln y = ln a + b lnx. So, if y is a power
function, ln y is a linear function of ln x. Note: If y = abx, then ln y = ln a+ x ln b. So, if
y is an exponential function, ln y is a linear function of x. In conclusion:
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Linear y depends linearly on x
Power ln y depends linearly on lnx

Exponential ln y depends linearly on x
Logarithmic y depends linearly on lnx

- Sine a sin(bx+ c) + d. Appropriate for periodic data. In the formula, a is the amplitude,
b/360 the period, c/b the horizontal shift, and d the vertical shift.

Example 1. In order to conduct an experiment to measure the stretch of a spring as a
function of mass, a spring-mass system is considered. The following data is obtained

mass (grams) 50 100 150 200 250 300 350 400 450 500 550
elongation (cm) 1 1.875 2.75 3.25 4.375 4.875 5.765 6.5 7.25 8 8.75

The data suggest that the elongation is proportional to the mass. Finding linear regression
results in y = .0154x+ .324 with coefficient of determination R2 = .9985. Note that the initial
value is not that small compared with the size of first y-value. Thus suggest that .324 is the
elongation of spring due to its own weight and that the data is better to be modeled with
linear regression than just with proportionality. Another option is to consider a power model.
y = .029x.901 is obtained. R2 = .9984 suggests that this also fits data well. Note that the
exponent .901 is close to 1 and so it can be argued that the data is close to being proportional.

Example 2. The relation between the radius and the volume of a sphere is measured to
be as table below indicates.

radius r 1 2 3 4 5
volume V 4.19 33.51 113.10 268.08 523.60

Use regressions to find the formula for the volume as a function of the radius.
The data does not suggest a linear model. The exponential model does not have a partic-

ularly high coefficient of determination. The power model gives us y = 4.1897x2.9998 ≈ 4.19x3.
Note that 4π/3 = 4.1887 ≈ 4.19.

A note about the simplicity. Note that linear regression is the only one that can be
relatively easily done ”by hand” (details to be presented later). Let us consider how this problem
can be converted to finding the linear regression. Recall that if y = axb, then ln y = ln a+b lnx.

Note that a is ey−intercept and b is the slope. So, we can find the linear regression for the
following data

ln r 0 .693 1.0986 1.3863 1.6094
lnV 1.4327 3.5118 4.7283 5.5913 6.2607

On TI83, you can enter r-values into L3 and V -values into L4. Then the commands “ln(L3)→ L1

and ln(L4)→ L2 will place the data from the second table into the first two list allowing you do
a linear regression in a usual way. The linear regression turns out to be y = 2.9998x+ 1.432 ≈
3x+ 1.432. As e1.432 = 4.187 ≈ 4.19, this gives us the same result that V = 4.19r3.
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A word on Empirical Modeling. Empirical models are those that are based entirely on
data. The important distinction between empirical models and examples from the previous sec-
tion is that the empirical models are not derived from assumptions concerning the relationship
between variables and they are not based on physical principles.

The first step in deriving an empirical models is to get the scatterplot of the data. If the
data does not seem to be linear, try to plot one or both variables as logarithms so that you can
check if an exponential or power models are good fits. The idea is to get a graph that looks
reasonably linear and then to get a linear model. Keep in mind that:

Linear model y depends linearly on x
Power model ln y depends linearly on lnx

Exponential model ln y depends linearly on x
Logarithmic y depends linearly on lnx

Practice Problems

1. The size of population of US in 1800s has been measured and given in the table below.
t = 0 denotes year 1800.

time t 0 10 20 30 40 50 60
population P (millions) 5.31 7.24 9.64 12.87 17.07 23.19 31.44

Considering a logarithm of P as a function of t, find a linear model for lnP and t and
deduce that the population was increasing exponentially. Write down the exponential
model.

2. In the table below, the height and weight of a sample of people of various ages is recorded.

Height H (m) 0.75 0.95 1.12 1.35 1.55 1.63 1.71 1.85
Weight W (kg) 10 15 20 35 48 51 59 75

Considering logarithms of both variables, find a linear model for lnH and lnW and deduce
which power model that can be used for describing the relation of H and W. Note that
the exponential model is not a good fit here since for exponential model zero H would
give you nonzero W. A logarithmic model is also not a good fit since the data is concave
up and increasing.

Solutions 1. lnP = 1.6747 + .0294t. Thus, P = e1.6747e.0294t = 5.337e.0294t or P =
5.337(1.0298)t. 2. lnW = 2.862 + 2.26 lnH, R2 = .992. Thus, W = e2.862elnH2.26

=
17.49H2.26.

Testing the validity of a model

Example 3. A projectile is fired upwards from the ground. The height of the projectile
above the ground is shown in the following table:

Time (seconds) 0 0.5 1 1.5 2 2.5
Height (feet) 0 20.5 31.36 36.25 30.41 28.23
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a) Find a good model to fit this data. b) Find the time at which the projectile hit the
ground.

Discussion. The linear, exponential and logarithmic models are not good fits as they are
always increasing or decreasing and the data is first increasing and then decreasing. So, you can
start by finding the quadratic, cubic and quartic models. Look at the graphs. Note that the
cubic and quartic polynomials start increasing instead of decreasing after the maximum height
is reached. Because of this, these models are not very appropriate. The quadratic model seems
to fit the data and the reality of the situation the best. For this model R2 = 0.9738 which is
pretty close to 1 so this supports the decision to use this model.

Solution. a) Quadratic model is y = −12.87x2 + 42.22x + 1.177 and R2 = 0.9738. b)
The object falls to the ground 3.31 second after it is thrown up.

Testing the effectiveness of a model

Example 4. Healthcare costs have been increasing over the years. The following data
shows the average cost of healthcare per person from 1976 to 1998:

Year 1976 1980 1987 1993 1998
Cost (per person) 618 860 1324 1865 2256

a) Find a model that fits the data well. b) Find the time the average healthcare cost
will reach $2800 per person.

Discussion. Let x = 0 denotes the year 1970. Find the quadratic, cubic and quartic
model. Look at the graphs. Compare R2 for all models. Note that cubic model increases
complexity of the equation without changing the value of R2 significantly (also it starts to
decrease at some point and the data does not indicate that). The quartic model, although
accurate because R2 = 1 also starts decreasing which does not fit the data. The exponential
model has R2 = .988 so a good case could be made for choosing it. The logarithmic model is
not appropriate as the scatterplot indicates concave up data, not concave down. Thus, either
quadratic or exponential models are appropriate to use.

Solution. 3. a) Quadratic Model: y = .7686x2 + 49.204x + 290.8067, R2 = .9988 b)
Using quadratic model, y = 2800 when x = 33.48. So, by year 2004, the healthcare cost will be
over $2800 per person.

Choosing the right model

Practice Problems

1. The population present in a bacteria culture over 5 days is given in the table below:

time (days) 0 1 2 3 4 5
population 30 133 214 337 527 819

a) Find a good model for the data. b) Estimate the population after 7 days.

2. A company decided to develop a cost equation based on the quantity of the product
produced in a day. They collected the following data:

quantity produced 20 35 50 65 80 95 110
cost 642.35 766.48 858.82 928.83 1005.32 1078.82 1140.79
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a) Find a good model for the data. b) According to the model, find how many units
could be produced for $800.

3. The table below shows the yield (in mg) of a chemical reaction in the first 6 minutes.

time (minutes) 1 2 3 4 5 6
yield (mg) 1.2 6.9 9.3 12.7 14.1 15.7

a) Use the scatterplot to find the best model to fit this data. b) Using that model,
determine in how many minutes will the yield be 20 mg.

Solutions.

1. a) The cubic model is a slightly better fit than quadratic. For cubic R2 = .9999. The
quartic model has almost the same R2 as cubic so it increases complexity without adding
much accuracy. Logarithmic is concave down instead of up and exponential does not have
very high R2. b) 1886 bacteria.

2. a) The leading coefficient of cubic model is 3.25 · 10−4. Since this number is relatively
small, this means that the cubic curve is almost a quadratic curve. R2 of quadratic is
.997 and the cubic has R2 = .9993 which suggests that they are almost equally efficient.
Considering effectiveness, we are leaning towards quadratic. However, the quadratic curve
starts decreasing after about x = 200. Thus, if it is to predict the cost if more than 200
items are produced, the cubic model is better. If the production is not expected to exceed
200 items, the quadratic is better since it is more efficient.

The leading coefficient of quartic model is −9.7 · 10−6. As this number is very small, this
means that this curve is almost a cubic. Thus, when deciding between these two models,
cubic seems to be a better choice. Also, the quartic model starts decreasing and the data
does not indicate that should happen.

b) With quadratic: about 42 units. With cubic: about 41 units.

3. The quartic and logarithmic model have almost the same R2. The other models are not
very accurate. As logarithmic is simpler than quartic (especially considering that taking
lnx-values instead of x-values would give you a linear model), we can choose logarithmic.
b) 10.34 min.

Modeling with piecewise defined functions

Recall that a piecewise defined function is a function defined by different formulas for
different values of the independent variable. Sometimes, it is better to model given data using
one piecewise defined function than with a single function.

Practice problems

1. The size of a population of rabbits in a certain habitat is described by a table below.

year 2000 2001 2002 2003 2004 2005 2006
number of rabbits 30 45 68 60 96 154 247
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We can see that the number is increasing from 2000 to 2003. There was a decrease in
number of rabbits in 2004 due to a flood in the habitat but after 2004, the number of
rabbits is increasing again. Assuming that the number of rabbits is increasing exponen-
tially both before the flood and after the flood, find the two exponential regressions that
will best fit the data before and after the flood. Using the two formulas, write down a
piecewise function that will describe the number of rabbits from 2000 to 2006. Estimate
the number of rabbits in 2010.

2. The concentration of certain medication is decreasing as time is passing. The measure-
ments of the concentration are given in a table below.

time (hours) 0 1 2 3 4 5 6 7 8

concentration (mg/cm3) 4 3.2 2.5 1.4 0.9 0.4 0.2 0.15 0.09

a) Assume that in the first four hours a polynomial function is the best fit. Find
quadratic and cubic regression (record both curves) and choose the one that fits the
best.

b) After the fourth hour, assume that the concentration is decreasing exponentially.
Find the exponential regression that fits the data recorded after the fourth hour.

c) Write down a piecewise function that will describe the concentration within first 8
hours. By looking at the graph of the curve that describes the concentration in the
first four hours, explain why that part is not a good fit for the concentration after
four hours and why the piecewise function should be used.

Solutions.

1. The exponential regression for the first three given points gives us the formula y =
29.96(1.5055)x. The exponential regression for the next four points gives us 14.56(1.6028)x.

Thus, the piecewise function is y =

{
29.96(1.5055)x 0 ≤ x ≤ 2
14.56(1.6028)x x ≥ 3

y(10) = 1629.47 ≈

1629 rabbits.

2. a) Cubic is a better fit. y = .0417x3−.236x2−.4988x+3.979. b) y = 7.13(.572)x If you start

from x = 5, y = 4.01(.621)x. c) y =

{
.0417x3 − .236x2 − .4988x+ 3.979 0 ≤ x ≤ 4
7.13(.572)x x > 4

Piecewise function is better as cubic curve starts to increase after 4th hour.

Analytic Methods of Model fitting
In this section, we look into the mathematics behind obtaining regression models and curve

fitting.

Least-Squares Criterion
This criterion is the most frequently used curve-fitting criterion. It is based on an idea

that in order to fit a set of data points (xi, yi), i = 1, . . . ,m onto a curve y = f(x), we again
want the differences between yi and f(xi) to be as small as possible. Recall that the square
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of distance of the vector between the observed value yi and predicted value f(xi) is given by∑m
i=1(yi − f(xi))

2. Thus, a way to make the differences yi − f(xi) small is to

minimize the sum
m∑
i=1

(yi − f(xi))
2

Least-Squares Line Fit.
Suppose that we would like to fit the points (xi, yi), i = 1, . . . ,m onto a line y = ax+ b. So,

we need to minimize the sum

S =
m∑
i=1

(yi − axi − b)2

This will be satisfied when ∂S/∂a = 0 and ∂S/∂b = 0.

∂S

∂a
=

m∑
i=1

2(yi − axi − b)(−xi) = 0

∂S

∂b
=

m∑
i=1

2(yi − axi − b)(−1) = 0

We can view the equations above as two linear equations in the unknowns a and b. Solving
them for a and b, we obtain

a =
m

∑
xiyi −

∑
xi

∑
yi

m
∑
x2i − (

∑
xi)2

b =

∑
x2i

∑
yi −

∑
xiyi

∑
xi

m
∑
x2i − (

∑
xi)2

The two equations above are called the normalizing equations. It is not hard to write a
computer code that will compute these values.

Least-Squares Power Fit.
Suppose that a positive integer n is fixed and that we would like to fit the points (xi, yi),

i = 1, . . . ,m onto a curve of the form y = axn. So, we need to minimize the sum

S =
m∑
i=1

(yi − axni )2

This will be satisfied when

0 =
∂S

∂a
=

m∑
i=1

2(yi − axni )(−xni ) = 0

Solving this equation for a, we obtain

a =

∑
xni yi∑
x2ni
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Example 5. Let us find the quadratic power fit for the data in the table below.

x 0.5 1 1.5 2 2.5
y 0.7 3.4 7.2 12.4 20.1

Compute
∑
x2i yi to be 195.0 and

∑
x4i to be 61.1875. Thus a = 195.0

61.1875
= 3.1869 and so

y = 3.1869x2.

Least-Squares Fits in Matlab.
If we need to fit the data (xi, yi), i = 1, 2, . . . ,m to a curve y = f(x) using the least-

square, we need to minimize the function S =
∑m

i=1(yi − f(xi))
2. For an M-file calculating the

parameters of the curve f(x), the input should be a vector X whose entires are values xi, for
i = 1, 2, . . . ,m and a vector Y whose entries are the values yi for i = 1, 2, . . . ,m. The size m of
these vectors also needs to be recorded.

The command size(X, 2) calculates the length of a vector X. In general if A is an m× n
matrix, the command size(A, 1) returns the number of rows m and the command size(A, 2)
returns the number of columns n.

For example, if X=[2 5 6 0], Matlab registers it as an 1x4 matrix. Thus, the outcome of
the command size(X, 2) would be 4.

Example 6. Let us consider the Matlab code for calculating the best fit curve of the form
y = ax. In this case S =

∑m
i=1(yi − axi)2 and and ∂S

∂a
=

∑m
i=1 2(yi − axi)(−xi). Solving for a

gives us that

a =

∑m
i=1 xiyi∑m
i=1 x

2
i

The following Matlab code calculates a for a data set (xi, yi), i = 1, 2, . . . ,m. Before ex-
ecuting this code, the x-values should be entered as a vector X=[x1, x2, ... ,xm] and the
y-values should be entered as a vector Y=[y1, y2, ... ,ym]. Note that X and Y need to have
the same size. The command X(i) returns the i-th coordinate xi.

In the code below, sxsq denotes a variable for sum of squares of x-values and sxy denotes
a variable for sum of products of x and y-values. The variable m denotes the number of x and
y values.

function a=proportion(X, Y)

sxsq=0;

sxy=0;

m=size(X, 2);

for i=1:m

sxsq=sxsq+X(i)^2;

sxy=sxy+X(i)*Y(i);

end

a=sxy/sxsq;

Example 7. Write a Matlab code for calculating a linear least-squares fit y = ax + b, for
a data set (xi, yi), i = 1, 2, . . . ,m. Using the formulas from the previous section, we have that

a =
m

∑
xiyi −

∑
xi

∑
yi

m
∑
x2i − (

∑
xi)2

b =

∑
x2i

∑
yi −

∑
xiyi

∑
xi

m
∑
x2i − (

∑
xi)2
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Let sx denote a variable for sum of x-values,
sy denote a variable for sum of y-values,
sxy denote a variable for sum of products of x and y-values,
sxsq denote a variable for sum of squares of x-values,
sysq denote a variable for sum of squares of y-values, and
m is the number of x and y values.

function [a, b]=linear_fit(X, Y)

sx=0; sy=0;

sxy=0; sxsq=0;

sysq=0; m=size(X, 2);

for i=1:m

sx=sx+X(i);

sy=sy+Y(i);

sxsq=sxsq+X(i)^2;

sysq=sysq+Y(i)^2;

sxy=sxy+X(i)*Y(i);

end

a=(m*sxy-sx*sy)/(m*sxsq-sx^2);

b=(sxsq*sy-sxy*sx)/(m*sxsq-sx^2);

Transformed Least-Squares Fit.
The formula computing the coefficients of the linear and power least-squares fits is not

too complex because the partial derivatives considered were linear functions of the unknown
coefficients. With exponential, logarithmic or power model (with n not fixed in y = axn), the
equations determined by the partial derivatives are not linear equations in unknown coefficients.
In cases like this, one may modify the data (considering ln of one or both of the variables instead
of the original data) in order to reduce a non-linear model to a linear one. Thus

i) Finding an exponential model y = beax using the transformed data. Taking ln of
y = beax, obtain that ln y = ax + ln b = ax + B for ln b = B. Thus, you can find a linear
model for (xi, ln yi) instead of (xi, yi), i = 1, . . . ,m. Note that in this case

a =
m

∑
xi ln yi −

∑
xi

∑
ln yi

m
∑
x2i − (

∑
xi)2

ln b = B =

∑
x2i

∑
ln yi −

∑
xi ln yi

∑
xi

m
∑
x2i − (

∑
xi)2

ii) Finding a logarithmic model y = a lnx + b using the transformed data. Simply
consider (Xi, yi) = (ln xi, yi) instead of (xi, yi), i = 1, . . . ,m and find the linear model for
the transformed set of data. The linear model for y = aX + b is the logarithmic model
that we are looking for. Note that in this case

a =
m

∑
lnxiyi −

∑
lnxi

∑
yi

m
∑

(lnxi)2 − (
∑

lnxi)2
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b =

∑
(lnxi)

2 ∑ yi −
∑

lnxiyi
∑

lnxi
m

∑
(lnxi)2 − (

∑
lnxi)2

iii) Finding a power model y = bxa using the transformed data. Taking ln of y = bxa,
gives you ln y = a lnx + ln b. Consider (lnxi, ln yi) instead of (xi, yi), i = 1, . . . ,m and
find the linear model for this transformed set of data. Denote ln b = B. The linear model
for Y = ln y = a lnx+ ln b = aX +B can be found as:

a =
m

∑
lnxi ln yi −

∑
lnxi

∑
ln yi

m
∑

(lnxi)2 − (
∑

lnxi)2

ln b = B =

∑
(lnxi)

2 ∑ ln yi −
∑

lnxi ln yi
∑

lnxi
m

∑
(lnxi)2 − (

∑
lnxi)2

Example 8. Let us find a power fit for the data from Example 5. Computing a and b using
the formulas from iii) above, we obtain that a = 2.062 and b = 1.1266 so that B = eb = 3.085.
So, y = 3.085x2.0628.

An important fact to note is that if the partial derivative equations are used to find the
unknown coefficients a and B in y = Beax, y = a lnx+ b or y = Bxa without transforming the
original data, we would end up with different models than the models that we get when we
transform thee data and find a linear regression for the new data. It is important to keep in
mind how different technology handles the data. For example, TI83 is programmed to do the
transformed least-squares linear fit when finding the power model.

Transforming the original data often simplifies the formulas even for models with less pa-
rameters than exponential, power or logarithmic. The next example illustrates this.

Example 9. Find the formula computing the coefficient a for the quadratic fit y = ax2

and use it to find a transformed quadratic fit for the data from Example 5.
Take ln of y = ax2. Obtain than ln y = ln a + 2 lnx. Let us denote ln a by A. Thus, we

need to consider ln y = A + 2 lnx and to to minimize S =
∑

(ln yi − A − 2 lnxi)
2. The partial

derivative is ∂S
∂A

=
∑m

i=1 2(ln yi−A− 2 lnxi)(−1). Setting this derivative to 0 and solving for A
gives us

ln a = A =
1

m

m∑
i=1

(ln yi − 2 lnxi)

which can be easily solved for a.
Using the data from Example 5, we obtain that A = 1.1432 and so a = 3.1368. Compare

this model y = 3.1368x2 with the model y = 3.1869x2 obtained using the direct power curve
fit.

Example 10. Write Matlab code for determining the power curve of the form y = ax2

using the transformed least-squares fit for a data set (xi, yi), i = 1, 2, . . . ,m.
Use the formula from previous example A = 1

m

∑m
i=1(ln yi − 2 lnxi) and a = eA.

The following Matlab code calculates the coefficient a. In the program the variable S denotes
the sum of ln yi − 2 lnxi values
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function a=transformed_squares(X, Y)

m=size(X, 2);

S=0;

for i=1:m

S=S+log(Y(i))-2*log(X(i));

end

A=S/m;

a=exp(A);

Chebyshev Approximation Criterion.
Let us assume that m points (xi, yi), i = 1, . . . ,m are given and that we need to fit them

on a curve y = f(x). As we would like the differences between yi and f(xi) to be as small as
possible, the idea is to minimize the largest absolute value |yi−f(xi)|. Thus, the only difference
between the least square fit and Chebyshev method is that instead of sum of squares of yi−f(xi)
we are minimizing the maximum of the absolute values of yi − f(xi).

Following steps achieve this goal.

1. Let ri = yi − f(xi) for i = 1, . . . ,m. The variables ri are called residuals.

2. Find the maximum of |ri| for i = 1, . . . ,m. Let us call this quantity r.

3. Solve the following optimization problem: minimize r subject to constraints −r ≤ ri ≤ r
for i = 1, . . . ,m i.e.

r − ri ≥ 0, r + ri ≥ 0, for i = 1, . . . ,m.

Example 11. Suppose that a point B is somewhere inside a line segment AC. Assume
that measuring the distances AB, BC and AC, we obtain that AB = 13, BC = 7 and AC =
19. As 13 + 7 = 20 6= 19, we need to resolve the discrepancy. We can do that using the
Chebyshev approximation criterion. Let x1, x2 and x3 stand for exact lengths of AB, BC and
AC respectively. Then r1 = x1 − 13, r2 = x2 − 7, and r3 = x1 + x2 − 19. Let r stands for the
maximum of the absolute values of r1, r2 and r3 (note that we don’t know which one is r). We
would like to minimize r subject to

r − x1 + 13 ≥ 0, r + x1 − 13 ≥ 0, r − x2 + 7 ≥ 0, r + x2 − 7 ≥ 0

r − x1 − x2 + 19 ≥ 0 r + x1 + x2 − 19 ≥ 0

Using the methods of linear programming (see section on Optimization), we obtain that
r = 1

3
, x1 = 122

3
and x2 = 62

3
.

Although in this example linear programing is used, note that in some cases the constraints
will not be linear equations and other optimization methods should be used.

Measuring the validity of a model
In the previously seen examples, two different quadratic power models y = 3.1368x2 and

y = 3.1869x2 are obtained for the same set of data. If Chebyshev criterion is to be used for the
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same set of data, it would yield yet another model y = 3.17073x2 for the same set of data. A
natural question is: how can we choose the best model?

Before we we attempt to answer, let us introduce some notation. If the data (xi, yi), i =
1, . . . ,m is to be fit on the curve y = f1(x) obtained using the Chebyshev criterion, let ci denote
the absolute deviations |yi−f1(xi)|. If the same data is to be fit on the curve y = f2(x) obtained
using the least-squares criterion, let di denote the absolute deviations |yi − f2(xi)|. Also, let
cmax denote the largest of ci and dmax denote the largest of di.

Since the least-squares criterion is such that the squares of the deviations are minimal, we
have that ∑

d2i ≤
∑

c2i ≤ mc2max

Thus,

D =

√∑
d2i
m
≤ cmax

Also, since the Chebyshev criterion is such that the maximum of the absolute deviations is
minimal, we have that cmax ≤ dmax. Thus,

D ≤ cmax ≤ dmax

This last equation can help us determine which model to use: the least-squares criterion is
convenient to use but there is always to concern that the difference between D and dmax might
be too large. Balancing these two conditions might help us decide which model to use.

Let us go back to the example with three different quadratic power models. Computing the
deviations for all three models we conclude

1. For the model y = 3.1869x2 obtained using the least-squares fit. The largest absolute
deviation is 0.347. The smallest is 0.0976.

2. For the model y = 3.1368x2 obtained using transformed least-squares fit. The largest
absolute deviation is 0.495. The smallest is 0.0842. This model was the easiest to compute
but has the largest absolute deviation.

3. For the model y = 3.17073x2 obtained using Chebyshev criterion. The largest absolute
deviation is 0.282. The smallest is 0.0659. Computationally, this model was the hardest
to get but has the smallest absolute deviation. However, considering the sum of squares of
deviations instead of the maximum of the absolute deviations, the least-squares fit model
is better than the Chebyshev (.2095 for the least squares versus .2256 for Chebyshev).

The conclusion that we can draw from this example is that there is not a single right answer
when trying to decide which model is the best. Thus, in each of the following cases, our choice
of models would be different.

1. If it is more important to minimize the sum of squares of deviations than the maximal
absolute deviation, the least-squares criterion should be used.

2. If it is more important that the model is computationally simple than to have small
maximum or sum of squares of absolute deviations, the transformed least-squares criterion
should be used.
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3. If it is more important to minimize the maximal absolute deviation than the sum of
squares of deviation, the Chebyshev criterion should be used.

So, we need to decide which model is the best on case-by-case basis, taking all the specifics into
account (what is the purpose of the model, how precise should it be, how accurate is the data,
etc).

Linear Regression
We can gain further insight in the basic linear model when we consider some further pa-

rameters of the statistical analysis. For the data (xi, yi), i = 1, . . . ,m, consider the following
values.

1. The error (or explained) sum of squares ESS

ESS =
m∑
i=1

[yi − (axi + b)]2

ESS reflects the variation about the regression line.

2. The total (or corrected) sum of squares TSS

TSS =
m∑
i=1

(yi − y)2

where y is the average of the y-values of the data points. TSS reflects the variation in
the y values about the line y = y.

3. The regression sum of squares is RSS = TSS − ESS.

4. The coefficient of determination R2

R2 =
RSS

TSS
= 1− ESS

TSS

Thus defined R2 is independent on the units of x and y and is also independent on which of the
two variables is labeled as independent and which as dependent (in other words, data (yi, xi),
i = 1, . . . ,m, would produce the same value of R2).

If R2 = .9 for example, then 90% of the total variation of y-values from the line y = y is
accounted for by a linear relationship with the values of x.

Example 12. Consider developing a model that will relate the human weight with the
height. Use the model to predict the body weight.

The simplest model could be derived from a simple assumption that weight is proportional
to volume, and that volume is proportional to the cube of height.

W = aH3.

In medicine, the BWI (body weight index) is calculated considering the quotient W
H2 (in

fact, 27 = W
H2 is considered a norm). This assumes that weight is proportional to the square of

height.
W = aH2.
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In the table below, the height and weight of a sample of people of various ages is recorded.

Height H (m) 1.75 1.95 1.50 1.75 1.55 1.63 1.71 1.85
Weight W (kg) 65 85 45 70 48 51 59 75

If we were to find the quadratic or cubic model, this would yield more terms than necessary and
we might not be able to test how well our hypothesis W ∝ H2 and W ∝ H3 match the data.
Thus, we might want to find the linear model for the squares and the cubes of the x-values.
This is called the linearization of data.

When we find a linear regression for the squares of the heights given, we obtain W =
26.92H2 − 17.12 and R2 = .968. When we find a linear regression for the cubes of the heights
given, we obtain W = 10.37H3 + 9.23 and R2 = .969. Since the values of R2 are approximately
same, the cubic model is slightly better since the value of y-intercept is smaller so the model is
closer to the form W = aH3 than the quadratic model.

We could also calculate the power model. Considering logarithms of both variables, we can
find a linear model for lnH and lnW. We obtain that lnW = 2.749+2.547 lnH, with R2 = .968.
Thus, W = e2.749elnH2.547

= 15.63H2.547. The benefit of this model is that it passes (0,0) (that
corresponds to reality), but the exponent 2.547 is not as easy to work with as exponents 2 or
3.

Practice Problems

1. Fit the following data on a straight line using the equations for slope and y-intercept
given in the section Least-Squares Line Fit.

x 1.0 2.3 3.7 4.2 6.1 7.0
y 3.6 3.0 3.2 5.1 5.3 6.8

Calculate dmax and explain what your answer means.

2. In the table below, the height and weight of a sample of people of various ages is recorded.

Height H (m) 1.75 1.95 1.50 1.75 1.55 1.63 1.71 1.85
Weight W (kg) 65 85 45 70 48 51 59 75

In an example solved previously, we have found the power model to be W = 15.63H2.547.
We have also seen that the models of the form W = aH2 + b and W = aH3 + b are
W = 26.92H2− 17.12 and W = 10.37H3 + 9.23. However, it is of interest also to consider
the models W = aH3 (starting from a simple assumption that weight is proportional to
volume) and W = aH2 (the model used in medicine for calculating the body weight index
BWI). Find the model of the form:

a) W = aH2 b) W = aH3

3. The following data represents the growth of population of fruit flies over a 6-week period.

time (in days) t 7 14 21 28 35 42
no. of fruit flies P 8 41 133 250 280 297

Use the least-squares criterion either on data or on the transformed data to find the
models of the following types
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a) P = kt b) P = kt2 c) P = k ln t

By considering the data plot and the graphs of the three models, conclude which models
are appropriate.

4. In the following data, W represents the weight of a bass, l represents its length and g its
girth.

Length (in in.) l 14.5 12.5 17.25 14.5 12.625 17.75 14.125 12.625
Girth (in in.) g 9.75 8.375 11.0 9.75 8.5 12.5 9.0 8.5

Weight (in oz.) W 27 17 41 26 17 49 23 16

Use the least-squares criterion to find the following models. a) W = kl3 b) W = klg2.
Determine which model fits the data better.

5. Write a Matlab program that finds the least squares (or transformed least squares when
appropriate) estimates of the coefficients of the following models: a) y = ax2 b) y = axn

c) y = aex d) y = a ln(x).

Solutions

1. y = .5642x+ 2.2149; dmax = 1.1

2. a) a = 1517.9313
71.3743

= 21.267 ⇒ W = 21.267H2. Note that the fact that a is smaller than
the medical norm a = 27 suggests that the data was collected from people with BWI
somewhat under the norm. b) a = 2675.1534

221.531
= 12.07575⇒ W = 12.076H3.

3. a) a = 32697
4459

⇒ P = 7.33t. b) a = 11299895462275 = .2069 ⇒ P = 0.2069t2 c) a =
3467.33
57.73

= 60.056 ⇒ P = 60.056 ln t. Neither of the models does not seem to be very
appropriate.

4. a) W = .00844l3 and dmax = 2.305. b) W = .01868lg2 and dmax = 2.794. This suggests
that the model W = kl3 is better.

5. Write down the formulas that you would use first and then just translate them to appro-
priate M-files.
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