
Math Methods 1
Lia Vas

Series Solutions of Ordinary Differential Equations – regular-singular
point

Recall that x = x0 is a regular-singular point of the equation

(x− x0)
2y′′ + p(x)(x− x0)y

′ + q(x)y = 0

if the functions p(x) and q(x) are analytic at an interval containing x = x0.
For simplicity, we can assume that x0 = 0. If that is not the case, the substitution t = x− x0 can

convert the equation with a regular-singular point x = x0 to an equation with regular-singular point
t = 0.

With the assumption that x0 = 0, we search for a solution in the form

y = xr

∞∑
n=0

anx
n =

∞∑
n=0

anx
n+r

for some number r. This series is called Frobenius series. We can assume that a0 6= 0 since
otherwise we can redefine a1 or some higher coefficient as a0.

For y =
∑∞

n=0 anx
n+r, we have that

y′ =
∞∑
n=0

(n + r)anx
n+r−1 and y′′ =

∞∑
n=0

(n + r)(n + r − 1)anx
n+r−2.

The solution y can be obtained following the steps below.

1. Substitute y, y′ and y′′ in the equation.

2. Write the left hand side of the equation as a single power series.

3. Consider the coefficient with the lowest power of x (equivalently, cancel the smallest power of x
and then plug x = 0 to obtain this coefficient). Equate this coefficient to zero. The quadratic
equation in r that you obtained in this way is called an indical equation. Let r1 and r2 denote
the two solutions of the indical equation, called the indices, and let r1 ≥ r2. We distinguish
three relevant cases.

(a) The difference r1−r2 is not an integer. In this case, the two linearly independent solutions
y1 and y2 are given by

y1 = xr1

∞∑
n=0

anx
n and y2 = xr2

∞∑
n=0

bnx
n.
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(b) The difference r1 − r2 is a nonzero integer. If r1 is the larger root, the two linearly
independent solutions y1 and y2 are given by

y1 = xr1

∞∑
n=0

anx
n and y2 = cy1 lnx + xr2

∞∑
n=0

bnx
n.

(c) The difference r1 − r2 is zero. In this case, the two linearly independent solutions y1 and
y2 are given by

y1 = xr1

∞∑
n=0

anx
n and y2 = y1 lnx + xr1+1

∞∑
n=0

bnx
n.

The coefficients an and bn can be determined from two recursive equations obtained in the same
way as in the case of a regular point – by substituting the solution y = xr

∑∞
n=0 anx

n in the
equation for two values r1 and r2.

4. Just in the case of a regular point, if you can express these series as elementary functions, then
the solution is said to be in the closed form. The close form will not always be possible to
obtain. Also, the radius of convergence of this power series is the distance from the center
x = x0 to the next nearest singularity of p and q.

In the second or third case, the form of the second solution listed above can be obtained using a
method known as the derivative method. One of your project topics asks you to look into this
method in more details.

The following three examples illustrate these three cases.

Example 1 – Case 1 Example. Consider the equation 4xy′′ + 2y′ + y = 0. Show that x = 0 is
a regular-singular point. Then find the closed form of the series solutions about x = 0 and determine
the interval of convergence.

Solution. The point x = 0 is not regular since p = 1
2x

and q = 1
4x

are not defined at x = 0.
However, x = 0 is a regular-singular point since the equation can be written as x2y′′ + x

2
y′ + x

4
y = 0

so p = 1
2

= 1
2

+ 0x+ 0x2 + . . . and q = x
4

= 0 + 1
4
x+ 0x2 + 0x3 + . . . are analytic at x = 0 and converge

for any point x. Thus,

y = xr

∞∑
n=0

anx
n =

∞∑
n=0

anx
n+r ⇒ y′ =

∞∑
n=0

(n + r)anx
n+r−1 and y′′ =

∞∑
n=0

(n + r)(n + r − 1)anx
n+r−2.

Substitute into the equation to get

∞∑
n=0

4(n + r)(n + r − 1)anx
n+r−1 +

∞∑
n=0

2(n + r)anx
n+r−1 +

∞∑
n=0

anx
n+r = 0. (∗)

The smallest power of x appears in the first two sums for n = 0 and it is xr−1. The coefficient
with xr−1 is 4r(r − 1)a0 + 2ra0. This gives you the indical equation

4r(r − 1)a0 + 2ra0 = 0⇒ 2a0(2r
2 − 2r + r) = 0⇒ 2r2 − r = 0⇒ r(2r − 1) = 0⇒ r = 0 or r =

1

2
.
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Thus, this is the first case since the difference r1 − r2 is not an integer.
The case r = 0 produces the first fundamental solution y1 = x0

∑∞
n=0 anx

n. To obtain this solution,
substitute r = 0 into the equation (∗).

∞∑
n=0

4n(n− 1)anx
n−1 +

∞∑
n=0

2nanx
n−1 +

∞∑
n=0

anx
n = 0

Note that the first term of the first two sums is zero so these two sums can be written as
∑∞

n=1 4n(n−
1)anx

n−1 and
∑∞

n=1 2nanx
n−1 respectively. Shifting the indices by one in order to obtain all three

sums with the matching powers of x, we obtain
∑∞

n=0 4(n+ 1)nan+1x
n and

∑∞
n=0 2(n+ 1)an+1x

n for
these first two sums. Thus we have

∞∑
n=0

4(n + 1)nan+1x
n +

∞∑
n=0

2(n + 1)an+1x
n +

∞∑
n=0

anx
n = 0 ⇒

∞∑
n=0

[4(n + 1)nan+1 + 2(n + 1)an+1 + an]xn = 0

Equating each coefficient of the series on the left side with zero produces the recursive relation

4(n + 1)nan+1 + 2(n + 1)an+1 + an = 0⇒ (4n(n + 1) + 2(n + 1))an+1 = −an ⇒

2(n + 1)(2n + 1)an+1 = −an ⇒ an+1 =
−an

(2n + 2)(2n + 1)

for n = 0, 1, 2, . . . Choosing a0 = 1 produces a1 = −1
2
, a2 = −a1

4·3 = 1
4·3·2 = 1

4!
, a3 = −1

6!
, . . . , an = (−1)n

(2n)!
.

Thus, the first solution is

y1 =
∞∑
n=0

(−1)n

(2n)!
xn

Comparing this sum with the series expansion for cos x =
∑∞

n=0
(−1)n
(2n)!

x2n we conclude that

y1 =
∞∑
n=0

(−1)n

(2n)!
xn =

∞∑
n=0

(−1)n

(2n)!
(
√
x)2n = cos

√
x.

Let us consider now the case r = 1
2

which yields the second solution y = x1/2
∑∞

n=0 anx
n. Substi-

tuting r = 1
2

in the equation (∗) produces

∞∑
n=0

4(n +
1

2
)(n +

1

2
− 1)anx

n− 1
2 +

∞∑
n=0

2(n +
1

2
)anx

n− 1
2 +

∞∑
n=0

anx
n+ 1

2 = 0.

Divide by x
1
2 to obtain the integer powers. Also, note that the coefficients in the first two sums are

4(n+
1

2
)(n+

1

2
− 1)an = 2(n+

1

2
) 2(n+

1

2
− 1)an = (2n+ 1)(2n− 1)an and 2(n+

1

2
)an = (2n+ 1)an.

Hence we have
∞∑
n=0

(2n + 1)(2n− 1)anx
n−1 +

∞∑
n=0

(2n + 1)anx
n−1 +

∞∑
n=0

anx
n = 0⇒
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∞∑
n=0

[(2n + 1)(2n− 1) + (2n + 1)] anx
n−1 +

∞∑
n=0

anx
n = 0⇒

∞∑
n=0

(2n + 1)(2n)anx
n−1 +

∞∑
n=0

anx
n = 0

Shift the first sum to obtain both sums with the matching powers of x.

∞∑
n=0

(2n + 3)(2n + 2)an+1x
n +

∞∑
n=0

anx
n = 0⇒

∞∑
n=0

[(2n + 3)(2n + 2)an+1 + an]xn = 0⇒

(2n + 3)(2n + 2)an+1 = −an ⇒ an+1 =
−an

(2n + 3)(2n + 2)
for n = 1, 2, . . .

Choosing a0 = 1 produces a1 = −1
2·3 = −1

3!
, a2 = −a1

5·4 = 1
5·4·3·2 = 1

5!
, a3 = −1

7!
, . . . , an = (−1)n

(2n+1)!
. Thus,

the second solution is

y2 = x
1
2

∞∑
n=0

(−1)n

(2n + 1)!
xn

Comparing this sum with the series expansion for sin x =
∑∞

n=0
(−1)n
(2n+1)!

x2n+1 we conclude that

y1 =
∞∑
n=0

(−1)n

(2n + 1)!
xn+ 1

2 =
∞∑
n=0

(−1)n

(2n + 1)!
(x

1
2 )2n+1 =

∞∑
n=0

(−1)n

(2n + 1)!
(
√
x)2n+1 = sin

√
x.

Thus, the general solution is y = c1 cos
√
x+c2 sin

√
x. The functions p and q converge on (−∞,∞)

and so the interval of convergence of the solutions is also (−∞,∞).

Example 2 – Case 2 Example. Consider the equation x2y′′ + xy′ − y = 0. Show that x = 0 is
a regular-singular point. Then find the closed form of the series solutions about x = 0.

Solution. Note that x = 0 is regular-singular point since p = 1 and q = −1 are analytic (all
derivatives are zero or, alternatively, constant functions have convergent power series expansion).

y = xr

∞∑
n=0

anx
n =

∞∑
n=0

anx
n+r ⇒ y′ =

∞∑
n=0

(n + r)anx
n+r−1 and y′′ =

∞∑
n=0

(n + r)(n + r − 1)anx
n+r−2.

Substitute into the equation to get
∑∞

n=0(n + r)(n + r − 1)anx
n+r +

∑∞
n=0(n + r)anx

n+r −∑∞
n=0 anx

n+r = 0⇒
∑∞

n=0[(n + r)(n + r − 1) + (n + r)− 1]anx
n+r = 0

Equating the first term with zero produces the indical equation

r(r − 1) + r − 1 = 0⇒ r2 − 1 = 0⇒ (r − 1)(r + 1) = 0⇒ r1 = 1, r2 = −1

so we are dealing with the case when the difference of the roots is a non-negative integer.
Plugging that r = 1 in the equation gives us

x
∞∑
n=0

[(n + 1)n + (n + 1)− 1]anx
n = 0⇒ [n2 + 2n]an = 0⇒ n(n + 2)an = 0, n = 0, 1, 2, . . .

Since the expression n(n + 2) is not zero for any positive value of n, we conclude that an = 0 for
all n = 1, 2, . . . . Thus, all the coefficients an are zero except possibly the first one, a0. Taking a0 = 1
you obtain the first solution y1 = x(1 + 0) = x.
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The second solution has the form y = cy1 lnx + xr2
∑∞

n=0 bnx
n = cx lnx + x−1

∑∞
n=0 bnx

n =
cx lnx +

∑∞
n=0 bnx

n−1. The derivatives are
y′ = c + c lnx +

∑∞
n=0(n− 1)bnx

n−2 and y′′ = c
x

+
∑∞

n=0(n− 1)(n− 2)bnx
n−3.

Plug the function and the derivatives into the equation and obtain

cx +
∞∑
n=0

(n− 1)(n− 2)bnx
n−1 + cx + cx lnx +

∞∑
n=0

(n− 1)bnx
n−1 − cx lnx−

∞∑
n=0

bnx
n−1 = 0

The terms with lnx cancel and the remaining terms in 2cx+
∑∞

n=0[(n−1)(n−2)+(n−1)−1]bnx
n−1

have to be equal to zero. Simplify to get 2cx +
∑∞

n=0(n
2 − 3n + 2 + n− 2)bnx

n−1 = 0⇒

2cx +
∞∑
n=0

n(n− 2)bnx
n−1 = 0⇒ 2cx− b1 + 3b3x

2 + 4(2)b4x
3 + 5(3)b5x

4 + . . . = 0

Considering the coefficients with each term we obtain that c = 0, b1 = 0 and b3 = b4 = b5 . . . = 0.
Thus, b0 and b2 are the only two possible nonzero coefficients. Thus, y2 = 1

x
(b0 + b2x

2) = b0
x

+ b2x.
Since the last term is a constant multiple of the first solution, we can take b2 = 0. Taking b0 = 1 for
simplicity, we obtain the second solution y2 = 1

x
.

Thus, the general solution is y = c1x + c2
1
x
.

Example 3 – Case 3 Example. Consider the equation x2y′′ − xy′ + y = 0. Show that x = 0 is
a regular-singular point. Then find the closed form of the series solutions about x = 0.

Solution. Note that x = 0 is regular-singular point since p = −1 and q = 1 are analytic (all
derivatives are zero or, alternatively, constant functions have convergent power series expansion).

y = xr

∞∑
n=0

anx
n =

∞∑
n=0

anx
n+r ⇒ y′ =

∞∑
n=0

(n + r)anx
n+r−1 and y′′ =

∞∑
n=0

(n + r)(n + r − 1)anx
n+r−2.

Substitute into the equation to get
∑∞

n=0(n + r)(n + r − 1)anx
n+r −

∑∞
n=0(n + r)anx

n+r +∑∞
n=0 anx

n+r = 0⇒
∞∑
n=0

[(n + r)(n + r − 1)− (n + r) + 1]anx
n+r = 0

Equate the coefficient of the smallest power of x with zero to produce the indical equation

r(r − 1)− r + 1 = 0⇒ (r2 − 2r + 1) = 0⇒ (r − 1)(r − 1) = 0⇒ r1 = r2 = 1

so we are dealing with the case when the difference of roots is zero.
Plugging that r = 1 in the equation gives us

x
∞∑
n=0

[(n + 1)n− (n + 1) + 1]anx
n = 0⇒ [n2 + n− n− 1 + 1]an = 0⇒ n2an = 0

Thus, all the coefficients an are zero except the first one, a0 when n = 0. Take a0 = 1 and obtain
the first solution y1 = x(1 + 0) = x.
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The second solution has the form y = y1 lnx + xr1+1
∑∞

n=0 bnx
n = x lnx + x2

∑∞
n=0 bnx

n =
x lnx +

∑∞
n=0 bnx

n+2. The derivatives are
y′ = 1 + lnx +

∑∞
n=0(n + 2)bnx

n+1 and y′′ = 1
x

+
∑∞

n=0(n + 2)(n + 1)bnx
n.

Plug the function and the derivatives into the equation and obtain

x +
∞∑
n=0

(n + 2)(n + 1)bnx
n+2 − x− x lnx−

∞∑
n=0

(n + 2)bnx
n+2 + x lnx +

∞∑
n=0

bnx
n+2 = 0

All the “non-series” terms cancel and the remaining series
∑∞

n=0[(n+2)(n+1)bn−(n+2)bn+bn]xn+2

has to have zero terms. Thus (n + 2)(n + 1)bn − (n + 2)bn + bn = 0⇒

(n2 + 3n + 2− n− 2 + 1)bn = 0⇒ (n2 + 2n + 1)bn = 0⇒ (n + 1)2bn = 0⇒ bn = 0

for all n. Thus, the second solution is y2 = x lnx and the general solution is y = c1x + c2x lnx.

The next example illustrate that in some special instances of the second case, the second solution
can be obtained from the first one. In other words, both solutions can be obtained in the form
y = xr

∑∞
n=0 anx

n.

Example 4. – “Lucky instance of the second case” Example. Consider the equation
x2y′′ − 2xy′ + 2y = 0. Show that x = 0 is a regular-singular point. Then find the closed form of the
series solutions about x = 0.

Solutions. For this equation, p = −2 and q = 2 and these two functions are analytic (all
derivatives are zero, alternatively, constant functions have convergent power series expansion). So
x = 0 is a regular-singular point. Plugging the solution y =

∑∞
n=0 anx

n+r and its derivatives yield
the equation

∞∑
n=0

[(n + r)(n + r − 1)− 2(n + r) + 2]anx
n+r = 0

Equating the first term with zero produces the indical equation r(r−1)−2r+ 2 = 0⇒ r2−3r+ 2 =
0 ⇒ (r − 1)(r − 2) = 0. So, the difference r1 − r2 is an integer. The first solution can be obtained
by taking the larger of the two r-values, r = 2. In this case [(n + 2)(n + 1)− 2(n + 2) + 2]an = 0⇒
(n2 + 3n+ 2− 2n− 4 + 2)an = 0 ⇒ (n2 + n)an = 0⇒ n(n+ 1)an = 0. In this case all coefficients an
are zero except possibly a0. By taking a0 = 1, we obtain the solution y1 = x2(1 + 0) = x2.

Consider now r = 1. In this case (n+ 1)nan− 2(n+ 1)an + 2an = 0⇒ (n2 +n− 2n− 2 + 2)an = 0
⇒ (n2−n)an = 0⇒ n(n−1)an = 0. In this case all coefficients an are zero except possibly a0 (when
n = 0) and a1 (when n− 1 = 0). Thus, y2 = x(a0 + a1x) = a0x+ a1x

2. Since the second part has the
form of the first solution, you can take a1 = 0. Taking a0 = 1 for simplicity, you obtain the solution
y2 = x that is linearly independent from y1 = x2.

Thus, the general solution is y = c1x
2 + c2x.

Practice Problems.

1. Consider the equation 3x2y′′ − 4xy′ + 2y = 0. Show that x = 0 is a regular-singular point.
Then find the closed form of the series solutions about x = 0 and determine the interval of
convergence.
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2. Consider the equation xy′′ − xy′ + y = 0. Show that x = 0 is a regular-singular point. Then
find the series solutions about x = 0. Find the closed form of one solution and list first few
terms of the second solution.

3. Consider the equation x2y′′+2xy′−x2y = 0. Show that x = 0 is a regular-singular point. Then
find the series solutions about x = 0. Find the series form of one solution and write down the
form of the second solution (do not need to solve for coefficients of the second solution).

4. Consider the equation x(1 − x)y′′ + (1 − x)y′ + y = 0. Show that x = 0 is a regular-singular
point. Then find the series solutions about x = 0. Find the closed form of one solution and
write down the form of the second solution (do not need to solve for coefficients of the second
solution). Determine the interval of convergence.

Solutions.

1. For this equation, p = −4
3

and q = 2
3
. Constant functions have power series expansions which

converges at every point. So x = 0 is a regular-singular point and the series solution is
convergent on (−∞,∞).

Plugging the solution y =
∑∞

n=0 anx
n+r and its derivatives yield the equation

∞∑
n=0

3(n + r)(n + r − 1)anx
n+r −

∞∑
n=0

4(n + r)anx
n+r +

∞∑
n=0

2anx
n+r = 0

Equating the coefficient of the smallest power of x, xr in this case, with zero produces the
indical equation 3r(r − 1) − 4r + 2 = 0 ⇒ 3r2 − 7r + 2 = 0 ⇒ r1 = 2 and r2 = 1

3
. So, the

difference r1 − r2 is not an integer.

When r = 2 the equation becomes

∞∑
n=0

[3(n+ 2)(n+ 1)an− 4(n+ 2)an + 2an]xn+2 = 0⇒ [3(n+ 2)(n+ 1)− 4(n+ 2) + 2]an = 0⇒

(3n + 5)nan = 0 ⇒ an = 0 for all n > 0. By taking a0 = 1 we obtain the solution y1 =
x2(1 + 0) = x2.

When r = 1
3

the equation becomes

∞∑
n=0

[3(n+
1

3
)(n− 2

3
)an−4(n+

1

3
)an +2an]xn+2 = 0⇒ [3(n+

1

3
)(n− 2

3
)−4(n+

1

3
)+2]an = 0⇒

(3n − 5)nan = 0 ⇒ an = 0 for all n > 0. By taking a0 = 1 we obtain the solution y2 =
x1/3(1 + 0) = x1/3.

So, the general solution is y = c1x
2 + c2x

1/3.

2. For this equation, p = −x and q = x are analytic (power series expansions are p = 0 − 1x +
0x2 + 0x3 + . . . and q = 0 + 1x + 0x2 + 0x3 + . . . and are convergent for any x). So x = 0 is
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a regular-singular point. Plugging the solution y =
∑∞

n=0 anx
n+r and its derivatives yield the

equation

∞∑
n=0

(n + r)(n + r − 1)anx
n+r−1 −

∞∑
n=0

(n + r)anx
n+r +

∞∑
n=0

anx
n+r = 0

The smallest power of x is xr−1. Its coefficient produces the indical equation r(r − 1) = 0 ⇒
r1 = 1 and r2 = 0. So, the difference r1 − r2 is an integer.

One solution can be obtained by considering r = 1. In this case

∞∑
n=0

n(n + 1)anx
n −

∞∑
n=0

(n + 1)anx
n+1 +

∞∑
n=0

anx
n+1 = 0⇒

∞∑
n=0

[(n + 1)(n + 2)an+1 − (n + 1)an + an]xn+1 = 0⇒

2a1 = 0 and an+1 = nan
(n+2)(n+1)

for n = 1, 2 . . . Thus a1 = 0 so a2 = a3 = . . . = 0. Taking a0 = 1

we obtain the first solution y1 = x(1 + 0) = x.

The other solution can be found in the form y = cx lnx +
∑∞

n=0 bnx
n. Plugging this and its

derivatives in the equation produces

c +
∞∑
n=0

n(n− 1)bnx
n−1 − cx lnx− cx−

∞∑
n=0

nbnx
n + cx lnx +

∞∑
n=0

bnx
n = 0⇒

c− cx +
∞∑
n=0

[(n + 1)nbn+1 − nbn + bn]xn = 0⇒

Equate the left-hand side terms with xn for any n with zero.

For n = 0, we have that c + b0 = 0. So, b0 = −c.
For n = 1, we have that −c + 2b2 = 0. So, b2 = c

2

For n = 2, 3, . . . , we have that [(n + 1)nbn+1 − nbn + bn ⇒ bn+1 = (n−1)bn
n(n+1)

.

Thus b3 = b2
3·2 = c

3·2·2 = c
2·3! , b4 = 2b3

4·3 = c
4·3·3·2 = c

3·4! , b5 = 3b4
5·4 = c

5·4·4·3·2 = c
4·5! . . . and

so bn = c
(n−1)n! for n = 2, 3, . . . . We can take b1 = 0 and c = 1 for simplicity. Thus y2 =

x lnx− 1 +
∑∞

n=2
xn

(n−1)·n! and the general solution is y = c1x + c2y2.

3. For this equation, p = 2 and q = −x2. These functions are analytic with convergent power
series expansions are p = 2 + 0x + 0x2 + . . . and q = 0 + 0x− 1x2 + 0x3 + 0x4 . . .. So x = 0 is
a regular-singular point. Plugging the solution y =

∑∞
n=0 anx

n+r and its derivatives yield the
equation

∞∑
n=0

(n + r)(n + r − 1)anx
n+r + 2

∞∑
n=0

(n + r)anx
n+r −

∞∑
n=0

anx
n+r+2 = 0

8



Equating the coefficient of the smallest power of x (the first term in the first two sums in this
case) with zero produces the indical equation r(r − 1) + 2r = 0⇒ r(r + 1) = 0⇒ r1 = 0 and
r2 = −1 So, the difference r1 − r2 is an integer.

One solution can be obtained by considering r = 0. In this case∑∞
n=0 n(n− 1)anx

n + 2
∑∞

n=0 nanx
n −

∑∞
n=0 anx

n+2 = 0⇒
2a1x +

∑∞
n=0[(n + 2)(n + 1)an+2 + 2(n + 2)an+2 − an]xn+2 = 0⇒

2a1 = 0 and an+2 = an
(n+2)(n+3)

for n = 0, 1, . . . Thus a1 = 0 and so a3 = a5 = . . . = 0. The even
terms are a2 = a0

3·2 = a0
3!
, a4 = a0

5!
, . . . a2n = a0

(2n+1)!
. Taking a0 = 1 we obtain the first solution

y1 =
∑∞

n=0
x2n

(2n+1)!
. The second solution has the form y2 = cx lnx+ x−1

∑∞
n=0 bnx

n. The general
solution is y = c1y1 + c2y2.

4. Multiplying the equation by x and dividing by 1−x we obtain the form x2y′′+xy′+ x
1−xy = 0.

For this form, we can see that p = 1 and q = x
1−x . The function p is analytic with the power

series 1 + 0x + 0x2 + . . . convergent for any n. The function q = x 1
1−x = x(1 + x + x2 + . . .) =

x + x2 + x3 + . . . is convergent on interval (−1, 1) since the expansion 1 + x + x2 + . . . of 1
1−x

is convergent on (−1, 1). So, x = 0 is a regular-singular point and the solutions are convergent
on interval (−1, 1). You can reach the same conclusion regarding the interval of convergence by
noting that x = 1 is a singularity of q so the radius of convergence is 1 (which is the distance
from the center 0 to the singularity 1) and, hence, the interval of convergence is (−1, 1).

Plugging the solution y =
∑∞

n=0 anx
n+r and its derivatives into the equation xy′′ − x2y′′ + y′ −

xy′ + y = 0 produces

∞∑
n=0

(n + r)(n + r − 1)anx
n+r−1 −

∞∑
n=0

(n + r)(n + r − 1)anx
n+r +

∞∑
n=0

(n + r)anx
n+r−1−

∞∑
n=0

(n + r)anx
n+r +

∞∑
n=0

anx
n+r = 0

Equating the coefficient of the smallest power of x, xr−1 in this case, with zero produces the
indical equation r(r − 1) + r = 0⇒ r2 = 0⇒ r1 = r2 = 0. So, this is the third case.

For r = 0, the equation becomes
∑∞

n=0 n(n−1)anx
n−1−

∑∞
n=0 n(n−1)anx

n +
∑∞

n=0 nanx
n−1−∑∞

n=0 nanx
n +

∑∞
n=0 anx

n = 0⇒
∑∞

n=0[(n+1)nan+1−n(n−1)an +(n+1)an+1−nan +an]xn =

0 ⇒ an+1 = (n2−1)an
(n+1)2

= (n−1)an
n+1

⇒ a1 = −a0, a2 = 0 ⇒ a3 = a4 = a5 = . . . 0. With a0 = 1, we
obtain y1 = 1− x.

The second solution has the form y2 = (1 − x) lnx + x
∑∞

n=0 bnx
n and the general solution is

y = c1(1− x) + c2y2.
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