
Differential Geometry
Lia Vas

Measuring lengths and angles – the first fundamental form

A curve on a surface. If a surface x is parametrized with variables u and v, a curve γ is on
the surface x if a parametrization of γ with a parameter t can be obtained from equations of x when
u and v become functions of t

γ(t) = x(u(t), v(t)).

Examples.

1. A curve given by the equations γ(t) = (x(t), y(t), 0) is a curve in the plane z = 0. Recall that
this plane can be parametrized by (x, y, 0). Thus, in this example, “u” is x and “v” is y.

2. The helix γ(t) = (a cos t, a sin t, bt) is on the cylinder x2 + y2 = a2 since the x and y coordi-
nates satisfy the equation of the cylinder. Recall that this cylinder has parametric equations
(a cos t, a sin t, h), so the equations (a cos t, a sin t, bt) can be perceived as a “special case” of the
cylinder equations when one parameter is deleted using the relation h = bt. In this example,
“u” is t and “v” is h, and, on the helix, t = t, and h = bt.

3. Recall the practice problems 4 and 5 from “Curves”. In these problems, we showed that the
curve γ = ( 5

13
cos s, 8

13
− sin s, −12

13
cos s) is in the plane z = −12

5
x.

4. A spherical curve is a curve that lies on a sphere.

Note that the equation of a sphere (x− x0)2 +
(y − y0)

2 + (z − z0)
2 = r2 has the vector

form ((x, y, z) − c) · ((x, y, z) − c) = r2 where
c = (x0, y0, z0) is the center, r the radius, and
(x, y, z) any point on the sphere. Hence, a
curve γ(t) = (x(t), y(t), z(t)) is on this sphere
if and only if (γ − c) · (γ − c) = r2. Differenti-
ating this equation, one obtains the condition
that γ ′ · (γ − c) = 0.

Conversely, integrating this last condition (see the proof of Claim 1 in “Curves”), we obtain
that (γ − c) · (γ − c) is constant. Denoting this constant by r2 we obtain an equation of the
sphere of radius r centered at c.

For example, γ = (4 cos 2t, 4 sin 2t, 4 sin t) is spherical for v = (−1, 0, 0) since one checks that
γ ′ · (γ − c) = 0. The distance from any point on γ to (−1, 0, 0) is the radius of that sphere.
So, if we calculate the distance of (4, 0, 0) with t = 0, for example, to (−1, 0, 1), we obtain the
radius r =

√
(4 + 1)2 + 0 + 0 = 5. Thus, γ is on the sphere (x+ 1)2 + y2 + z2 = 25.

The u-curves and the v-curves. Two important special cases of curves on a surface are the
following.

• Taking v to be a constant v0, one obtains the curve γ1(u) = x(u, v0) (so “t” is u here). This
curve is called a u-curve. The velocity vector ∂x

∂u
is in the tangent plane.
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• Taking u to be a constant u0, one obtains the curve γ2(v) = x(u0, v) (so “t” is v here). This
curve is called a v-curve. The velocity vectors ∂x

∂v
is in the tangent plane.

Surfaces are often represented by by graphing
a mesh determined by u and v curves. Because of
this, we can think that the mesh of u and v curves
forms a coordinate system on the surface.

Examples.

1. On the sphere x = (a cos θ cosφ, a sin θ cosφ,
a sinφ), the φ-curves are circles of constant
longitude meridians and the θ-curves are
circles of constant latitude, parallels.

2. Helicoid. The surface parametrized by
(r cos θ, r sin θ, aθ) has θ-curves helices spi-
raling about cylinder of radius r0 and r-
curves lines (r cos θ0, r sin θ0, aθ0) passing
through z-axis in a plane parallel to xy-
plane. The surface resembles the spiral
ramps like those found in garages.

3. Surfaces of revolution. A surface of revo-
lution of curve α = (r(t), z(t)) about z-axis
can be given by (r(t) cos θ, r(t) sin θ, z(t)).
The θ-curves are circles of radii r(t0) in hor-
izontal planes passing z(t0). They are also
called the circles of latitude or the paral-
lels by analogy with parallels on a sphere.
The t-curves have the same shape as the
curve α except that they are positioned in
vertical planes at longitude θ0. They are
called the meridians.

4. A surface is said to be a ruled surface if
it is generated by moving a line along some
direction. Such a surface can also be de-
scribed by the property that through every
point there is a line completely contained in
the surface. This line is called a ruling.

If α(t) is a curve that cuts across all the
rulings and β(t) is the direction of ruling,
you can think that the surface is obtained
by moving vector β along the curve α.
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Such a surface has the equation

x(t, s) = α(t) + sβ(t)

The s-curves are ruling lines α(t0) + sβ(t0). In case that β is a constant vector, the t-curves
represent curve α translated in space.

Examples of ruled surfaces.

1. A plane can be considered to be a ruled surface letting α(t) be a line and β(t) be a constant
vector.

2. A cone is a ruled surface with α constant, say point P . The point P is called the vertex of
the cone. In case that β makes a constant angle with fixed line through P (called the axis) of
the cone), we obtain the right circular cone. For example, the cone z =

√
x2 + y2 can be

parametrized by taking α = (0, 0, 0) and β = (cos t, sin t, 1) and getting (s cos t, s sin t, s).

3. A cylindrical surface is defined as a ruled
surface with β constant vector. If α is a cir-
cle, the cylindrical surface is said to be circu-
lar cylinder. If β is a vector perpendicular
to the plane of circle α the circular cylinder is
said to be right.

For example, the cylinder x2 + y2 = a2 can be
considered as a ruled surfaces with α being the
circle in xy-plane and β = (0, 0, 1).

4. The helicoid (r cos θ, r sin θ, aθ) can be considered to be a ruled surface by taking α = (0, 0, aθ)
and β = (cos θ, sin θ, 0).

5. Another example of a ruled surface is a Möbius strip (or Möbius band). A model can be
created by taking a paper strip and giving it a half-twist (180◦-twists), and then joining the
ends of the strip together to form a loop.

The Möbius strip has several curious proper-
ties: it is a surface with only one side and
only one boundary. To convince yourself of
these facts, create your own Möbius strip and play
with it (or go to Wikipedia and study the images
there).

Another interesting property is that if you cut
a Möbius strip along the center line, you will get
one long strip with two full twists in it, not two
separate strips. The resulting strip will have two
sides and two boundaries. So, cutting created the
second boundary.

Möbius strip
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Continuing this construction you can deduce that a strip with an odd-number of half-twists will have
only one surface and one boundary while a strip with an even-number of half-twists will have two
surfaces and two boundaries.

For more curious properties and alternative construction of Möbius strip, see Wikipedia.
A Möbius strip can be obtained as a ruled surface by considering α to be a unit-circle in xy-plane

(cos t, sin t, 0). Through each point of α pass a line segment of unit length with midpoint α(t) in
direction of β(t) = sin t

2
α(t) + cos t

2
(0, 0, 1). The ruled surface x(t, s) = α(t) + sβ(t) is a Möbius

strip.
There are many applications of Möbius strip in science, technology and everyday life. For example,

Möbius strips have been used as conveyor belts (that last longer because the entire surface area of the
belt gets the same amount of wear), fabric computer printer and typewriter ribbons. Medals often
have a neck ribbon configured as a Möbius strip that allows the ribbon to fit comfortably around
the neck while the medal lies flat on the chest. Examples of Möbius strip can be encountered: in
physics as compact resonators and as superconductors with high transition temperature; in chemistry
as molecular knots with special characteristics (e.g. chirality); in music theory as dyads and other
areas.

The First Fundamental Form

The first fundamental form describes the way of measuring the distances on a surface. An appa-
ratus that enables one to measure the distances is called metric. This is why the first fundamental
form is often referred to as the metric form.

Since the basis of the tangent plane ∂x
∂u

and ∂x
∂v

will play a major role in the definition of the
metric form, we use the usual abbreviation and denote them by x1 and x2.

The condition x1 × x2 6= 0 guarantees that the tangent plane is not collapsed into a line or a
point i.e. that it is a two-dimensional plane. It also implies that the vectors x1 and x2 can be taken
to be a basis of the tangent plane.

In particular, this means that the velocity vector of every curve on the surface can be represented
via x1 and x2. Since the arc length of the curve can be found by integrating the length of the velocity
vector, such length will be computed by an integral involving x1 and x2. This leads to the
definition of the first fundamental form.

Let us start by considering the arc length of
a curve γ(t) = x(u(t), v(t)) on a surface x. The
velocity vector γ ′(t) is given by the chain rule
∂x
∂u

du
dt

+ ∂x
∂v

dv
dt

which, using our new abbreviation,
can be written as

γ ′(t) = x1
du

dt
+ x2

dv

dt
= u′x1 + v′x2.

Thus, the velocity vector is a linear combination
of the basis vectors x1 and x2 with coefficients u′

and v′.
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The length on the curve is given by L =
∫ b
a
|γ ′(t)|dt. The square of length |γ ′(t)|2 is equal to the

dot product γ ′(t) · γ ′(t) = (u′x1 + v′x2) · (u′x1 + v′x2), thus

|γ ′(t)|2 = (u′)2 x1 · x1 + 2u′v′ x1 · x2 + (v′)2 x2 · x2.

Thus, the three dot products featured in this formula completely determine the arc length of any
curve on the surface. To further abbreviate the notation, the dot products are denotes as follows

g11 = x1 · x1, g12 = x1 · x2 = x2 · x1 = g21, g22 = x2 · x2

and are called the coefficients of the first fundamental form.
The traditional notation g11 = E, g12 = F, and g22 = G comes from Gauss. The more modern

notation g11, g12 = g21, and g22 is convenient for representing the relevant dot products as a matrix

[gij] =

[
g11 g12
g21 g22

]
.

Using this notation, |γ ′(t)|2 = g11(u
′)2 + 2g12u

′v′ + g22(v
′)2 so that the length of the curve γ on

the surface x is given by

L =

∫ b

a

|γ ′(t)|dt =

∫ b

a

(
g11(u

′)2 + 2g12u
′v′ + g22(v

′)2
)1/2

dt =

∫ b

a

(
g11 du

2 + 2g12 du dv + g22 dv
2
)1/2

The expression under the root, g11 du
2 + 2g12 du dv + g22 dv

2 is called the first fundamental
form.

Example 1. The first fundamental form of a plane. Consider the xy-plane z = 0 for
simplicity. Thus x(x, y) = (x, y, 0) and you can consider that “u” is x and “v” is y here. Then
x1 = ∂x

∂x
= (1, 0, 0) and x2 = ∂x

∂y
= (0, 1, 0) and these are the basis vectors of the tangent plane. Note

that they span exactly the plane z = 0 which shouldn’t be surprising since the tangent plane of a
plane is that same plane.

The coefficients of the first fundamental form are g11 = x1 · x1 = 1, g12 = x1 · x2 = 0, and

g22 = x2 ·x2 = 1, or, represented in a matrix, they are

[
1 0
0 1

]
. Note that this is the identity matrix

reflecting the fact that the metric on xy-plane is the usual, standard metric. If γ is a parametric
curve (x(t), y(t)) in xy-plane, the general arc-length formula above becomes the familiar Calculus 2

arc-length formula L =
∫ b
a

√
(x′)2 + (y′)2dt.

Example 2. The first fundamental form of a cylinder. Consider the cylinder (a cos t, a sin t, z)
with a circular base of radius a. Thus you can consider that “u” is t and “v” is z. Then x1 = ∂x

∂t
=

(−a sin t, a cos t, 0) and x2 = ∂x
∂z

= (0, 0, 1). g11 = x1 ·x1 = a2, g22 = x2 ·x2 = 1, and g12 = x1 ·x2 = 0,

or, represented in a matrix, they are

[
a2 0
0 1

]
. This matrix is “almost” the identity matrix from

the previous example (in fact if a = 1 the lengths on the cylinder are exactly the same as in a plane).
The close proximity of these two fundamental forms is due to the fact that a cylinder is obtained
only by rolling up a plane without any deformations. So, one can measure the distances on a cylinder
by “unrolling” it and then measuring the distances in so-obtained plane.

Example 3. The first fundamental form of a sphere. Consider the sphere of radius a
centered at the origin. Using the geographical coordinates

x = (a cos θ cosφ, a sin θ cosφ, a sinφ).
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If you consider that “u” is θ and “v” is φ, then x1 = (−a sin θ cosφ, a cos θ cosφ, 0) and x2 =
(−a cos θ sinφ, −a sin θ sinφ, a cosφ). So, g11 = a2 cos2 φ, g12 = 0, g22 = a2. Represented by a matrix,

the fist fundamental form is

[
a2 cos2 φ 0

0 a2

]
. The first fundamental form is not constant so the

geometry of the sphere is more complex than the geometry of a plane and a cylinder.

Example 4. The first fundamental form of the surface z = z(x, y). Let us consider
this surface as x = (x, y, z(x, y)) parametrized by x and y. The derivatives are x1 = (1, 0, zx) and
x2 = (0, 1, zy) where zx and zy denote the partial derivatives ∂z

∂x
and ∂z

∂y
. The coefficients of the first

fundamental form are g11 = 1 + z2x, g12 = zxzy and g22 = 1 + z2y .

Measuring angles. We have seen how the first fundamental form enables us to compute lengths.
Let us now consider measuring angles on a surface. Recall that the angle α between two vectors v1

and v2 can be computed from the formula for the dot product

v1 · v2 = |v1||v2| cosα ⇒ cosα =
v1 · v2

|v1||v2|
=

v1 · v2√
v1 · v1

√
v2 · v2

Note that the right side of the last equation is described completely in terms of the dot products of
vectors. So, if v1 and v2 are two vectors in the plane tangent to the surface x = x(u, v) at a point,
representing the vectors v1 and v2 via the basis vectors x1 and x2 and expressing the dot product
and the lengths via the coefficients gij we can obtain a formula computing the angle α in terms of
the coefficients gij.

The angle between two curves is defined to be the angle between their tangent (or velocity)
vectors. So, the angle between two curves on a surface can be defined as the angle between the two
corresponding tangent vectors in the tangent plane and can be expressed in terms of the coefficients
gij. The next example shows that these formulas are particularly simple in the case of u and v-curves.

Example 1. Find the formula computing the angle between a u-curve and a v-curve on a surface
x = x(u, v).

Solution. Recall that an u-curve is obtained by fixing v and considering u as the parameter of
the curve. Thus the velocity vector of this curve is obtained by finding derivative of x with respect
to u while considering v as a constant. This is exactly ∂x

∂u
= x1. Equivalently, the velocity vector of

a v-curve is ∂x
∂v

= x2.
The angle α between a u-curve and a v-curve is the angle between their velocity vectors x1 and

x2 hence

cosα =
x1 · x2√

x1 · x1
√

x2 · x2

=
g12√
g11
√
g22

Example 2. The meridians and parallels of a sphere are perpendicular.

Solution. Consider the sphere x = (a cos θ cosφ, a sin θ cosφ, a sinφ) and recall that we computed
the coefficients of the first fundamental form to be g11 = a2 cos2 φ, g12 = 0, g22 = a2. Since g12 = 0,
cosα = 0 which implies that α = ±π

2
. In either case, the θ-curves (parallels) and φ-curves (meridians)

are perpendicular.

Example 3. Compute the angle between meridians with θ = 0 and θ = π
2

at the point of their
intersection in the north pole.
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Solution. The meridian with θ = 0 is γ1 = (a cosφ, 0, a sinφ). The meridian with θ = π
2

is γ2 =
(0, a cosφ, a sinφ), So γ ′1 = (−a sinφ, 0, a cosφ), γ ′2 = (0,−a sinφ, a cosφ), and γ ′1 · γ ′2 = a2 cos2 φ.

The curves γ1 and γ2 intersect in the north
pole where φ = π

2
. So, at the north pole γ ′1 · γ ′2 =

a2 cos2 π
2

= 0. So, γ1 and γ2 are perpendicular.

This example also shows that all three angles
in the “triangle” formed by the equator and the
two meridians above are 90 degrees. So the three
angles add up to 270 degrees.

A certain quantity can be measured intrinsically if it can be computed using the coefficients
of the first fundamental form only which enable measuring distances and angles without using any
references to exterior space or the particular embedding. In particular, if certain quantity can be
expressed solely in terms of the coefficients of the first fundamental form, it is an intrinsic quantity.
Thus, to show Theorema Egregium, it is sufficient to show that the Gaussian curvature K can be
computed solely using the coefficients of the first fundamental form.

The unit normal vector. The nonzero vec-
tor x1×x2 is perpendicular to the tangent plane.
Thus, the unit normal vector of the tangent plane
is given by

n = x1×x2

|x1×x2|

This vector should not be confused with the
normal vector N of a curve on a surface. In fact,
the vectors n and N may have different direction.

For example, let γ be a circle obtained by intersection of a sphere and a plane that does not contain
the center of the sphere. In this case, the radius of γ is less that the radius of the sphere and the
center of γ is different than the center of the sphere. If P is a point on γ then the direction of
n is determined by the line connecting P and the center of the sphere and the direction of N is
determined by the line connecting P and the center of γ.

Using Lagrange identity |x1 × x2|2 = (x1 · x1)(x2 · x2) − (x1 · x2)
2, we have that |x1 × x2|2 =

g11g22 − g212, the determinant of the matrix [gij]. The determinant g11g22 − g212 is usually denoted by
g. Thus,

|x1 × x2|2 = g and n =
x1 × x2√

g
.

Measuring surface areas. Besides enabling us to compute lengths and angles on a surface,
the first fundamental form also enables us to compute the surface areas. Note that the total area of
region D on the surface can be computed by adding up all the areas of “rectangular” regions (i.e.
approximately parallelogram shaped pieces on the surface) determined by the intersections of the u
and v-curves.
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Since the length of the cross product |x1×x2|
determines the area of parallelogram determined
by x1 and x2, the area of one such “rectangular”
region is given by

dS = |x1 × x2| du dv.

This produces the familiar Calculus 3 formula∫ ∫
S
|x1×x2| du dv that calculates the total sur-

face area of a parametric surface over re-
gion S.

Using that |x1×x2| =
√
g, we obtain the formula below for the surface area of the surface x(u, v).

Surface area =
∫ ∫

S
dS =

∫ ∫
S

√
g du dv

Example. Demonstrate the Calculus 3 formula
∫ ∫

S

√
1 + z2x + z2y dx dy computing the surface

area of a surface given by z = z(x, y) over the region S using the general formula for the surface area
above.

Solution. Consider x, y as the two parameters of the surface x = (x, y, z(x, y)). We have found
that x1 = (1, 0, zx), x2 = (0, 1, zy) and g11 = 1 + z2x, g12 = zxzy and g22 = 1 + z2y (see the example
above). Thus,

g = (1 + z2x)(1 + z2y)− z2xz2y = 1 + z2x + z2y + z2xz
2
y − z2xz2y = 1 + z2x + z2y

Hence the formula
∫ ∫

S

√
g dx dy =

∫ ∫
S

√
1 + z2x + z2y dx dy computes the surface area.

Practice Problems.

1. Compute the unit normal vector for the sphere x = (a cos θ cosφ, a sin θ cosφ, a sinφ).

2. Find the surface area of the part of the cylinder x = (a cos θ, a sin θ, h) with 0 ≤ z ≤ c.

3. Consider the torus obtained by revolving a circle (x− a)2 + z2 = b2 in xz-plane along the circle
x2+y2 = a2 in xy-plane. Since the first circle can be parametrized by x = a+b cosφ, z = b sinφ
and a surface of revolution of a curve x = f(u), z = g(u) in xz-plane about z-axis is given by
the parametric equations x = (f(u) cos θ, f(u) sin θ, g(u)), the torus can be parametrized as

x = ((a+ b cosφ) cos θ, (a+ b cosφ) sin θ, b sinφ).

Compute the coefficients of the first fundamental form and find the unit normal vector of the
torus.

4. Find the area of the part of the paraboloid z = a2−x2−y2, a > 0, that lies above the xy-plane.

5. Find the area of the part of the cone z = a
√
x2 + y2 below the plane z = b where a, b > 0.
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6. Consider the cone from the previous problem as a ruled surface x(s, t) = α(t) + sβ(t) obtained
by ruling the vector β = (cos t, sin t, a) based at the vertex α = (0, 0, 0).

(a) Using this parametrization of the cone, compute the area of the part of the cone below
the plane z = b.

(b) Replace the given β by β = (a cos t, a sin t, a2). Note that this still parametrizes the same
cone but that the bounds for s change when you compute the area of the part of the cone
below the plane z = b. Compute the area in this parametrization.

Solutions.

1. For the sphere, x1 = (−a sin θ cosφ, a cos θ cosφ, 0), x2 = (−a cos θ sinφ, −a sin θ sinφ, a cosφ)
so n = 1

a2 cosφ
(a2 cos θ cos2 φ, a2 sin θ cos2 φ, a2 sinφ cosφ) = (cos θ cosφ, sin θ cosφ, sinφ). Note

that this is exactly 1
a
x. Hence n = 1

a
x and so n and x are colinear.

2. In one of the previous examples, we computed the coefficients of the first fundamental form of
the cylinder x = (a cos θ, a sin θ, h) to be g11 = a2, g12 = 0 and g22 = 1. Hence g = a2.

Since
√
g = a, the formula S =

∫ ∫
S
a dθ dh computes the surface area. On the region with

0 ≤ z ≤ c, we have that 0 ≤ θ ≤ 2π and 0 ≤ h ≤ c. Hence,

S =

∫ 2π

0

∫ c

0

a dθ dh = a

∫ 2π

0

dθ

∫ c

0

dh = a(2π)c = 2acπ.

3. x = ((a+b cosφ) cos θ, (a+b cosφ) sin θ, b sinφ)⇒ x1 = (−(a+b cosφ) sin θ, (a+b cosφ) cos θ, 0)
and x2 = (−b sinφ cos θ, −b sinφ sin θ, b cosφ). So, g11 = (a + b cosφ)2, g12 = 0, g22 = b2,
g = b2(a+ b cosφ)2, and n = (cos θ cosφ, sin θ cosφ, sinφ).

4. Considering the paraboloid as a surface of revolution produces the parametrization

x = (r cos t, r sin t, a2 − r2).

Then x1 = (cos t, sin t,−2r),x2 = (−r sin t, r cos t, 0), g11 = cos2 t+sin2 t+4r2 = 1+4r2, g12 = 0,
and g22 = r2 sin2 t+r2 cos2 t = r2 so that g = r2(1+4r2). The paraboloid intersects the xy-plane
z = 0 at the circle with radius a2−r2 = 0⇒ r2 = a2 ⇒ r = a. Hence the bounds are 0 ≤ r ≤ a
and 0 ≤ t ≤ 2π. The area is

S =

∫ 2π

0

∫ a

0

r
√

1 + 4r2 dr dt = 2π
1

12
(1 + 4r2)3/2

∣∣∣∣a
0

=
π

6

(
(1 + 4a2)3/2 − 1

)
5. Considering the cone as a surface of revolution produces the parametrization

x = (r cos t, r sin t, ar).

Then x1 = (cos t, sin t, a),x2 = (−r sin t, r cos t, 0), g11 = cos2 t + sin2 t + a2 = 1 + a2, g12 = 0,
and g22 = r2 sin2 t+ r2 cos2 t = r2 so that g = r2(1 + a2). The cone intersects the plane z = b at
the circle with radius ar = b ⇒ r = b

a
. Hence the bounds are 0 ≤ r ≤ b

a
and 0 ≤ t ≤ 2π. The

area is

S =

∫ 2π

0

∫ b/a

0

r
√

1 + a2 dr dt =
√

1 + a2
∫ 2π

0

dt

∫ b/a

0

rdr =
√

1 + a2 2π
b2

2a2
=
b2π
√

1 + a2

a2
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6. If α = (0, 0, 0) and β = (cos t, sin t, a), then x = α + sβ = (0, 0, 0) + (s cos t, s sin t, as) =
(s cos t, s sin t, as).

(a) Note that the parametrization x = (s cos t, s sin t, as)is the same parametrization as in the
previous problem if we let r = s. Hence, the coefficients of the second fundamental form
as well as the area are the same as in the previous problem and the area is b2π

√
1+a2

a2
.

(b) With β = (a cos t, a sin t, a2),

x = α + sβ = (0, 0, 0) + (as cos t, as sin t, a2s) = (as cos t, as sin t, a2s).

Then x1 = (a cos t, a sin t, a2),x2 = (−as sin t, as cos t, 0), g11 = a2 cos2 t + a2 sin2 t + a4 =
a2 + a4 = a2(1 + a2), g12 = 0, and g22 = a2s2 sin2 t + a2s2 cos2 t = a2s2 so that g =
a4s2(1+a2). The cone intersects the plane z = b at the circle with radius a2s = b⇒ r = b

a2
.

Hence the bounds are 0 ≤ s ≤ b
a2

and 0 ≤ t ≤ 2π. The area is

S =

∫ 2π

0

∫ b/a2

0

a2s
√

1 + a2 ds dt = a2
√

1 + a2 2π
b2

2a4
=
b2π
√

1 + a2

a2

which is the same as with the other parametrization. The previous two problems illustrate
that the surface area is independent of specific parametrization.
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