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Groups

Introduction to Groups via Symmetry Groups of Molecules. Determination of the struc-
ture of molecules is one of many examples of the use of the group theory. Electronic structure of a
molecule can be determined via its geometric structure. In this case, one consider the symmetry of a
molecule since it reveals information about its properties (i.e., structure, spectra, polarity, chirality,
etc). This process is represented by the following diagram.

Geometry of a molecule −→ Symmetry Group

↑ ↓

Structural Properties ←− Group Representation

Symmetry of a molecule is characterized by the fact that it is possible (theoretically) to carry
out operations which interchange the position of some (or all atoms) and result in the arrangement
of atoms that is indistinguishable from the initial arrangements. These operations are exactly those
that we can apply on a model of a molecule so that the resulting molecule appears the same as the
original one.

Operations are:

- rotations - physically possible, are called proper rotations.

- reflections with the respect to a mirror plane or to the center of symmetry - physically
impossible, are called improper rotations.

These set of all those operations is called a group of symmetries. The features of such group
that we are interested in is that

1) a composite of two operation from the group is again an operation from the group.

If a and b are two operations, their composite is denoted by a · b or, shorter ab. With this notation,
the operations a, b and c of a symmetry group satisfy the associativity law:

2) a(bc) = (ab)c

There is a distinct element of every group of symmetry, called the identity element and denoted
by 1. This element corresponds to the operation of not moving the molecule at all (equivalently, the
rotation for 0 degrees). This, we have that the rule below holds.

3) a1 = 1a = a for every operation a.
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In addition, for every operation a, there is an operation reversing the effect of a. This operation is
denoted by a−1. For example, if a is the rotation for α degrees, then a−1 is the rotation for α degrees
in the opposite direction (equivalently, rotation for −α degrees). The composition of a and a−1 is
the identity operation.

4) aa−1 = a−1a = 1.

These four laws are independent of the chemical setting and, as it turned out, there are many
other situations in which the set of elements considered satisfies these four laws. So, it turned out
that the study of any structure satisfying the above four laws, a group, was of interest for many
disciplines. The study of group became known as the group theory.

History. Historically, group was not defined
in the context of chemistry and symmetries of
molecules. There are three historical roots of
group theory: 1) the theory of algebraic equa-
tions, 2) number theory and 3) geometry. Euler,
Gauss, Lagrange, Abel and Galois were early re-
searchers in the field of group theory. Galois is
honored as the first mathematician linking group
theory and field theory, with the theory that is
now called Galois theory.

Galois remains an intriguing and unique person in the history of mathematics. The footnote
contains some more information from wikipedia.org. 1

Mathematical Definition of a Group. We revisit the four rules above to present a precise
mathematical definition of a group.

A group is a nonempty set G together with an operation · such that the rules A1 to A4, listed
below, hold.

1

Évariste Galois (October 25, 1811 May 31, 1832) was a French mathematician born in Bourg-la-Reine. He was a
mathematical child prodigy. While still in his teens, he was able to determine a necessary and sufficient condition
for a polynomial to be solvable by radicals, thereby solving a long-standing problem. His work laid the fundamental
foundations for Galois theory, a major branch of abstract algebra, and the subfield of Galois connections. He was the
first to use the word ”group” as a technical term in mathematics to represent a group of permutations. He died in a
duel at the age of twenty.

The night before the duel, supposedly fought in order to defend the honor of a woman, he was so convinced of
his impending death that he stayed up all night writing letters to his friends and composing what would become
his mathematical testament. Hermann Weyl, one of the greatest mathematicians of the 20th century, said of this
testament, ”This letter, if judged by the novelty and profundity of ideas it contains, is perhaps the most substantial
piece of writing in the whole literature of mankind.” In his final papers he outlined the rough edges of some work he
had been doing in analysis and annotated a copy of the manuscript submitted to the academy and other papers. On
the 30th of May 1832, early in the morning, he was shot in the abdomen and died the following day at ten in the
Cochin hospital (probably of peritonitis) after refusing the offices of a priest. He was 20 years old. His last words to
his brother Alfred were: ”Don’t cry, Alfred! I need all my courage to die at twenty.”

Galois’ mathematical contributions were finally fully published in 1843 when Liouville reviewed his manuscript and
declared that he had indeed solved the problem first proposed and also solved by Abel. The manuscript was finally
published in the October-November 1846.
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A1 The result of operation applied to two elements of G is again an element of G (i.e. if a and b
are in G, a · b is also in G). In this case we say that the operation · is closed.

A2 Associativity holds: (a · b) · c = a · (b · c) Operation with this property is said to be associative.

A3 There is identity element 1 so that a · 1 = 1 · a = a for every element a.

A4 Every element a has the inverse a−1 (i.e. a · a−1 = a−1 · a = 1).

As before, we shorten the notation a · b and write just ab. Also, if G with operation · is a group,
we say that G is a group under operation ·.

Examples.

1. The set of real numbers without zero is a group under multiplications. Indeed, A1 holds since
if a and b are nonzero real numbers, then ab is also a nonzero real number.

The associativity (ab)c = a(bc) holds for any nonzero real numbers a, b, c so A2 holds.

A3 holds since 1 is the identity element: a1 = 1a = a for every element a.

Every element a has the inverse 1
a

such that a 1
a

= 1
a
a = 1. So, A4 holds.

Note that the rational or complex numbers without zero also form groups under multiplication.

The set of all real numbers (with zero left in it) is not a group under multiplication because
A4 fails: there is no solution of the equation 0x = 1 (i.e. we cannot divide with 0) so 0 does
not have an inverse.

2. The set of real numbers under addition is a group. This example illustrates that the operation
in a specific group can be denoted differently than · and should not be associated only with
multiplication. The laws A1–A4 remain to hold regardless of the change in notation. Indeed,
A1 holds since if a and b are real numbers, then a+ b is also a real number.

The associativity (a+ b) + c = a+ (b+ c) holds for any real numbers a, b, c so A2 holds.

A3 holds since 0 is the identity element: a+ 0 = 0 + a = a for every element a.

Every element a has the inverse −a such that a+ (−a) = (−a) + a = 0. So, A4 holds.

Note that the integer, rational, or complex numbers are also a group under addition.

3. Vectors in the xy-plane (or in xyz-space) form a group under addition. In addition, real valued
matrices form a group under addition.

4. The set of invertible real valued functions forms a group under the composition of functions.
In all of the previous examples, the commutativity law (ab = ba for all a, b) holds. In this
example, it does not hold. For example, if f(x) = 2x and g(x) = x − 1. Then f(g(x)) =
2(x− 1) = 2x− 2, g(f(x)) = (2x)− 1 = 2x− 1, and so f ◦ g 6= g ◦ f. Similarly, the invertible
real valued matrices form a group under the matrix multiplication. The commutative law also
fails in this group.
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All the groups in the above examples have infinitely many elements. We present many examples
of groups with finitely many elements also. Let us introduce some related definitions.

The order of a group. The order of a group element. If a group G has n elements, we
say it has order n. If an element a is such that an = 1 and am 6= 1 for any m < n, we say that a
has order n.

Non-examples. Let us present some “non-examples” (i.e., examples of sets with operations
which fail some of the rules A1 to A4) next. The set of positive integers is not closed under subtraction
because, for example, 2 and 3 are positive integers and 2− 3 is not. So, A1 fails.

The set of integers is not associative under subtraction since

a− (b− c) = a− b+ c 6= a− b− c = (a− b)− c

so A2 fails.
Positive integers do not satisfy even A3 under addition because 0 is not a positive integer.
Nonnegative integers are not a group under addition since A4 does not hold. For example, 2 does

not have an inverse because −2 is not a positive integer.
The axiom A4 also fails for the set of integers without zero under multiplication. Indeed, 2 does

not have an inverse since 1
2

is not a nonzero integer.

Why A1–A4? Let us expand on the meaning of the axioms A1 to A4. The axiom A1 is necessary
to avoid situations as in the example with positive integers and subtraction.

The axiom A2 enables us not to use the parenthesis. So, we can shorten (ab)c = a(bc) simply to
abc. This rule also enables us to write long formulas like a(b((cd)e)(fg)) simply as abcdefg.

The axioms A2, A3, and A4 enable us to ”divide” i.e. these rules guarantees that the equations
ax = b and ya = b have unique solutions in G for all a and b. Indeed, to solve the first equation, we
can use A4 to ensure that a−1 exists and then multiply the equation on the left with a−1. We use A2
to write the left side a−1(ax) as (a−1a)x, A4 to have this as 1x and A3 to have this as x. Since the
right side is a−1b, x = a−1b is a solution.

Uniqueness follows from the left cancellation law: ax = ay imply x = y.
Indeed, assuming that ax = ay, we can use A4 to ensure the existence of a−1 and multiply the

equation on the left with a−1 to get a−1(ax) = a−1(ay). Then we can use A2 to regroup the terms
to get (a−1a)x = (a−1a)y. Using A4, we have that 1x = 1y and, finally, using A3, we conclude that
x = y.

Similarly, by multiplying the equation ya = b on the right with a−1 and using the right cancellation
law, one shows that ba−1 is a unique solution of this equation.

The converse holds as well: a set G satisfying A1, A2 and the rule

D For all a and b from G, the equations ax = b and xa = b have unique solutions in G.

satisfies the rules A3 and A4 as well. Indeed, A3 holds because 1 is the solution of the equation
ax = a for an element a (one would still have to show that ax = a and bx = b produce the same
solution for different a and b). The axiom A4 holds since, for every element a, the solution of the
equation ax = 1 is a−1 (one would still have to show that a−1 is also the solution of ya = 1).

Cayley Tables. The fact that the equations of the form ax = b and ya = b have unique solutions
in a group provides a very easy way to check if a given finite set of elements forms a group under a
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given operation. Such operation on a finite set of elements is frequently given by a table listing the
result of the operation for each pair of elements. Such table is called a Cayley table, named after
the mathematician Arthur Cayley. Cayley table is a generalization of the multiplication table
used for multiplication of integers: it is a grid where rows and columns are headed by the elements
to multiply, and the entry in each cell is the product of the column and row headings.

For example, following is a Cayley table on the set of three elements a, b, c.

· a b c
a a b a
b c a b
c c c b

Let us look at the part of the table without column and row headings. Note that the first row
represents different results of the multiplication from the left with a. But in the first row, there is no
element c. That means that the equation ax = c has no solution. Hence, this table does not represent
a group. Similarly, note that in the first (non-headed) column, there is not element b present. As a
consequence, the equation ya = b has no solution.

From this example, we can conclude that a necessary condition for a Cayley table to represent a
group is that in every row and column each element appear at least once. If some elements appears
twice, then the cancellation law does not hold so

1) Every element appears exactly once in every row and every column.

Also,

2) There has to be an element such that the row and column determined by that elements are the
same as the heading row and column. In this case, that element is the identity.

If a Cayley table of a set G satisfies rules 1 and 2, then G satisfies A1, A3, A4. Associativity
law A2 is hard to check using Cayley table. Checking associativity boils down to checking all the
possible triples of elements a, b, c satisfy the rule (ab)c = a(bc).

An example of a Cayley table of a set of three elements that is a group is

· a b c
a a b c
b b c a
c c a b

In this example, a is the identity, and b and c are mutually inverse to each other.
A group is called abelian if it satisfies the commutative law

ab = ba.

We have seen many examples of abelian groups and some examples of groups that are not abelian. If
a group is finite, one can easily check if it is abelian or not using its Cayley table: you simply check
if the table is symmetric with respect to the main diagonal. Using this rule, we conclude that the
group with the above Cayley table is abelian.

Groups with 2 elements. Let us use Cayley table to try to determine all possible groups with
2 elements. As one of them has to be identity, let us denote that element by 1 and the other element

by a. Since a1 = 1a = a, the result of aa cannot be a so it has to be 1. Hence,
· 1 a
1 1 a
a a 1

is the

resulting table.
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Note that this is the only possible way we could fill the table. This means that every other group
of two elements is going to have the multiplication table matching this multiplication table. For
example, if we consider a group with two elements c, d and c is the identity, then cd = d implies that

dd cannot be d so it is c. Hence, the multiplication table is
· c d
c c d
d d c

Thus, the only difference

between the two groups are the names we assigned to the elements. The correspondence 1↔ c and
a↔ d is such that each element of one group corresponds to a unique element of the other group and
such that the Cayley tables match. Such correspondence is an example of a group isomorphism.
If a group isomorphism exists, we say that two groups are isomorphic. Isomorphic groups have all
relevant properties the same (including a matching multiplication operations), so mathematicians
are often considering them as one same group. One of the most important questions in group theory
is to determine if a given two groups are isomorphic or not. In chemistry, isomorphic groups are
sometimes referred to as isomorphous groups.

A group isomorphism preserves all the group properties. This gives you useful criterion for
determining that two groups are not isomorphic.

• To demonstrate that two groups are not isomorphic, you can find a property they do not
share. For example, if the groups have a different number of elements, or if one is abelian and
the other is not, then those groups are not isomorphic.

On the other hand,

• to demonstrate that two groups are isomorphic, you can match their elements and show
that the matching preserves the Cayley table. We shall see later that if two groups have the
same presentation, then they are isomorphic.

We present a more concrete example of a group with two elements next. Let us consider, the

group of two integers 1 and −1 under the multiplication. The multiplication table
· 1 −1
1 1 −1
−1 −1 1

shows that this group is also isomorphic to the above group with elements a and b.
Yet another example is the group of remainders when dividing with 2. Note that when any integer

is divided by 2, the remainder is either 0 or 1. Thus 1+0 = 0+1 = 1, 0+0 = 0. As 1+1=2 and 2 has

remainder 0 when divided by 2, we have that 1+1=0. Thus, we have the following table.
+ 0 1
0 0 1
1 1 0

All of the above groups are isomorphic with each other. We use the notation C2 to represent any
of the (mutually isomorphic) groups with two elements.

Groups with 3 elements. Let us consider the groups of three elements. As one of the three
elements has to be identity, let us denote elements by 1, a and b and let us start filling the Cayley

table as follows.

· 1 a b
1 1 a b
a a
b b

If we put 1 in the first empty place in the second row of the table

(again the rows are counted without the heading elements), then we would have to put b in the last
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free place in the second row in order not to violate the rule that each element in each row appears
exactly once. But then b would appear twice in the last column, so we cannot fill the table this way.

This mean that the second row has to be a, b, 1 and this uniquely determines the last row and

hence the entire table. So, the following is the complete Cayley table.

· 1 a b
1 1 a b
a a b 1
b b 1 a

Since b = a2,

we can also write this table simpler as follows.

· 1 a a2

1 1 a a2

a a a2 1
a2 a2 1 a

Since this is the only way how we can fill the table, every other group with three elements is
isomorphic to this one (in particular, the group from the example on page 5 is isomorphic to this
one). Another group of three elements (also isomorphic to the one above) can be obtained considering
the remainders when dividing with 3, similarly as in the example with the two-element group. Any
integer has a remainder when divided by 3 either 0, 1 or 2. So, we take these three elements to be
the elements of the group.

To obtain the Cayley table, note that the elements add considering the remainder of their sum
when dividing by 3. For example 2+2=4 which has remainder 1 when divided by 3, so 2+2=1. Thus,

we have the following table.

+ 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

Note that the identity element here is 0, not 1 since

we are using the additive, not multiplicative notation. Analogously to the 2-element groups, the
notation C3 is used to denote any group with 3 elements.

As we have seen, there is just one (isomorphism type of a) group with two and just one (iso-
morphism type of a) group with three elements. Considering groups with four elements later on, we
arrive to a more interesting situation: there are two groups of order 4 which are not isomorphic to
each other. Before those examples, let us generalize the examples with C2 and C3 to define the cyclic
group Cn of order n.

Cyclic groups Cn. Cyclic groups are those that are generated with a single element. This means
that every other element can be represented by that single element or its inverse. For example, the
set of integers under addition is generated by 1 because every integer is a sum of copies of 1 or −1
(for example 3=1+1+1 and −3 = (−1) + (−1) + (−1)). It turns out that any infinite cyclic groups
is isomorphic to this one.

The group Cn is defined as generated by a single element a which satisfies the relation an = 1.
We write these requirements shorter as

Cn = 〈a | an = 1〉.

by listing the generator before the symbol | and listing the defining relation after the symbol |.
This means that Cn consists of n elements 1, a, a2, . . . , an−1 – not more since all higher powers of
a can reduce to one of these elements by using the relation an = 1. This relation also implies that
1 = an = aan−1 so a−1 = an−1. Because of this, the negative powers of a can also be reduced to
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one of the n elements listed above. Thus, Cn has order n. The multiplication table is completely
determined by the relation an = 1.

For example, C5 consists of five elements a0 = 1, a, a2, a3, a4. The Cayley table is the left table
below. This group is isomorphic to the group of remainders when dividing integers by 5. The table
of this groups is on the right side below.

· 1 a a2 a3 a4

1 1 a a2 a3 a4

a a a2 a3 a4 1
a2 a2 a3 a4 1 a
a3 a3 a4 1 a a2

a4 a4 1 a a2 a3

+ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

The correspondence 1 7→ 0, a 7→ 1, a2 7→ 2, a3 7→ 3 and a4 7→ 4 is an isomorphism between
the two groups above. This isomorphism can be shortly represented by ai 7→ i for i = 0, 1, . . . , 4.

Using the rule that akal = ak+l = al+k = alak once can conclude that every cyclic group is abelian.

Presentation of a group. The notation Cn = 〈a | an = 1〉 is an example of a group presentation.
In general, we can use the notation

〈 list of generators | list of relations on the generators 〉,

called a group presentation, to represent a group. Note that a presentation is not unique.

Groups with 4 elements. Let us return to the groups with 4 elements now. We know that C4

is an example of a group with four elements. To determine if any other (nonisomorphic) groups with
four elements exist, let us denote the elements by 1, a, b, c and let us explore the possible ways of
filling the multiplication table. Since aa 6= a (otherwise a appears twice in the row and column led
by a) the options for aa are b, c or 1. The first two choices determine the rest of the table uniquely. If
a2 = b then a3 = c (try to fill the table and convince yourself of this) and ac = a4 = 1. So, this group
can be generated by the single element a which satisfies the relation a4 = 1. Thus, it is (isomorphic
to) C4.

If a2 = c, the rest of the table implies that a4 = c2 = 1 and a3 = ac = b. Hence, this group is also
generated by the single generator a which satisfies the relation a4 = 1 so it is also isomorphic to C4.

If a2 = 1, then the rest of the table depend on whether b2 is a or 1. If it is a, then c = ab = b2b = b3

and 1 = aa = b2b2 = b4 so this group can be generated by b only (a = b2 and c = b3) and this generator
also satisfies the relation b4 = 1 so this group has presentation 〈b | b4 = 1〉 which is also isomorphic
to C4.

The last remaining choice is when a2 = 1 and b2 = 1. In this case, c = ab and so this group can
be generated by two generators, a and b and has the following table.

· 1 a b c
1 1 a b c
a a 1 c b
b b c 1 a
c c b a 1

c = ab ⇒

· 1 a b ab
1 1 a b ab
a a 1 ab b
b b ab 1 a
ab ab b a 1

This group is not isomorphic to C4 because C4 has an element whose square is not 1 and the
squares of all elements of this group are 1 (1 is on the main diagonal of the table above). This means
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that there is one more groups of order 4, not isomorphic to C4. We denote this group by C2×C2 and
say that it is a direct product of two copies of the cyclic group C2. We consider the direct product
in more details next.

Direct Product of Groups and their presentations. Recall that the xy-plane is obtained
by considering the ordered pairs (x, y) of real numbers. We can consider it to be a direct product
of two copies of the set of real numbers: the first coordinate of an ordered pair is a real number
considered as an element of the first copy and the second coordinate is a real number considered as
an element of the second copy. Analogously, a new group can be obtained by considering ordered
pairs of elements from two other groups. More precisely, if G1 and G2 are two groups, we can define
a new group G = G1×G2 by considering the elements of G to be the ordered pairs (g1, g2) where g1
is from G1 and g2 is from G2. The operation in G is defined by the following:

(g1, g2) · (h1, h2) = (g1h1, g2h2).

If G1 has n elements and G2 has m elements, then G1 ×G2 has mn elements.
If any of the groups G1 or G2 is infinite, then G1×G2 is infinite. The xy-plane, for example, can

be thought of as a direct product of one copy of real numbers (under addition) with another copy
of real numbers. Note that this groups is the same as the group of vectors in the xy-plane under
addition. We can consider the direct product of xy-plane and another copy of real numbers to get
the xyz-space.

Given presentations of G1 and G2, a presentation of G1×G2 is obtained using the following rules.

• The generators of G1 ×G2 are the generators G1 and the generators of G2.

• The relations on G1 × G2 are those of G1, those of G2, plus the relations that assert that the
generators of G1 commute with the generators of G2.

Example 1. Write a presentation and the Cayley table of the group C2 × C2. Then note the
isomorphism of this group and the one with 4 elements not isomorphic to C4.

Solution. Let us consider the first copy of C2 to have the presentation 〈a | a2 = 1〉 and the
second one to have the presentation 〈b | b2 = 1〉. Thus, the product C2 × C2 can be represented by

〈a, b | a2 = 1, b2 = 1, ab = ba〉.

So, this group has 4 elements 1, a, b, and ab as any other ”word” in two letters a and b can be written
as one of those 4 using the above relations (for example ababb = a2b3 = 1b = b and abbaaaba =
a5b3 = ab). The Cayley table for this group matches the second table in the section on groups of

order 4

· 1 a b ab
1 1 a b ab
a a 1 ab b
b b ab 1 a
ab ab b a 1

. Thus, we say that there are two nonisomorphic groups of order 4, C4

and C2 × C2.
We can also think of C2 × C2 as the set of the ordered pairs where the first entry is 1 or a and

the second entry is 1 or b. This representation yields a group isomorphic to the one with the table
above by the correspondence

1 7→ (1, 1), a 7→ (a, 1), b 7→ (1, b), and ab 7→ (a, b).
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You can also think of the ordered pairs with 0 or 1 as the entries and the addition as your
operation. So, (0, 1) + (1, 1), for example, is equal to (0 + 1, 1 + 1) = (1, 0). This group is isomorphic
to C2×C2 and the map given by 1 7→ (0, 0), a 7→ (1, 0), b 7→ (0, 1), and ab 7→ (1, 1) is an isomorphism.

Example 2. Write down a presentation and the Cayley table of the group C3 × C2 and show
that it is isomorphic to C6.

Solutions. The group C3 × C2 = 〈a | a3 = 1〉 × 〈b | b2 = 1〉 can be presented as

〈a, b | a3 = 1, b2 = 1, ab = ba〉.

So, this group has 6 elements 1, a, a3, b, ab, a2b as any other ”word” in two letters a and b can be
written as one of those 6 using the above relations. Try to fill the Cayley table using the presentation

above and check that it matches the following table.

C3 × C2 1 a a2 b ab a2b
1 1 a a2 b ab a2b
a a a2 1 ab a2b b
a2 a2 1 a a2b b ab
b b ab a2b 1 a a2

ab ab a2b b a a2 1
a2b a2b b ab a2 1 a

Let us consider the cyclic group of order 6 C6 = 〈c | c6 = 1〉. We claim that these two groups are
isomorphic. To show that, note that the element ab has order 6. Indeed

(ab)0 (ab)1 (ab)2 (ab)3 (ab)4 (ab)5 (ab)6

1 ab a2 b a a2b 1

Then note that this can be matched with the powers of element c in C6 = 〈c | c6 = 1〉.

(ab)0 (ab)1 (ab)2 (ab)3 (ab)4 (ab)5 (ab)6

1 ab a2 b a a2b 1

1 c c2 c3 c4 c5 c6

Comparing the Cayley’s tables shows that the pairing of the elements above really is the isomorphism
of the two groups.

C3 × C2 1 ab a2 b a a2b
1 1 ab a2 b a a2b
ab ab a2 b a a2b 1
a2 a2 b a a2b 1 ab
b b a a2b 1 ab a2

a a a2b 1 ab a2 b
a2b a2b 1 ab a2 b a

C6 1 c c2 c3 c4 c5

1 1 c c2 c3 c4 c5

c c c2 c3 c4 c5 1
c2 c2 c3 c4 c5 1 c
c3 c3 c4 c5 1 c c2

c4 c4 c5 1 c c2 c3

c5 c5 1 c c2 c3 c4

The scenarios from the previous two examples contrast each other

C3 × C2
∼= C6 while C2 × C2 � C4.

This indicates a need to be able to answer the following questions.
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Which conditions on m and n ensure that Cm × Cn isomorphic to Cmn?
Which conditions ensure that Cm × Cn is not isomorphic to Cmn?

The following claim answers both questions.

Cm × Cn is isomorphic to Cmn if and only if the greatest common divisor of m and n is 1
(i.e. m and n do not have any common factors other than 1).

To prove this claim, you can argue as we did in two examples above:

• If m and n do not have any common factors other than 1, the element ab has order mn so you
can define the isomorphism by mapping ab 7→ c. Note that this determines the images of the
rest of the elements just like in the example with m = 3 and n = 2.

• If m and n have the largest common divisor d > 1, then the group Cm × Cn does not have
an element of order mn (that is, all its elements are of order smaller than mn). On the other
hand, the generator c of Cmn has the order mn.

This claim makes possible to determine all the isomorphism classes of abelian groups of certain
(finite) order. We illustrate that by the following example.

Example 3. Determine which of the following groups are isomorphic.

C24, C12 × C2, C8 × C3, C6 × C4, C3 × C4 × C2, C6 × C2 × C2, C3 × C2 × C2 × C2

Solution. Note that 24 = 23 ·3 Since any power of 2 and 3 do not have any common factor other
than 1, C3 can be combined with any group of C2 × C2 × C2, C4 × C2, or C8, creating isomorphic
pairs of groups. Any of these three groups, on the other hand, are not isomorphic because 2 and any
power of 2 have a common divisor 2 (so not only 1). Thus, there are three classes of abelian groups
of order 24 such that the groups in same class are isomorphic and any two groups from two different
classes are not isomorphic.

1. C3 × C2 × C2 × C2
∼= C6 × C2 × C2

2. C3 × C4 × C2
∼= C12 × C2

∼= C6 × C4

3. C3 × C8
∼= C24

Dihedral Group Dn and its presentation.
Dihedral groups are groups of symmetries of reg-
ular polygons. The group of symmetries of a reg-
ular polygon of n sides is denoted by Dn.

For example, let us consider a square. The
symmetries of a square are: rotations for 0, 90,
180 and 270 degrees, reflections with respect to
diagonals and x and y axes (if the square is cen-
tered at the origin so that the sides are parallel
to x or y axis). Clearly, the rotation for 0 degrees
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is the identity, let us denote it with 1. If we denote the rotation for 90 degrees by a, then the rotations
by 180 and 270 degrees are a2 and a3 and then a4 = 1.

Let us denote the reflection with respect to y-axis by b. Then b2 = 1, ab is reflection with respect
to the main diagonal, a2b is reflection with respect to x-axis and a3b is reflection with respect to the
non-main diagonal. So, all the symmetries of the square can be written via a and b. This means
that a and b are generators of D4. Also, note that ba = a3b.

Since ba is the reflection with respect to non-
main diagonal, it is different than ab, the reflec-
tion with respect to main diagonal. So, D4 is not
abelian.

The equations a4 = 1, b2 = 1, and ba = a3b on
the generators a and b completely determine the
Cayley table of D4. This means that the group
D4 can be given by the presentation

〈a, b | a4 = 1, b2 = 1, ba = a3b〉.

Using this presentation, we can fill the table.

· 1 a a2 a3 b ab a2b a3b
1 1 a a2 a3 b ab a2b a3b
a a a2 a3 1 ab a2b a3b b
a2 a2 a3 1 a a2b a3b b ab
a3 a3 1 a a2 a3b b ab a2b
b b a3b a2b ab 1 a3 a2 a
ab ab b a3b a2b a 1 a3 a2

a2b a2b ab b a3b a2 a 1 a3

a3b a3b a2b ab b a3 a2 a 1

Every dihedral group has an analogous presentation. The group Dn has two generators a, the
rotation for 360/n degrees, and b, reflection with respect to y axis, and it satisfies an = 1, b2 = 1,
ba = an−1b. Thus,

Dn = 〈a, b | an = 1, b2 = 1, ba = an−1b〉.

As a large percentage of point groups encountered are cyclic, dihedral, product of two cyclic or
product of a cyclic and a dihedral, let us look more closely to those examples.

Group notation no. of el. presentation

Cyclic (order n) Cn n 〈a|an = 1〉
Product of 2 cyclic Cn × Cm mn 〈a, b|an = bm = 1, ba = ab〉

Dihedral Dn 2n 〈a, b|an = b2 = 1, ba = an−1b〉
Product of Dn and Cm Dn × Cm 2nm 〈a, b, c|an = b2 = cm = 1, ba = an−1b, ca = ac, bc = cb〉

We are specially interested in the case when m = 2 both when considering Cn×Cm and Dn×Cm.
We should also note the distinction between Cn × C2 and Dn. Both of these two groups have

2n elements. If n > 2, then they are not isomorphic as Cn × C2 is abelian, while Dn is not (ba =
an−1b 6= ab). If n = 2, then D2 and C2 × C2 are isomorphic since they can both be presented by
〈a, b | a2 = 1, b2 = 1, ba = ab〉.

Example 4. Write down a presentation of D3 × C2 and list its elements.

Solution. Since D3 = 〈a, b | an = b2 = 1ba = a2b〉 and C2 = 〈c | c2 = 1〉, D3 × C2 can be
presented by

〈a, b, c | an = b2 = c2 = 1, ba = a2b, ac = ca, bc = cb〉.

So, this group has 12 elements: six elements of dihedral group 1, a, a2, b, ab, a2b and those six
elements multiplied by c, resulting in the following six elements c, ac, a2c, bc, abc, a2bc. Note that
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any other other ”word” in three letters a, b and c can be written as one of those 12 using the above
relations.

Symmetric Groups. Let us consider the set of three elements 1, 2, and 3. Let us look at all
the possible permutations of this set (i.e. one-to-one mappings of this set onto itself). As when
the symmetries of polygons were considered, the product of two such mappings is their composition.
There are six such mappings, mapping (1, 2, 3) to

(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), and (3, 2, 1)

respectively. If we consider these mappings as functions, the operation of function composition makes
this set into a group. This groups is called the symmetric group on three letters and it is denoted by
S3. Analogously, the permutations on n elements form a group denoted by Sn. Sn has n! elements.

Symmetric groups are especially important in group theory because of the Cayley’s theorem
stating that every group can be represented as a subgroup of some symmetric group. There is
another important class of groups related to symmetric groups called alternating groups An. One of
the project topics focuses on the alternating groups An.

Platonic or regular solids and their sym-
metry groups. Platonic solids are convex poly-
hedra with equivalent faces composed of congru-
ent convex regular polygons. Euclid proved that
there are exactly five such solids: the cube, do-
decahedron, icosahedron, octahedron, and tetra-
hedron.

Plato 2 related these geometrical shapes to classical elements. There are just five of these regular
solids due to some space limitations that reduce the number of regular solids to only five.

The groups of symmetries of these Platonic solids are the tetrahedral Td, the octahedral Oh, and
the icosahedral group Ih.

The tetrahedral group Td is the group of symmetries of the tetrahedron. It has order 24 and
is isomorphic to the group S4.

2History. (from wikipedia) The Platonic solids are named after Plato, who wrote about them in Timaeus. Plato
learned about these solids from his friend Theaetetus. Plato conceived the four classical elements as atoms with the
geometrical shapes of four of the five platonic solids that had been discovered by the Pythagoreans (in the Timaeus).
These are, of course, not the true shapes of atoms; but it turns out that they are some of the true shapes of packed
atoms and molecules, namely crystals: The mineral salt sodium chloride occurs in cubic crystals, fluorite (calcium
fluoride) in octahedra, and pyrite in dodecahedra.

This concept linked fire with the tetrahedron, earth with the cube, air with the octahedron and water with the
icosahedron. There was intuitive justification for these associations: the heat of fire feels sharp and stabbing (like
little tetrahedra). Air is made of the octahedron; its minuscule components are so smooth that one can barely feel
it. Water, the icosahedron, flows out of one’s hand when picked up, as if it is made of tiny little balls. By contrast,
a highly un-spherical solid, the hexahedron (cube) represents earth. These clumsy little solids cause dirt to crumble
and breaks when picked up, in stark difference to the smooth flow of water.

The fifth Platonic Solid, the dodecahedron, Plato obscurely remarks, ”...the god used for arranging the constellations
on the whole heaven” (Timaeus 55). He didn’t really know what else to do with it. Aristotle added a fifth element,
aithêr (aether in Latin, ”ether” in English) and postulated that the heavens were made of this element, but he had
no interest in matching it with Plato’s fifth solid.
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The icosahedral group Ih is the group of symmetries of the icosahedron and dodecahedron
having order 120, equivalent to the group direct product A5 × C2 of the alternating group A5 and
the cyclic group C2.

The octahedral group Oh is the group of symmetries of the octahedron and the cube. It is
isomorphic to S4 × C2 and has order 48.

There are many other classes of groups but we are focused on those that appear in chemistry
when considering groups of symmetries of molecules.

Finding a good classification for groups (i.e. finding classes that can describe various types of
groups well) and finding a good way to represent various abstract groups are two very difficult tasks
of the group theory. The group representation theory is a subfield of group theory that deals with
these issues.

Symmetry (Point) Groups of Molecules

In the introductory section, we introduced a point group as a group of symmetry operations of a
molecule, rotations and reflections. The operation in a point group is a composition of two operation,
the action resulted in applying one symmetry followed by another, resulting in yet another symmetry.

There is a step-by-step algorithm that assigns a molecule to a point group and some of you may
have covered this process in a chemistry course. Because of this, we present the notation used in
chemistry as well as in mathematics.

Operation Chemistry notation

Identity, rotation for 0 degrees Identity E
Rotation by 360

n
degrees Proper axis Cn

Reflection with respect to a plane (horizontal, vertical, dihedral) Symmetry plane σ (σh, σv, σd)
Reflection with respect to the origin Inversion center i
Rotation for 360

n
degrees followed by the reflection Improper axis Sn

with respect to the horizontal plane

When imagining the horizontal plane of symmetry, one can imagine that the molecule model
can be floating on water so that exactly half is submerged and the submerged and above-water halves
are mapped to each other by the reflection with respect to the water surface. In this case, a vertical
plane is a plane perpendicular to the water surface.

The table below summarizes chemistry names for all possible point groups.

Type of point group Chemistry notation

cyclic Cn

cyclic with horizontal plane Cnh

cyclic with vertical plane Cnv

non-axial Ci, Cs

dihedral Dn

dihedral with horizontal plane Dnh

dihedral with plane between axes Dnd

improper rotation S2n

cubic groups I, Ih, O,Oh, T, Th, Td
linear C∞, C∞v, C∞h, D∞, D∞h
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As we can see from the previous two tables, the same letter is used to denote both a group and
its element (often generator) in chemistry. For example, a cyclic group of order n is denoted by Cn

and its generator, the rotation for 360
n

degrees is also denoted by Cn. One should keep this is mind
always when working with the point groups using the chemistry notation.

In this course, we are interested both in understanding the mathematical structure of point groups
as well as the process of assigning one to a given molecule. The following table addresses the first
goal.

Chem. Math. no. of el. presentation

Cn Cn n 〈a | an = 1〉
Cnh Cn × C2 2n 〈a, b | an = b2 = 1, ba = ab〉
Cnv Dn 2n 〈a, b | an = b2 = 1, ba = an−1b〉
Ci, Cs C2 2 〈b | b2 = 1〉
Dn Dn 2n 〈a, b | an = b2 = 1, ba = an−1b〉
Dnh Cnv × C2 = Dn × C2 4n 〈a, b, c | an = b2 = c2 = 1, ba = an−1b, ca = ac, bc = cb〉
Dnd D2n 4n 〈a, b | a2n = 1, b2 = 1, ba = a2n−1b〉
S2n C2n 2n 〈a | a2n = 1〉
I A5 60 〈a, b | a2 = b3 = (ab)5 = 1〉
Ih A5 × C2 120 〈a, b, c | a2 = b3 = (ab)5 = 1, ac = ca, bc = cb〉
O S4 24 〈a, b | a2 = b3 = (ab)4 = 1〉
Oh S4 × C2 48 〈a, b, c | a2 = b3 = (ab)4 = 1, ac = ca, bc = cb〉
T A4 12 〈a, b | a2 = b3 = (ab)3 = 1〉
Th A4 × C2 24 〈a, b, c | a2 = b3 = (ab)3 = 1, ac = ca, bc = cb〉
Td S4 24 〈a, b | a2 = b3 = (ab)4 = 1〉
C∞ C∞ = SO(2, R) ∞ no finite presentation
C∞v D∞ ∞ no finite presentation
C∞h C∞ × C2 ∞ no finite presentation
D∞ D∞ ∞ no finite presentation
D∞h D∞ × C2 ∞ no finite presentation

Note that some of these groups are isomorphic, so they do not have any differences significant for
mathematician, but are significantly different from a chemical point of view.

Let us concentrate first at the first eight groups in the above table. All of them are either dihedral,
cyclic, products of two cyclic or products of dihedral and cyclic groups. In the above presentations,
the element a denotes the rotation and the element b a symmetry or, in the case of Ci, inversion i.

• If there is just one generator, the group is cyclic Cn. In chemistry notation, the possibilities
are Cn, C2n, Cs and Ci.

• If there are two generators, a rotation a of order n and a reflection b, the group is either Cn×C2

or Dn. If the generators commute, then it is Cn × C2 and if they do not, the group is Dn.

If b is the symmetry with respect to the horizontal plane, then a and b commute. In this case,
the group is

Cn × C2 = 〈a, b | an = 1, b2 = 1, ba = ab〉.

The chemistry notation for this group is Cnh.
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If b is the reflection with respect to a vertical plane, then a and b do not commute and ba = a−1b.
In this case, the point group is dihedral

Dn = 〈a, b | an = 1, b2 = 1, ba = an−1b〉.
In chemistry notation, the point group is Cnv, Dn or Dnd.

• If there are three generators: rotation a, symmetry with respect to a vertical plane b, and a
symmetry with respect to the horizontal plane c, these generators satisfy exactly the relations
of the following presentation, so the group is Dn × C2 (Dnh in chemical notation).

Dn × C2 = 〈a, b, c | an = b2 = c2 = 1, ba = an−1b, bc = cb, ac = ca〉

In practice, not all values of n are possible. In crystallography, the feasible values of n are only
n = 1, 2, 3, 4, 6, due to the crystallographic restriction theorem. In its basic form, this theorem is
the observation that the rotational symmetries of a crystal are limited to 2-fold, 3-fold, 4-fold, and
6-fold. This is strictly true for the mathematical formalism, but in the physical world quasicrystals
occur with other symmetries, such as 5-fold. (find out more at wikipedia.org). So, there are just 32
crystallographic point groups.

Linear molecules. Let us turn our attention to the point groups of linear molecules. Although
none of these groups has a finite presentation, we can still describe their elements.

To match the notation in chemistry, consider such molecule as standing upright so that the
z-axis is the axis around which we can rotate the molecule model. We use the notation C∞ to
denote the group of all rotations around the z-axis. As the rotation for 360 degrees is the same as
rotation for 0 degrees, this group is isomorphic to a group of all the angles represented on a unit
circle. The addition of two angles corresponds to the composition of two corresponding rotations.
In mathematics, this group is known as SO(2, R). To follow notation in chemistry, we denote it by
C∞. If the group has more elements than these rotations, there are three possibilities.

• There is a reflection b with respect to the horizontal plane. If x is any rotation in C∞, then
bx = xb. Thus, the group is the direct product C∞×C2, or, using the chemistry notation, C∞h.

• There is a reflection b with respect to a vertical plane. If x is any rotation in C∞, then
bx = x−1b. In this case, the groups is the infinite version of Dn which is denoted by D∞ (or,
using chemistry notation C∞v or D∞).

• There is a reflection b with respect to a vertical plane as well as a reflection c with respect
to the horizontal plane. In this case, if x is any rotation in C∞, then we have the following
relations

c2 = b2 = 1, bx = x−1b, cx = xc.

These relations define the group D∞×C2. This group is the infinite version of the group Dn×C2

and it is denoted by D∞h in chemistry.

Examples.

1. Water H2O. This molecule has the following symmetries: identity 1, rotation for 180 degrees
a, reflections with the respect to the vertical plane b, and their product ab. Note that ab is
the reflection with respect to the horizontal plane. So, although the horizontal plane reflection
is present also, it ends up being “expressible” via a and b only. Thus, this group has two
generators and they commute. Hence, it is C2 × C2.
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You could also argue that, as a group with four
elements, it has to be either C2 × C2 or C4.
However, since the square of each nonidentity
element is 1, it is not C4 (recall that a2 is not
1 in C4). So, it is C2 × C2. This group can be

presented by
〈a, b | a2 = b2 = 1, ba = ab〉.

2. Ethylene C2H4. Let a be the rotation of the
rectangle with the white atoms as its vertices
for 180 degrees. Thus, a2 = 1. There are re-
flections both with respect to the horizontal
plane as well as with respect to vertical planes
so there are two more generators b and c. Note

that a commutes with both b and c (it commutes with b since ba = a2−1b = ab). Thus, this
group can be presented by

〈a, b, c | a2 = b2 = c2 = 1, ab = ba, ac = ca, bc = cb〉

Hence, this group is C2×C2×C2. Note that this group has 8 elements: 1, a, b, ab, c, ac, bc, abc.
We can match these elements with the rotations with respect to all three coordinate axis, the
inversion, the reflections with respect to one horizontal and two vertical planes and the identity.

3. Boron trifluoride BF3. If a denotes the rota-
tion for 120, b the reflection with respect to
a vertical plane and c the reflection with re-
spect to the horizontal plane, then we have
that a3 = 1, b2 = c2 = 1, ba = a2b, ac = ca,

and bc = cb. Thus, this group can be presented by

〈a, b, c | a3 = 1, b2 = 1, c2 = 1, ba = a2b, ca = ac, cb = bc〉

so it is D3 × C2. Note that this group has 12 elements: 3 rotations 1, a, a2, three reflections
with respect to the vertical planes b, ab, a2b and six more elements c, ac, a2c, bc, abc, a2bc which
are compositions of these six with c.

4. Bromine Pentafluoride BrF5. Four fluor atoms
line in the same plane forming the vertices of a
square. Bromine atom is in the center of that
square and the remaining fluor atom is directly
above the bromine.

Because of that fifth fluor, there is no symmetry with respect to the horizontal plane.

Thus, if a is the rotation of the bottom square for 90 degrees and b is the reflection with respect
to a vertical plane, then they generate the entire group. Since a4 = 1, b2 = 1 and ba = a3b 6= ab,
the group is noncommutative and can be presented by

〈a, b | a4 = 1, b2 = 1, ba = a3b〉
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Thus, this is D4, the group of symmetries of the bottom square (C4v using the chemistry
notation). It has eight elements, four rotations 1, a, a2, a3 for 0, 90, 180 and 270 degrees
respectively, and four reflections b, ab, a2b, a3b with respect to four vertical planes (xz and yz
planes and two vertical planes passing the diagonals of the square).

5. CHFClBr. All five atoms are different, so just
the trivial symmetry is present. Thus, the
point group is the trivial (one element) group
C1.

6. HClBrC-CHClBr. There is just one nontrivial
operation: the inversion a with respect to the
center. Since a2 = 1, the group is

C2 = 〈a | a2 = 1〉.

7. Hydrogen chloride HCl. If x is a rotation for any angle between 0 and 2π and b is the reflection
with respect to a vertical plane (recall that we imagine this molecule standing “upright”), then

x and b do not commute and the relations
b2 = 1 and bx = x−1b hold in this group. Thus,
it is D∞ (C∞v using the chemistry notation).

8. Hydrogen H2. Besides the rotations and the reflections with respect to vertical planes, there is
also a reflection with respect to the horizontal plane (imagine this molecule standing “upright”).
If x is any rotation, b a reflection with respect to a vertical plane and c the reflection

with respect to the horizontal planes, then b
and x do not commute and c commutes with
both x and b. Thus, the relations b2 = c2 = 1,
bx = x−1b, cx = xc, and cb = bc hold in this
group and it is D∞×C2 (D∞h using the chem-
istry notation).

There are many resources on the web detailing step-by-step process for finding the point group
for any molecule and containing more examples of point groups and multimedia programs that helps
you identify the point group of a given molecule. Feel free to explore those resources.

Practice Problems.

1. (a) Show that the set of real numbers different from −1
3

is a group under the following operation

a ∗ b = a+ b+ 3ab.

(b) Determine whether it a group if −1
3

is included in the set.
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2. Consider 2 × 2 matrices of the form

[
a b
0 c

]
where a, b, c are real numbers with a 6= 0 and

c 6= 0. These matrices are called upper triangular invertible matrices. Show that the set of
such matrices with matrix multiplication is a group.

3. Write down the Cayley tables for the following groups.

(a) C2 × C3 (b) C2 × C2 × C2 (c) D5

4. The groups C8, C4×C2 and C2×C2×C2, D4 have order 8. There is another group of order 8,
called the quaternion group, usually denoted by Q, that can be presented by

〈a, b | a4 = 1, a2 = b2, ba = a3b〉.

(a) Write down the Cayley table for this group and compare it with the Cayley tables for other
two groups of order 8 generated by two elements: C4×C2 = 〈a, b | a4 = 1, b2 = 1, ba = ab〉,
and D4 = 〈a, b | a4 = 1, b2 = 1, ba = a3b〉.

(b) Demonstrate that five groups of order 8, C8, C4×C2 and C2×C2×C2, D4 and Q, are not
isomorphic to each other.

5. Determine which of the following groups are isomorphic.

C36, C18 × C2, C12 × C3, C9 × C4, C6 × C6,

C9 × C2 × C2, C6 × C3 × C2, C3 × C3 × C4, C3 × C3 × C2 × C2

6. Determine if the following pairs of groups are isomorphic. If they are, produce the isomorphism.
If they are not, explain why.

(a) C3 and D3. (b) C6 and D3.

(c) S3 and D3. (d) Sn and Dn for n > 3.

7. Describe the point groups of the following molecules. Write down a presentation of the point
group of each molecule and identify each group element as a symmetry operation.

(a) Ammonia NH3, (b) Chloramine NH2Cl (c) Hydrogen cyanide HCN.

Solutions.
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1. We need to check the four axioms A1 to A4.

A1. If a and b are real numbers different from −1
3
, it is clear that the product a∗b = a+b+3ab

is a real number but you need to check it is different from −1
3
. Let us examine conditions on

a and b that would make this product equal to −1
3
.

a ∗ b = a+ b+ 3ab = −1

3
⇒ a+ b+ 3ab+

1

3
= 0⇒ a+

1

3
+ b(1 + 3a) = 0⇒

a+
1

3
+ 3b(

1

3
+ a) = 0⇒ (a+

1

3
)(1 + 3b) = 0⇒ a+

1

3
= 0 or 1 + 3b = 0⇒ a = −1

3
or b = −1

3
.

This implication shows the contrapositive: if a and b are real numbers different from −1
3
, then

the product a ∗ b is also different from −1
3
. Thus, the operation is closed.

A2. Check the associativity.

(a ∗ b) ∗ c = (a+ b+ 3ab) ∗ c
= (a+ b+ 3ab) + c+ 3(a+ b+ 3ab)c
= a+ b+ 3ab+ c+ 3ac+ 3bc+ 9abc
= a+ b+ c+ 3ab+ 3ac+ 3bc+ 9abc

a ∗ (b ∗ c) = a ∗ (b+ c+ 3bc)
= a+ (b+ c+ 3bc) + 3a(b+ c+ 3bc)
= a+ b+ c+ 3bc+ 3ab+ 3ac+ 9abc
= a+ b+ c+ 3ab+ 3ac+ 3bc+ 9abc

Thus, the axiom A2 holds.

A3. To find the identity, you are looking for a number x 6= −1
3

with the property that a ∗x = a
and x ∗ a = a for every a 6= −1

3
.

a ∗ x = a⇒ a+ x+ 3ax = a⇒ x+ 3ax = 0⇒ x(1 + 3a) = 0

Since a 6= −1
3
, 1 + 3a 6= 0 and we can cancel the equation x(1 + 3a) = 0 to get that x = 0.

Thus, a ∗ 0 = a.

Check that 0 ∗ a = 0 + a+ 3(0)a = a as well. Thus, the group identity element is 0.

A4. For any a 6= −1
3

, you are looking for a number x 6= −1
3

with the property that a ∗ x = 0
and x ∗ a = 0.

a ∗ x = 0⇒ a+ x+ 3ax = 0⇒ x+ 3ax = −a⇒ x(1 + 3a) = −a⇒ x =
−a

1 + 3a

Note that we can divide by 1 + 3a since a 6= −1
3
. Check that x ∗ a = 0 as well. Indeed

−a
1+3a
∗ a = −a

1+3a
+ a+ 3a −a

1+3a
= −a+(1+3a)a−3a2

1+3a
= −a+a+3a2−3a2

1+3a
= 0

1+3a
= 0.

(b) If we are considering the set of all real numbers instead of all numbers different from −1
3
,

then we do not get a group since the axiom A4 fails. Indeed, the equation −1
3
∗ x = 0 has no

solutions:

−1

3
∗ x = 0⇒ −1

3
+ x+ 3(

−1

3
)x = 0⇒ −1

3
+ x− x = 0⇒ −1

3
= 0.

Thus, the element −1
3

does not have an inverse.
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2. Check the four axioms.

A1. We need to show that the product of two upper triangular matrices with nonzero entries on
the diagonal is again an upper triangular matrix with nonzero entries on the diagonal. Consider

the matrices

[
a b
0 c

]
and

[
p q
0 r

]
with a, c, p, r non-zero.[

a b
0 c

] [
p q
0 r

]
=

[
ap aq + br
0 cr

]
Thus, the product is again an upper triangular matrix. It is invertible since ap 6= 0 because
both a and p are non-zero, and cr 6= 0 because both c and r are non-zero.

A2.([
a b
0 c

] [
p q
0 r

])[
u v
0 w

]
=

[
ap aq + br
0 cr

] [
u v
0 w

]
=

[
apu apv + (aq + br)w
0 crw

]
[
a b
0 c

]([
p q
0 r

] [
u v
0 w

])
=

[
a b
0 c

] [
pu pv + qw
0 rw

]
=

[
apu a(pv + qw) + brw
0 crw

]
The associativity holds since

apv + (aq + br)w = apv + aqw + brw and a(pv + qw) + brw = apv + aqw + brw.

A3. We need to find an invertible matrix X =

[
x y
0 z

]
such that AX = A for any invertible

matrix A =

[
a b
0 c

]
.

AX = A⇒
[
a b
0 c

] [
x y
0 z

]
=

[
a b
0 c

]
⇒

[
ax ay + bz
0 cz

]
=

[
a b
0 c

]
This yields the equations ax = a, ay + bz = b and cz = c. Since a 6= 0 and c 6= 0, the first
and third equation give us x = 1 and z = 1. The second equation becomes ay + b = b⇒ ay =

0 ⇒ y = 0 since a 6= 0. Thus we have that X =

[
1 0
0 1

]
, the identity matrix. The equation

XA = A holds in this case as well.

If you suspected that the identity matrix is the identity element, you could just check that

A

[
1 0
0 1

]
= A and

[
1 0
0 1

]
A = A.

A4. Let I denote the identity matrix

[
1 0
0 1

]
. For any given invertible matrix A =

[
a b
0 c

]
,

you are looking for an invertible matrix X =

[
x y
0 z

]
such that AX = I and XA = I.

AX = I ⇒
[
a b
0 c

] [
x y
0 z

]
=

[
1 0
0 1

]
⇒

[
ax ay + bz
0 cz

]
=

[
1 0
0 1

]
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This yields the equations ax = 1, ay + bz = 0 and cz = 1. Since a 6= 0 and c 6= 0, the first and
third equation give us x = 1

a
and z = 1

c
. The second equation becomes ay + b1

c
= 0 ⇒ ay =

−b
c
⇒ y = −b

ac
since a 6= 0. Thus, X =

[
1
a
−b
ac

0 1
c

]
. Check that XA is also equal to I.

3. (a) The table for C2 × C3 can be found in the section on direct product of cyclic groups.
(b) C2 × C2 × C2 = 〈a, b, c | a2 = b2 = c2 = 1, ab = ba, ac = ca, bc = cb〉. The Cayley table is
also displayed.
(c) D5 = 〈a, b | a5 = 1, b2 = 1, a4b = ba〉. Thus, this group consists of 10 elements: 1, a, a2, a3,
a4, b, ab, a2b, a3b, a4b.

1 a b c ab ac bc abc

1 1 a b c ab ac bc abc
a a 1 ab ac b c abc bc
b b ab 1 bc a abc c ac
c c ac bc 1 abc a b ab
ab ab b a abc 1 bc ac c
ac ac c abc a bc 1 ab b
bc bc abc c b ac ab 1 a
abc abc bc ac ab c b a 1

D5 1 a a2 a3 a4 b ab a2b a3b a4b

1 1 a a2 a3 a4 b ab a2b a3b a4b
a a a2 a3 a4 1 ab a2b a3b a4b b
a2 a2 a3 a4 1 a a2b a3b a4b b ab
a3 a3 a4 1 a a2 a3b a4b b ab a2b
a4 a4 1 a a2 a3 a4b b ab a2b a3b
b b a4b a3b a2b ab 1 a4 a3 a2 a
ab ab b a4b a3b a2b a 1 a4 a3 a2

a2b a2b ab b a4b a3b a2 a 1 a4 a3

a3b a3b a2b ab b a4b a3 a2 a 1 a4

a4b a4b a3b a2b ab b a4 a3 a2 a 1

4. (a) The three Cayley tables for C4 × C2, dihedral D4 and the quaternion group Q are below.
The first group differs from the latter two in the bottom half of the table. The differences
between D4 and Q are in the bottom right part of the table and they are highlighted in the
table for Q.

C4 × C2 1 a a2 a3 b ab a2b a3b

1 1 a a2 a3 b ab a2b a3b
a a a2 a3 1 ab a2b a3b b
a2 a2 a3 1 a a2b a3b b ab
a3 a3 1 a a2 a3b b ab a2b
b b ab a2b a3b 1 a a2 a3

ab ab a2b a3b b a a2 a3 1
a2b a2b a3b b ab a2 a3 1 a
a3b a3b b ab a2b a3 1 a a2

D4 1 a a2 a3 b ab a2b a3b

1 1 a a2 a3 b ab a2b a3b
a a a2 a3 1 ab a2b a3b b
a2 a2 a3 1 a a2b a3b b ab
a3 a3 1 a a2 a3b b ab a2b
b b a3b a2b ab 1 a3 a2 a
ab ab b a3b a2b a 1 a3 a2

a2b a2b ab b a3b a2 a 1 a3

a3b a3b a2b ab b a3 a2 a 1

Q 1 a a2 a3 b ab a2b a3b

1 1 a a2 a3 b ab a2b a3b
a a a2 a3 1 ab a2b a3b b
a2 a2 a3 1 a a2b a3b b ab
a3 a3 1 a a2 a3b b ab a2b
b b a3b a2b ab a2 a 1 a3

ab ab b a3b a2b a3 a2 a 1
a2b a2b ab b a3b 1 a3 a2 a
a3b a3b a2b ab b a 1 a3 a2
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(b) Out of five groups of order 8, C8, C4 × C2 and C2 × C2 × C2, D4 and Q, the first three are
abelian and the last two are not so none of the three abelian groups is isomorphic with two
non-abelian groups. Furthermore, no abelian group is isomorphic to any other abelian group
(because 4 and 2 have a common divisor 2 and so do 2,2,and 2). The groups D4 and Q are not
isomorphic because D4 has 5 elements of order 2 and just 2 of order 4 and Q has 2 elements of
order 2 and 5 elements of order 4.

5. Note that 36 = 22 · 32 Since any power of 2 and any power of 3 do not have any common factor
other than 1, C3×C3 can be combined with any of C2×C2 and C4 creating isomorphic pairs of
groups. Similarly, C9 can be combined with any of C2 ×C2 and C4. C3 ×C3 is not isomorphic
to C9 since 3 is a common factor of 3 and 3. Similarly, C2 × C2 and C4 are not isomorphic.
Thus, there are four classes of abelian groups of order 36 such that the groups in same class
are isomorphic and any two groups from two different classes are not isomorphic.

1. C3 × C3 × C2 × C2
∼= C6 × C3 × C2

∼= C6 × C6

2. C3 × C3 × C4
∼= C3 × C12

3. C9 × C2 × C2
∼= C18 × C2

4. C9 × C4
∼= C36

6. (a) C3 and D3 are not isomorphic because one has 3 elements and the other has 6 elements.

(b) C6 and D3 are not isomorphic because one is abelian and the other is not.

(c) We show that S3 and D3 are isomorphic.
Recall that D3 = 〈a, b | a3 = 1, b2 = 1, ba =
a2b〉 is the group of symmetries of the equi-
lateral triangle. This group has six ele-
ments: the rotations 1, a, a2 (rotations for 0,
120 and 240 degrees respectively) and three

reflections b, ab, a2b with respect to three axis as in the figure above. Recall also that S3

has six elements represented by functions which map (1, 2, 3) to (1, 2, 3), (2, 3, 1), (3, 1,
2), (1, 3, 2), (3, 2, 1), and (2, 1, 3). Let us denote these 6 mappings by f1 to f6.

If we label the vertices of the triangle by 1,2,3 as on the figure below, we can see that the
three rotations match the maps f1, f2 and f3 exactly (also note that f 3

2 = 1, f 2
2 = f3, and

f2f3 = f1 which match the relations a3 = 1, aa = a2, and aa2 = 1).

If we map b to f4, then the product f2f4 represents the composition of maps f2 and f4
that turns out to be the mapping f2f4 = (3, 2, 1) = f5. Thus, ab corresponds to f5 Finally,
the product f 2

2 f4 = f2f5 = f6 so the element a2b corresponds to f6.

This demonstrates that the one-to-one mapping given by
1 a a2 b ab a2b
f1 f2 f3 f4 f5 f6

of

elements of D3 onto the elements of S3 preserves all the relations among the elements.
Hence, it is an isomorphism.

Writing Cayley tables for these two groups produces the same tables that are a match
further demonstrates the validity of this reasoning.

23



(d) Sn and Dn are not isomorphic for n > 3 because one has 2n and the other n! elements.
n! is larger than 2n for n > 3.

7. (a) Ammonia. If a is the rotation for 120 degrees and b is the symmetry with respect to
a vertical plane, then a and b do not commute and generate the entire group. The
group satisfies the relations a3 = 1, b2 = 1, and ba = a2b. Thus, it can be presented by
〈a, b | a3 = 1, b2 = 1, ba = a2b〉 and so it is D3 (C3v for chemists). It has six elements,
three rotations 1, a, a2 for 0, 120 and 240 degrees respectively, and three reflections with
respect to three vertical planes (perpendicular to the plane of the triangle formed by the
white atoms just as on the figure in the solution of the previous problem).

(b) Chloramine NH2Cl. The only non-identity group element is the reflection a fixing the green
atom and switching the white atoms. Since a2 = 1, the point group is C2 = 〈a | a2 = 1〉.

(c) Hydrogen cyanide HCN. If x is a rotation for any angle between 0 and 2π and b is the
reflection with respect to a vertical plane (recall that we imagine this molecule standing
“upright”), then x and b do not commute and the relations b2 = 1 and bx = x−1b hold in
this group. Thus, it is D∞ (C∞v for chemists).
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