
Differential Geometry
Lia Vas

Surfaces. Normal and Gaussian curvatures

When considering curves, we have seen that the curvature measures the extent of twisting and
turning of a curve in space. We now turn to surfaces, two-dimensional objects in three-dimensional
space and examine how the concept of curvature translates to surfaces.

In Calculus 3, you have encounter surfaces defined as graphs of real valued functions of two
variables z = f(x, y). This function also can take the form x = f(y, z) or y = f(x, z). In some
cases, this function is given implicitly as F (x, y, z) = 0. For example, a sphere of radius a is given
by x2 + y2 + z2 = a2 and it is impossible to get a single two variable function that would describe
the whole sphere. Cylinder x2 + y2 = a2 is another such example. Representing a surface using
parametric equations encompasses all of the above scenarios. Parametric equations of a surface
have the form

x = x(u, v) y = y(u, v) z = z(u, v).

The variables u and v are parameters of the above equations.
Thus, a parametric surface is represented as a vector function of two variables, i.e. the domain D

consisting of all possible values of parameters u and v is contained in R2. The range of the surfaces
is contained in the three dimensional space R3. Thus, a surface x is a mapping of D into R3. This is
denoted by x : D → R3. The vector function x can also be represented as

x(u, v) = (x(u, v), y(u, v), z(u, v)).

Notice an analogy with curves. We can think of curves as one-dimensional objects in three-
dimensional space and surfaces as two-dimensional objects in three dimensional space. Thus, a curve
can be described using a single parameter t. Surface, on the other hand, is described using two
parameters u and v.

Mapping Dimension Parameter(s) Equations

Curve γ : (a, b) ⊆ R→ R3 1 t γ(t) = (x(t), y(t), z(t))

Surface x : D ⊆ R2 → R3 2 u, v x(u, v) = (x(u, v), y(u, v), z(u, v))

For example, the surface given in the form z = f(x, y) can always be parametrized as x =
(x, y, f(x, y)). We review an important example from Calculus 3.

Planes. The general equation of a plane is

ax+ by + cz + d = 0.

A plane is uniquely determined by a point in it and a vector perpendicular to it. The equation
that describes any point x = (x, y, z) in the plane through a point
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x0 = (x0, y0, z0) perpendicular to a vector
a = (a, b, c) is

a · (x− x0) = 0

The above vector equation of the plane has
the following scalar form.

a(x− x0) + b(y − y0) + c(z − z0) = 0.

If c 6= 0, the plane ax+by+cz = d can be parametrized by (x, y, 1
c
(d−ax−by)). For example, the

plane x− 3y + z = 2 can be parametrized by (x, y, 2− x+ 3y). If a 6= 0, one can solve for x and use
y and z as parameters. For example, the plane from the previous example can also be parametrized
by (2 + 3y − z, y, z). If b 6= 0 one can solve for y and use x and z as parameters. For example, the
plane 2x+ y = 4 can be parametrized by (x, 4− 2x, z).

The tangent plane of a surface at a point.

For a parametric surface

x = (x(u, v), y(u, v), z(u, v)),

the derivatives xu and xv are vectors in the tan-
gent plane. Thus, their cross product

∂x

∂u
× ∂x

∂v
= (xu, yu, zu)× (xv, yv, zv)

is perpendicular to the tangent plane.
If a surface is given by implicit function

F (x, y, z) = 0, then this cross product also corre-
sponds to the gradient ∇F of F.

A convenient parametrization of some surfaces requires a change of coordinates. We review
cylindrical and spherical coordinates next.

Cylindrical coordinates.

x = r cos θ, y = r sin θ, z = z.

Here x and y are converted using polar coor-
dinates and the only change in z may come just
from changes in x and y. Note that

x2 + y2 = r2

in these coordinates.

Cylindrical coordinates can be used for parametrization of surfaces of revolution and cylindrical
surfaces.

Surfaces of revolution z = f(
√
x2 + y2). To parametrize such a surface, note that

√
x2 + y2

is r in cylindrical coordinates. Thus, you can use

x(r, θ) = (r cos θ, r sin θ, f(r))
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as your parametrization. We consider some examples.

1. The cone z = a
√
x2 + y2 = ar is obtained by

rotating the line z = ay about the z-axis. It
can be parametrized by

x = (r cos θ, r sin θ, ar).

Note that this cone can also be parametrized
by (x, y, a

√
x2 + y2). However, the first

parametrization has much simpler derivatives
as well as much nicer bounds for the parame-
ters r and θ when we integrate this cone over
some natural regions.

2. A paraboloid z = ax2 + ay2 is obtained by ro-
tating the parabola z = ay2 about the z-axis.
It can be parametrized by

x = (r cos θ, r sin θ, ar2).

Note that it can also be parametrized by
(x, y, ax2 + ay2).

3. The upper half-sphere z =
√
a2 − x2 − y2

is obtained by rotating the half-circle z =√
a2 − y2 about the z-axis. It can be

parametrized by

x = (r cos θ, r sin θ,
√
a2 − r2).

Cylindrical surfaces. Cylindrical surfaces are given by an equation in which at least one of
the three variables x, y or z is not present. For example, F (x, y) = 0. To graph this surface, graph
the curve with the implicit equation F (x, y) = 0 in the xy-plane and translate the graph along the
z-axis. Similarly, to graph a surface given by F (x, z) = 0, translate the curve F (x, z) = 0 in the
xz-plane along the y-axis. We consider two such examples.

1. The surface given by the equation x2 + y2 = a2

is the cylinder of radius a with a circular base
and it is parallel with the z-axis. If using cylin-
drical coordinates, the value of r is constant
and it is equal to a and the z-coordinate cor-
responds to the second parameter which we
call h to indicate that it corresponds to the
height of the point. Thus, this cylinder can be
parametrized by

x = (a cos t, a sin t, h).

3



2. The surface given by the equation y2 +z2 = a2

is the cylinder of radius a with a circular base.
It is parallel with the y-axis. Analogously
as in previous example, this cylinder can be
parametrized by

x = (h, a cos θ, a sin θ).

Examples.

1. Parametrize the following surfaces. Describe the surfaces or sketch their graphs.

(a) 2x+ 3y + z = 6 (b) z = 9−
√
x2 + y2 (c) x2 + z2 = 4 (d) z = y2

2. Find an equation of the tangent plane to x2 + z2 = 4 at (0, 3, 2).

Solutions. 1. (a) This is the plane passing (3,0,0), (0,2,0), and (0,0,6). It can be parametrized
as x = (x, y, 6− 2x− 3y).
(b) This is the downwards cone with vertex (0,0,9). It can be parametrized as x = (r cos θ, r sin θ, 9−
r).
(c) This is the cylinder of radius 2, parallel with the y-axis. It can be parametrized as x =
(2 cos θ, h, 2 sin θ).
(d) This is a cylindrical surface which can be obtained by translating the parabola z = y2 in yz-plane
along the x-axis. It can be parametrized by x = (x, y, y2).

2. Use the parametrization x = (2 cos θ, h, 2 sin θ) from the previous problem and calculate xθ × xh
to be (−2 cos θ, 0,−2 sin θ). At (0, 3, 2), the values of parameters are θ = π

2
and h = 3 so the normal

vector is (0, 0,−2). The equation of the plane is 0(x− 0) + 0(y − 3)− 2(z − 2) = 0⇒ z = 2.

Spherical coordinates. If P = (x, y, z) is a point in space and O denotes the origin, let

• r denotes the distance of the point P =
(x, y, z) from the origin O. Thus,

x2 + y2 + z2 = r2;

• θ is the angle between the projection of vec-

tor
−→
OP = (x, y, z) on the xy-plane and the

vector
−→
i = (1, 0, 0) (positive x axis); and

• φ is the angle between the vector
−→
OP and

the vector
−→
k = (0, 0, 1) (positive z-axis).

With this notation, spherical coordinates are (r, θ, φ). The conversion equations are

x = r cos θ sinφ y = r sin θ sinφ z = r cosφ.
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In this parametrization, the north pole of a
sphere centered at the origin corresponds to value
φ = 0, the equator to φ = π

2
and the south pole

to φ = π. To match the geographical latitude (for
which north and south pole correspond to π

2
and

−π
2

and equator to φ = 0), the angle φ is often
considered to be the angle between the equator

and the vector
−→
OP. In this case, cosφ and sinφ

are switched in the equations of the spherical co-
ordinates and we obtain

x = r cos θ cosφ y = r sin θ cosφ z = r sinφ.

The angle θ corresponds to the geographical longitude and the angle φ corresponds to the geographical
latitude.

The values of φ from the interval [0, π
2
] correspond to the points on the northern hemisphere, and

the values of φ from [−π
2
, 0] correspond to the points on the southern hemisphere. The θ-interval

[0, π] corresponds to the eastern hemisphere, and the θ-interval [−π, 0] to the western hemisphere.
For example, the longitude of Philadelphia 75◦10′ west corresponds to θ = −75◦10′ and the latitude
of Philadelphia 39◦57′ north corresponds to φ = 39◦57′.

Regular surfaces. Coordinate patches

In order to have a unit-length tangent vector at every point of a curve γ = γ(t), we need to
require that dγ

dt
6= 0. This condition also ensures that the curvature is well-defined and nontrivial.

Analogously, for surfaces, we want to ensure that the tangent plane at every point is defined (i.e. that
is not collapsed into a line or a point). Since the normal vector to the tangent plane of a parametric
surface x = x(u, v) is given by ∂x

∂u
× ∂x

∂v
, we want to require a condition that guarantees that this

vector is non-zero i.e.,
∂x

∂u
× ∂x

∂v
6= 0.

The condition ∂x
∂u
× ∂x

∂v
6= 0 guarantees that the vectors ∂x

∂u
and ∂x

∂v
are not on the same line. Thus,

they are linearly independent and they constitute a basis of the tangent plane and every other
vector in the tangent plane can be represented as a linear combination of these two vectors. 1

1Linear Algebra background. Consider two vectors v1 and v2 that do not lie on the same line. In this case,
we say that v1 and v2 are linearly independent. Consider also the plane determined by these two vectors. For
arbitrary vector v in the plane, we can consider the projection of v in direction of v1. This projection is a multiple
of v1. Let a denote the multiplication factor. Consider also the projection of v in direction of v2 and let b denote the
the multiplication factor. Thus,

v = av1 + bv2

The sum av1 + bv2 is called a linear combination of v1 and v2. This shows that every vector in the plane that we
consider can be expressed as a linear combination of v1 and v2. In this case, we say that v1 and v2 generate the
plane.

Linearly independent vectors that generate a plane are called a basis. Consideration of projections above demon-
strates that any two linearly independent vectors in a plane constitute a basis of the plane.

For example, vectors (1, 0) and (0, 1) are a basis of xy-plane (space R2): these two vectors are not colinear and every
vector (x, y) is the linear combination x(1, 0) + y(0, 1).
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Thus, we consider just surfaces such that one can parametrize a region on the surface around every
point with parametric equations x = x(u, v), y = y(u, v), z = z(u, v) with the following properties.

• The functions x = x(u, v), y = y(u, v), z = z(u, v) are continuous in both variables (thus, there
are no gaps or holes) and one-to-one (no self-overlaps).

• The partial derivatives of x = x(u, v), y = y(u, v), z = z(u, v) are continuous (thus, there are
no corners or sharp turns and the surface is “smooth”).

• The cross product ∂x
∂u
× ∂x

∂v
is not equal to 0 (thus, the tangent plane at each point is not

collapsed into a line or a point).

We refer to those surfaces as regular surfaces. Note that it may not be possible to describe the
whole surface with a single set of equations which make it regular, but, in all the relevant cases, it
will be possible to cover the entire surface by “patching” several different regular parametrizations
together. This brings us to the concept of coordinate patches. You can think of them as

different regular parametrization which agree on the overlaps and, combined, cover the entire
surface including any non-regular (“problematic”) regions or points.

More formally, the condition that the parametrizations agree on the overlaps is expressed as
follows: if x = x(u, v) is one coordinate patch defined on domain D and x̄ = (ū, v̄) is another
defined on domain D̄, that then the composite functions x−1 ◦ x̄ and x̄−1 ◦x are one-to-one and onto
continuous functions with continuous derivatives on the intersection of D and D̄. If this condition is
satisfied, we say that the patches overlap smoothly.

This leads us to a more formal definition of a surface. We say that M is a surface if there is a
collection of coordinate patches such that: (1) The coordinate patches cover every point of M and
they overlap smoothly. (2) Every two different points on M can be covered by two different patches.
(3) The collection of patches is maximal with respect to conditions (1) and (2). This means that if
a patch overlaps smoothly with every patch in collection, then it is itself in the collection.

You can think of a coordinate patch as a way
to have a coordinate system on the portion of the
surface covered by the patch. The portion is reg-
ular so any bending caused by the bending of the
surface is not relevant – the coordinate system
functions just like having one in a flat uv-plane.

A coordinate patch

The same concepts can be defined in three-dimensional space. any three vectors v1, v2 and v3 that do not lie on
the same plane are said to be linearly independent. Any other vector v can be expressed as a sum of its projections
in directions of v1, v2 and v3

v = av1 + bv2 + cv3

i.e. as a linear combination of v1, v2 and v3. Thus, v1, v2 and v3 generate the space. Linearly independent
vectors that generate the space are called a basis. By considering projections, any three linearly independent vectors
in space are a basis of the space.

For example, vectors (1, 0, 0), (0, 1, 0) and (0, 0, 1) are a basis of R3 because they are not in the same plane, and
every vector (x, y, z) is the linear combination x(1, 0, 0) + y(0, 1, 0) + z(0, 0, 1).

Another example of a basis of R3 are the vectors T, N and B of the moving frame of a curve at any of its points.
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In analogy to people, small in comparison to
the size of the Earth, you can imagine small crea-
tures inhabiting a surface. We shall refer to these
creatures as “locals” and you can think that each
patch is a neighborhood for a group of such locals.
In the perspective of locals, the surface appears
to be completely flat because they are too small
to perceive any bending and their neighborhood
looks like a flat uv-plane to them. Locals’ view of their home coordinate patch

Example. Let us consider the following parametrizations of the sphere x2 + y2 + z2 = a2 with
radius a > 0.

1. Using x, y as parameters, one has to use at least two patches, (x, y,
√
a2 − x2 − y2) for the

upper hemisphere and (x, y,−
√
a2 − x2 − y2) for the lower hemisphere. The values of the

parameters x, y are a ≤ x ≤ a and −
√
a2 − x2 ≤ y ≤

√
a2 − x2.

Since the magnitude of xx×xy for both patches is a√
a2−x2−y2

, this magnitude becomes undefined

when y = ±
√
a2 − x2 because the denominator becomes zero. Because of this, these two

patches are not regular on the equator and more patches are needed to patch the equator
points. Solving the equation of the sphere for y (so y = ±

√
a2 − x2 − z2), we obtain another

two patches (x,±
√
a2 − x2 − z2, z). They regularly cover the front and the back of the sphere

but do not cover the circle x2 + z2 = a2. Combining these four patches, we covered everything
regularly except the intersections of two circles, the points (0, a, 0) and (0,−a, 0). Finally, to
completely cover the sphere, we can patch the two holes with (±

√
a2 − y2 − z2, y, z). Thus, we

can cover the entire sphere in six proper coordinate patches.

2. In cylindrical coordinates, one can parametrize the sphere by two patches, (r cos θ, r sin θ,
±
√

9− r2) with 0 ≤ θ ≤ 2π and 0 ≤ r ≤ a. The positive sign of the last coordinate cor-
responds to the upper and the negative sign to the lower hemisphere. Just like for the first two
patches in the previous example, these patches are regular everywhere except on the equator
where they overlap. Thus, more than these two patches are needed to patch the sphere.

3. Using the “Calc 3” spherical coordinates, we can parametrize the sphere by

x = (a cos θ sinφ, a sin θ sinφ, a cosφ) with 0 ≤ θ ≤ 2π and 0 ≤ φ ≤ π.

In this parametrization, for a given φ value, both 0 and 2π values of θ correspond to the same
point on the sphere. Because of this, you can consider θ = 0 and θ = 2π as a self-overlap
making this patch non-regular for these values of θ. Thus, we need more than this coordinate
patch. For another patch, one can take the same formulas for x, y, and z, but with −π ≤ θ ≤ π
for example. This patch is regular at the meridian which was problematic on the first patch.

In addition to the meridian with θ = 0 and 2π, something “fishy” is going on at the poles also.
Indeed, note that the poles do not have a single value of θ corresponding to them – only the
values of φ are fixed, φ = 0 for the north pole and π = π for the south pole. Because of this
also, more parches are needed for the sphere to patch up these trouble spots.

4. In the “Earth” spherical coordinates, we have that
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x = (a cos θ cosφ, a sin θ cosφ, a sinφ) with

−π ≤ θ ≤ π and −π
2
≤ φ ≤ π

2
. Recall that the

θ-interval [0, π] corresponds to the eastern and
[−π, 0] to the western hemisphere.

The value θ = 0 corresponds to the meridian
passing the Royal Observatory in Greenwich,
London. The time zones to the east are ahead
of the time in London, and the time zones to
the west are behind the time in London.

The self-overlap of this patch at θ = π and
θ = −π. This corresponds to the international
time where the time is both 12 hours ahead
and 12 hours behind the time in London (so it
is “today and tomorrow at the same time”).

Since the θ values are not uniquely determined
at the poles, the time on the poles is not well-
determined: it is every hour of the day at the
poles.

This lack of regularity at the poles is reflected also in the values of the magnitude of the normal
vector xθ × xφ. The length of this vector can be computed to be a2| cosφ|. Thus, the normal
vector is zero if cosφ = 0. So, at point at which φ = π

2
(which is the north pole) and at point

at which φ = −π
2

(which is the south pole), the normal vector of this patch is not well defined
and, as a consequence, at these two points the geographical longitude is not uniquely defined.

The normal curvature and Gaussian
curvature

A surface may curve by different extents in
different directions at a point. Because of this,
we first introduce the curvature in the direction
of a given vector. This leads us to the normal
curvature at a point in the direction of a given
vector.

(1) To start, pick a point P on the surface and
pick a vector v in the tangent plane at P.

(2) Consider the plane determined by v (thus passing P ) and the normal vector of the tangent
plane (thus perpendicular to the tangent plane). Let γ be the curve in the intersection of the
surface and this plane. The curve γ is called the normal section at P in the direction of v.
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(3) Compute the curvature κ of γ at P. The normal curvature in the direction of v denoted
by κn(v) is taken to be

κn(v) = ±κ.
If the normal vector of the curve and the normal vector of the tangent plane are on the same

side of the tangent plane, then κn(v) = κ. If they are on opposite sides of the tangent plane, then
κn(v) = −κ. Otherwise κn(v) = 0.

Examples. (1) Consider a plane. The normal section of the plane at any point in any direction
is a straight line because any plane perpendicular to the given plane (equal to its own tangent plane)
intersects the plane in a straight line. A line has zero curvature, so the normal curvature of a plane
at any point in any direction is zero.

(2) Consider a sphere with radius a. Any plane perpendicular to the tangent plane at any point
intersects the sphere in a circle containing the center of the sphere and, thus, having the radius equal
to a. So, all normal sections are circles of radii a and, hence, with the curvatures of 1

a
. Thus, the

normal curvature is ± 1
a
.

(3) Consider the cylinder x2 + y2 = a2.

At any point, a plane perpendicular to the
tangent plane and not parallel to the central axis
intersects the cylinder in an ellipse. The curva-
ture of an ellipse in the normal section changes
when v changes so the normal curvature κn is
not constant also. The curvature of the ellipse
x2

a2
+ y2

b2
= 1 with semiaxis a and b at the point

(a, 0) can be computed to be a
b2

(Practice Problem
4 ) has more details.

There are two choices of v which stand out:

• Let v1 be a vector in tangent plane per-
pendicular to the central axis. The normal
section in direction of v1 is a circle of radius
a and its curvature is 1

a
.

• Let v2 be a vector in the tangent plane par-
allel to the central axis. The normal section
in direction of v2 is a straight line and its
curvature is zero.

These two directions determine the direction
of the largest and of the smallest curving.

Indeed, consider an arbitrary vector v in the
tangent plane. Let θ be the angle between v1 and
v. Considering the right triangle in the figure on
the right, we obtain that the semi-axes of the el-
lipse in the normal section are a and a

| cos θ| .
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The curvature at the relevant point is a

( a
| cos θ|)

2 = cos2 θ
a
. Since cos2 θ is taking values between 0 and 1,

we obtain that

0 ≤ |κn(v)| = cos2 θ

a
≤ 1

a
.

Since these bounds are reached when considering directions v1 and v2, this shows that |κn(v1)| = 1
a

is the maximal value of |κn(v)| and κn(v2) = 0 is the minimal value.

Principal curvatures. The above example with the cylinder turns to be more general than it
may seem. Namely, for every point on any surface, one can choose orthogonal, unit-length vectors v1

and v2 called the principal directions and the normal curvatures determined by them correspond
to the maximal and minimal values of the normal curvature κn(v).

These two values are denoted by κ1 and κ2
and are called principal curvatures.

The product of the principal curvatures is

the Gaussian curvature K = κ1κ2.

We note a significant difference between the
curvature of a curve and the normal (and Gaus-
sian) curvature of a surface: while the curvature
of a curve is defined to have just nonnegative val-
ues (because it is the magnitude of a vector), the

principal and Gaussian curvatures of surfaces can have negative values.

In the example with the plane, κ1 = κ2 = 0 so K = 0. In the example with the sphere, either
κ1 = κ2 = 1

a
or κ1 = κ2 = −1

a
. In either case, K = 1

a2
, so the Gaussian curvature is positive.

In the example with the cylinder, κ1 = ± 1
a

and κ2 = 0 so that K = 0. The fact that at every
point of the cylinder there is a direction in the tangent plane with the straight line as the normal
section causes the relation K = 0.

The sign of the Gaussian curvature. In the previous example with the sphere, we have seen
that the signs of κ1 and κ2 did not impact the sign of K. In fact, only the directions of the normal
vectors N1 and N2 of the two principal sections impact the sign of the Gaussian curvature. This
enables us to avoid considering the sense of the normal vector of the tangent plane and deal with the
fact that this sense is often chosen completely arbitrary (think that both 3x−y = 0 and −3x+y = 0
represent the same plane, so it is arbitrary if we want to use (3,−1, 0) or (−3, 1, 0)).

Example. To understand the sign of K, let us consider the following three surfaces. First, let
us consider the paraboloid z = x2 + y2 at the origin. The tangent plane is the xy-plane z = 0.
Note that we can choose the normal vector of the plane to be n = (0, 0, 1) but we can also choose
n = (0, 0,−1).

Since the paraboloid curves equally in every direction of the tangent plane at the origin, we
can choose the directions of the coordinate axes x and y to be the principal directions. Hence, the
principal sections are in xz-plane and yz-plane respectively.

The xz-plane y = 0 intersects the paraboloid in the parabola z = x2. The curve γ1 = (x, 0, x2)
has normal vector N1 = (0, 0, 1) pointing upwards.

10



The yz-plane x = 0 intersects the paraboloid in the parabola z = y2. The curve γ1 = (0, y, y2)
has normal vector N2 = (0, 0, 1) also pointing upwards.

If we choose n = (0, 0, 1), then both κ1 and κ2 are positive and their product K = κ1κ2 is positive.
If we choose n = (0, 0,−1), then both κ1 and κ2 are negative. However, their product K = κ1κ2 is
again positive. So, K is positive in any case because N1 and N2 point the same way.

For the same reason, the Gaussian of the paraboloid z = −x2 − y2 at the origin is also positive
(both N1 and N2 here point downwards).

Let us compare this situation with the hyperbolic paraboloid z = y2 − x2. At the origin, the
tangent plane is also the xy-plane z = 0. The principal sections are in the xz-plane and the yz-plane,
respectively.

The xz-plane y = 0 intersects the paraboloid in the parabola z = −x2. The curve γ1 = (x, 0,−x2)
has normal vector N1 = (0, 0,−1) pointing downwards. The yz-plane x = 0 intersects the paraboloid
in the parabola z = y2. The curve γ1 = (0, y, y2) has normal vector N2 = (0, 0, 1) pointing upwards.

If we choose n = (0, 0, 1), then κ1 is negative and κ2 is positive and their product K = κ1κ2
is negative. If we choose n = (0, 0,−1), then κ1 is positive and κ2 is negative and their product
K = κ1κ2 is again negative. So, K is negative in any case because N1 and N2 point the opposite
way.

Thus, if the principal sections curve in the same direction (both upwards or both downwards,
for example), the Gaussian is positive. If the principal sections curve in the opposite directions (one
upwards one downwards, for example) then the Gaussian is negative.

Theorema Egregium. The calculation of
curvature involves the normal vectors “sticking
out” of the surface and, thus, invisible to the lo-
cals on the surface. Because of this, it seems that
the locals cannot comprehend the sign nor the
values of the Gaussian. This uses the same argu-
ment we mention before: for people on the surface
of the Earth, the Earth appears to be flat.

Locals view their home surface as flat

A concept involving only measurements on the surface (conducted by the locals) is said to be
intrinsic, while a concept whose definition involves objects external to the surface (like n, for
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example) is said to be extrinsic. Thus, using the definition we presented, the Gaussian curvature
seems to be extrinsic and, thus, incomprehensible to the locals.

If one is to generalize the concept of curvature to higher dimensions, in particular the curvature
of our physical space, we would have to be able to describe curvature intrinsically. In particular, to
determine the curvature of our three-dimensional physical space (and the curvature of Einstein four-
dimensional space-time universe), we do not want to rely on more than three (or four) dimensions.

Fortunately for locals, the crowning achievement of theory of surfaces states that the Gaussian
curvature can be calculated intrinsically. This means that the Gaussian curvature of a surface
can be determined entirely by measuring angles, distances and their rates on the surface itself, without
further reference to the particular way in which the surface is embedded into the three-dimensional
space. This result, proved by Carl Friedrich Gauss, is considered to be one of foundational results
in differential geometry. It is usually referred to as Theorema Egregium (Latin for remarkable or
extraordinary theorem).

Local isometry. Note also that the cylinder can be slit and unrolled into a flat sheet of paper
without stretching or tearing and without affecting the length any curve. A surface with this property
will also have K = 0. This means that the geometry of the cylinder locally is indistinguishable from
the geometry of a plane. In cases like this, we say that the two surfaces are locally isometric. Note
that globally cylinder is very different from the plane, though.

Theorema Egregium also implies that the Gaussian curvature is invariant under a local isometry.
This means that any bending of a surface (without stretching or tearing) does not impact the Gaussian
curvature. The principal curvatures do not share the property of Gaussian curvature given by
Theorema Egregium – the principal curvatures do vary with bending. The fact that their product
does not vary with bending makes Theorema Egregium even more remarkable.

Theorema Egregium also implies that if two surfaces have different sign of the Gaussian curvature,
than one cannot be transformed into another without tearing or crumpling. To further motivate our
study, we list several corollaries of this fact.

• A sphere (with K > 0) and a plane (with K = 0) cannot be morphed one into another. Thus,
a piece of paper cannot be bent onto a sphere without crumpling.

• As opposed to the cylinder (with K = 0), the sphere (with K > 0) cannot be unfolded into a
flat surface. Thus, if one were to step on an empty egg shell, its edges have to split in expansion
before being flattened. An orange peel can be flattened just with tearing or stretching.

As a consequence of previous observations, the
Earth cannot be displayed on a map with-
out distortion. Thus, no perfect map of the
Earth can be created, even for a portion of
the Earth’s surface and every cartographic pro-
jection necessarily distorts at least some dis-
tances. This fact is of enormous significance
for cartography. Every distinct map projection
distorts in a distinct way. The study of map
projections is the characterization of these dis-
tortions.
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A frequently used projection, Mercator projection, preserves angles but fails to preserve area
(that is why the areas around north and south pole look disproportionately large compared to
the areas further away from the poles). The controversy surrounding the Mercator projections
arose from political implications of map design since representing some countries larger than
the others may implied that some are less significant.

Normal and Transverse Mercator projections

Another projection used in some cases is Gall-
Peters projection (you can see it in some world
maps on airplanes). On this projection areas
of equal size on the globe are also equally sized
on the map. This has a consequence that areas
around the equator looks elongated when com-
pared to areas with larger geographical width.

Gall-Peters projection

Mercator and Gall-Peters with their deformations

• When trying to preserve precious toppings on a slice of pizza, you are using Theorema Egregium
too: you bend a slice horizontally along a radius so that non-zero principal curvatures are
created along the bend, dictating that the other principal curvature at these points must be
zero. This creates rigidity in the direction perpendicular to the fold and it prevents the toppings
from falling off.

• Theorema Egregium also implies that we can measure the curvature of the Earth without
leaving the surface (for example in an airplane to observe the curving) just measuring the
distances and angles on the surface of the Earth.

The game plan. We devote the remainder of our study of differential geometry to accomplishing
the following three goals.

Goal 1 Develop an apparatus that completely describes a surface. This is analogous to the Serret-
Frenet apparatus of a curve and leads us to the first and the second fundamental forms.
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Goal 2 Understand the statement of Theorema Egregium in mathematical terms and proof of the
theorem. This requires consideration of geodesics and the curvature tensor.

Goal 3 Theorema Egregium allows the concept of curvature to be generalized to higher dimensions.
Two-dimensional surfaces generalize to n-dimensional manifolds, defined for any n and the
concept of the curvature of a surfaces generalizes to the curvature of a manifold. This enables
you to understand the language used in special and general relativity. It also enables you to
generalize the content of this course to higher dimensions.

Practice Problems.

1. The mean curvature is defined as the mean of the principal curvatures H = κ1+κ2
2

. Determine
the absolute value of the mean curvature of the surfaces discussed in this section: plane, sphere
of radius a and cylinder x2 + y2 = a2.

2. Calculate the curvature of the parabolas y = ±ax2 at the origin for a > 0. Use this formula
to find the Gaussian curvature of the hyperbolic paraboloid z = ax2 − by2 at the origin for
a, b > 0.

3. A quadratic surface is any surface given by equation ax2 + by2 + cz2 + dxy + exz + fyz +
gx + hy + iz + j = 0. This class includes the following surfaces: ellipsoid (x

2

a2
+ y2

b2
+ z2

c2
= 1),

elliptical paraboloid (x
2

a2
+ y2

b2
= z), hyperbolic paraboloid (x

2

a2
− y2

b2
= z), hyperboloid of one

sheet (x
2

a2
+ y2

b2
− z2

c2
= 1) and hyperboloid of two sheets (x

2

a2
+ y2

b2
− z2

c2
= −1).

Elliptical and hyperbolic paraboloids and hyperboloids of one and two sheets

By making a suitable change of variables to eliminate some terms, any quadratic surface can be
put into a certain normal form. It turns out that there are 16 such normal forms. Of these 16
forms, the above five surfaces are non-degenerate and remaining eleven are degenerate: cones
(x

2

a2
+ y2

b2
− z2

c2
= 0), cylindrical surfaces (elliptic, hyperbolic and parabolic cylinder), planes,

lines, points or even no points at all.

Using argument similar to those used to show that the Gaussian curvature of a cylinder is
0, deduce that K of all the degenerate quadratic surfaces is 0. Then determine the sign of
Gaussian curvature for five non-degenerate quadratic surfaces.
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4. Find the Gaussian curvature of ellipsoid x2

a2
+

y2

b2
+ z2

c2
= 1 at the end points of the three semi-

axes (±a, 0, 0), (0,±b, 0) and (0, 0,±c).

5. A torus is a surface obtained by revolving
one circle along the other circle creating a
doughnut-like shape. Consider revolving a cir-
cle (x − a)2 + z2 = b2 in xz-plane along the
circle x2 + y2 = a2 in xy-plane.

Ellipsoid

Assume that a > b so that “the doughnut”
that you obtain has a hole in the middle.

Calculate the Gaussian curvature at any point
on the “outer” circle (obtained by revolving
the point (a + b, 0, 0) about z-axis) and at
any point on the “inner” circle (obtained by
revolving the point (a− b, 0, 0) about z-axis. Torus

Solutions. (1) H = 0+0
2

= 0 for any plane, |H| =
1
a
+ 1
a

2
= 1

a
for the sphere of radius a, and

|H| = 0+ 1
a

2
= 1

2a
for the cylinder x2 + y2 = a2.

(2) To calculate the curvature of y = ±ax2, let γ = (x,±ax2, 0) and compute γ ′, γ′′ and then

κ = |γ′×γ′′|
|γ′|3 = 2a√

(1+4a2x2)3
. At the origin, x = 0 so κ = 2a√

13
= 2a. Note that κ is positive regardless of

whether we consider y = ax2 or y = −ax2.
Then consider the hyperbolic paraboloid z = ax2 − by2. The normal sections of z = ax2 − by2

are parabolas in xz and yz planes. In xz plane, y = 0 and so z = ax2 − b02 = ax2 and hence
|κ1| = 2a. In yz plane, x = 0 and so z = a02 − by2 = −by2 and hence |κ2| = 2b. The two normal
vectors have the opposite direction (because one parabola faces upwards and the other downwards)
and so the two principal curvatures have the opposite signs: if κ1 = ±2a then κ2 = ∓2b. Thus,
K = −(2a)(2b) = −4ab.

(3) K > 0 for ellipsoid. K > 0 for ellipti-
cal paraboloid. K < 0 for hyperbolic paraboloid.
K < 0 for hyperboloid of one sheet. K > 0 for
hyperboloid of two sheets.

Hyperbolical Paraboloids

(4) Let us calculate the curvature of ellipse x2

a2
+ y2

b2
= 1 at (a, 0) and (0, b) first. Here the curve

can be parametrized as γ = (a cos t, b sin t). Then γ ′ = (−a sin t, b cos t, 0), γ ′′ = (−a cos t,−b sin t, 0)

γ ′×γ ′′ = (0, 0, ab). Thus |γ′| =
√
a2 sin2 t+ b2 cos2 t and |γ ′×γ ′′| = ab and so κ = ab

(a2 sin2 t+b2 cos2 t)3/2
.
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At (a, 0) the value of parameter t is 0 and at (0, b) the value of parameter t is π
2
. Thus κ(0) = ab

b3
= a

b2

and κ(π
2
) = ab

a3
= b

a2
.

At (±a, 0, 0), the normal sections are in xy and xz planes. In xy plane the normal section is

the ellipse x2

a2
+ y2

b2
= 1 with curvature a

b2
at (±a, 0). In xz plane the normal section is the ellipse

x2

a2
+ z2

c2
= 1 with curvature a

c2
at (±a, 0). The normal vectors have the same directions so the two

principal curvatures have the same signs. Thus the Gaussian is K = a2

b2c2
.

At (0,±b, 0), the normal sections are in xy and yz planes. In xy plane the normal section is

the ellipse x2

a2
+ y2

b2
= 1 with curvature b

a2
at (0,±b). In yz plane the normal section is the ellipse

y2

b2
+ z2

c2
= 1 with curvature b

c2
.

The normal vectors have the same directions so the two principal curvatures have the same signs.
Thus the Gaussian is K = b2

a2c2
. On similar manner, we obtain that the Gaussian curvature at

(0, 0,±c) is K = c2

a2b2
.

(5) At point (a + b, 0, 0), the normal sections are in xy plane and xz plane. In xy plane, the
normal section is the circle of radius a + b so its curvature is 1

a+b
. In xz plane the normal section is

the circle of radius b so its curvature is 1
b
. The normal vectors have the same direction. Hence, the

Gaussian curvature is positive and equal to 1
b(a+b)

.

At point (a− b, 0, 0), the normal sections are in xy plane and xz plane as well. In xy plane, the
normal section is the circle of radius a − b with curvature 1

a−b . In xz plane the normal section is

the circle of radius b with curvature 1
b
. The normal vectors have the opposite direction. Hence, the

Gaussian curvature is negative and equal to −1
b(a−b) .

Using this example, we can deduce that on the outer part of the torus (obtained by revolving the
right half of circle (x − a)2 + z2 = b2 about z-axis) the Gaussian curvature is positive and on the
inner part of the torus (obtained by revolving the left half of circle (x− a)2 + z2 = b2 about z-axis)
the Gaussian curvature is negative. This implies the not so obvious fact that the Gaussian curvature
on the “top” and “bottom” circles (obtained by revolving points (a, 0, b) and (a, 0,−b) about z-axis)
is zero.
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