
Math Methods 1
Lia Vas

Line and Surface Integrals. Flux. Stokes’ and Divergence
Theorems

Review of Curves. Intuitively, we think of a curve as a path traced by a moving particle in
space. Thus, a curve is a function of a parameter, say t. Using the standard vector representations of
points in the three-dimensional space as r = (x, y, z), we can represent a curve as a vector function:

r(t) = (x(t), y(t), z(t))

or using the parametric equations x = x(t), y = y(t), and z = z(t). The variable t is called the
parameter.

Example 1.

1. Line. A line in space is given by the equations

x = x0 + at y = y0 + bt z = z0 + ct

where (x0, y0, z0) is a point on the line and
(a, b, c) is a vector parallel to it. Note that
in the vector form the equation r = r(0) + m t
for r(0) = (x0, y0, z0) and m = (a, b, c), has
exactly the same form as the well known y =
b+mx.

2. Circle in horizontal plane. Consider the
parametric equations x = a cos t y =
a sin t z = b. Recall that the parametric equa-
tion of a circle of radius a centered in the origin
of the xy-plane are x = a cos t, y = a sin t. Re-
call also that z = b represents the horizontal
plane passing b in the z-axis. Thus, the equa-
tions

x = a cos t y = a sin t z = b

represent the circle of radius a in the horizontal plane passing z = b on z-axis.

3. Ellipse in a plane. Consider the intersection of a cylinder and a plane. The intersection is
an ellipse. For example, if we consider a cylinder with circular base x = a cos t, y = a sin t and
the equation of the plane is
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mx + ny + kz = l with k 6= 0, the para-
metric equations of ellipse can be obtained by
solving the equation of plane for z and us-
ing the equations for x and y to obtain the
equation of z in parametric form. Thus z =
1
k
(l−mx− ny) and so x = a cos t y = a sin t
z = 1

k
(l −ma cos t− na sin t).

4. Circular helix. A curve with equations x =
a cos t y = a sin t z = bt is the curve
spiraling around the cylinder with base circle
x = a cos t, y = a sin t.

5. Plane curves. All the concepts we develop for
space curves correspond to plane curves simply
considering that z = 0.

Review of line integrals of scalar functions. Suppose that C is a curve given by r(t) =
(x(t), y(t), z(t)) on the interval a ≤ t ≤ b. Recall that the length of C is

L =

∫
C

ds =

∫
C

|r′(t)|dt =

∫ b

a

√
(x′(t))2 + (y′(t))2 + (z′(t))2 dt

This integral can be considered to be a special case of the situation when we integrate a scalar
(real-valued) function f(x, y, z) over the curve C. In the general case, we consider the line integral
of C with respect to arc length as∫

C

f(x, y, z) ds =

∫
C

f(r(t)) |r′(t)| dt =

∫ b

a

f(x(t), y(t), z(t))
√

(x′(t))2 + (y′(t))2 + (z′(t))2 dt

In Calculus 3, you may have seen the application of the this type of line integrals: finding the
mass m and the center of mass (x, y, z) of a wire C with density ρ(x, y, z). In particular, the mass
can be calculated as

m =

∫
C

ρ(x, y, z)ds.

Using this example, you can think of the line integral as the total mass of the line density
function over the curve C.

Example 2. Evaluate the integral
∫
C
x y3 ds where C is the circular helix x = 4 sin t, y = 4 cos t,

z = 3t, for 0 ≤ t ≤ π/2.

Solution. x′ = 4 cos t, y′ = −4 sin t, z′ = 3 ⇒ ds =
√

16 cos2 t+ 16 sin2 t+ 9 =
√

25 = 5. Thus∫
C
x y3 ds =

∫ π/2
0

4 sin t 43 cos3 t 5dt = (5)44 − cos4 t
4
|π/20 = (5)43 = 320.

Review of Line Integrals of vector functions. Another type of line integrals includes inte-
grating a vector function over a curve. Suppose now that f is a function that assigns to each point
(x, y, z) a three dimensional vector

f(x, y, z) = (P (x, y, z), Q(x, y, z), R(x, y, z))
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Such function is said to be a vector field.
An example of a space vector field is the gradient vector ∇f of a scalar function f(x, y, z). The

gradient is ∇f = (∂f
∂x
, ∂f
∂y
, ∂f
∂z

).

Line integrals of vector fields. If
f(x, y, z) = (P (x, y, z), Q(x, y, z), R(x, y, z)) is a
vector field, and the curve C is given by r(t) =
(x(t), y(t), z(t)), then the vector differential of the
length element dr is the product r′(t)dt. The line
integral of f along C is defined as∫
C

f ·dr =

∫
C

f(r(t))·r′(t) dt =

∫
C

Pdx+Qdy+Rdz.

This type of integrals measures the total effect of a given field along a given curve. In
particular, many basic (non-continuous, one dimensional) formulas in physics such as s = vt can
be represented in terms of line integrals in continuous and multi-dimensional cases, for example,
s =

∫
vdt.

Another example includes the formula for calculating the work done by the force
−→
F (possibly an

electric or gravitational field) in moving the particle along the curve C

W =

∫
C

−→
F · dr

Example 3. Find the work done by the force field f = (−y, x, x2 + y2) when a particle moves
under its influence along the positively oriented boundary of the part of the paraboloid z = 4−x2−y2

in the first octant.

Solution. The boundary of the part of the
paraboloid z = 4 − x2 − y2 in the first octant
consists of three curves, C1 in xy-plane, C2 in
yz-plane, and C3 in xz-plane. Each of the three
curves has a different set of parametric equations.
The parametrizations can be obtained by consid-
ering intersections with three coordinate planes
z = 0, x = 0, and y = 0 respectively. The posi-
tive orientation means that the particle traversed
the curves in counter-clockwise direction.

The work can be found as∫
C

f · dr =

∫
C

(−y, x, x2 + y2) · (dx, dy, dz) =

∫
C

−ydx+ xdy + (x2 + y2)dz.

C1 The intersection C1 of the paraboloid and the xy-plane z = 0 is a circle 0 = 4 − x2 − y2 ⇒
x2 + y2 = 4 which has parametric equations x = 2 cos t, y = 2 sin t. Since we are considering
just the part with x ≥ 0 and y ≥ 0, we have that 0 ≤ t ≤ π

2
. Thus, this curve has parametric
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equations
x = 2 cos t, y = 2 sin t, z = 0 with t : 0→ π

2
and dx = −2 sin tdt, dy = 2 cos tdt, dz = 0. Thus,∫

C1

−ydx+ xdy + (x2 + y2)dz =

∫ π/2

0

(4 sin2 t+ 4 cos2 t+ 4(0))dt =

∫ π/2

0

4dt = 2π

C2 The intersection C2 of the paraboloid and the yz-plane x = 0 is a parabola z = 4− 02 − y2 ⇒
z = 4 − y2. Using y as a parameter produces parametric equations x = 0, y = y, z = 4 − y2.
As the particle travels upwards on C2, the y-values decrease from 2 to 0. From the parametric
equations, dx = 0, dy = dy, dz = −2ydy. Thus,∫

C2

−ydx+ xdy + (x2 + y2)dz =

∫ 0

2

(0 + 0 + (0 + y2)(−2y)dy =

∫ 0

2

−2y3dy =
−y4

4

∣∣∣∣0
2

= 8

C3 The intersection C3 of the paraboloid and the xz-plane y = 0 is a parabola z = 4− x2 − 02 ⇒
z = 4− x2. Using x as a parameter produces parametric equations x = x, y = 0, z = 4− x2. As
the particle travels downwards on C3, the x-values increase from 0 to 2. From the parametric
equations, dx = dx, dy = 0, dz = −2xdx. Thus,∫
C3

−ydx+ xdy + (x2 + y2)dz =

∫ 2

0

(0 + 0 + (x2 + 02)(−2x)dx =

∫ 2

0

−2x3dx =
−x4

4

∣∣∣∣2
0

= −8

The total work is the sum of work done along C1, C2, and C3. Hence W =
∫
C1

+
∫
C2

+
∫
C3

f · dr =
2π + 8− 8 = 2π ≈ 6.28.

Example 4. Evaluate the integral
∫
C
z2 dx+ y dy+ 2y dz where C consists of two parts C1 and

C2. C1 is the intersection of the cylinder x2 + y2 = 16 and the plane z = 3 from (0, 4, 3) to (−4, 0, 3).
C2 is the line segment from (−4, 0, 3) to (0, 1, 5).

Solutions. C1 is on x2 + y2 = 16 thus x = 4 cos t and y = 4 sin t. C1 is also on z = 3 so

x = 4 cos t, y = 4 sin t, z = 3

are parametric equations of C1. On C1, dx = −4 sin tdt, dy = 4 cos tdt and dz = 0. The point
(0,4,3) corresponds to t = π

2
and the point (−4, 0, 3) to t = π. Thus,

∫
C1
z2 dx + y dy + 2y dz =∫ π

π/2
32(−4 sin t)dt+ 4 sin t4 cos tdt+ 8 sin t(0) = (36 cos t+ 8 sin2 t)|ππ/2 = −36− 8 = −44.

The line segment C2 is passing (-4,0,3) in the direction of the vector
−→
PQ = (0, 1, 5)− (−4, 0, 3) =

(4, 1, 2). So C2 has equations x = −4 + 4t, y = t and z = 3 + 2t for 0 ≤ t ≤ 1. So, on this

segment dx = 4dt, dy = dt and dz = 2dt.
∫
C
z2 dx + y dy + 2y dz =

∫ 1

0
(3 + 2t)24dt + tdt + 2t2dt =∫ 1

0
(36 + 53t+ 16t2)dt = 36 + 53

2
+ 16

3
= 407

6
= 67.83.

So, the final answer is
∫
C

= 67.83− 44 = 23.83.

The length element ds and the vector differential of the length element dr are related by dr =
r′(t)dt and ds = |r′(t)|dt. The following table summarizes the two types of line integrals.

Line integral of a scalar function f(x, y, z)
∫
C
f ds =

∫
C
f(r(t)) |r′(t)| dt

Line integral of a vector function f(x, y, z)
∫
C

f · dr =
∫
C

f(r(t)) · r′(t) dt
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In the next section, we review some basic facts about surfaces and then we present analogous two
types of integrals over a surface: the surface integral of a scalar function and the flux integral of a
vector function.

Review of Surfaces

Adding one more independent variable to a vector function describing a curve x = x(t) y =
y(t) z = z(t), we arrive to equations that describe a surface. Thus, a surface in space is a vector
function of two variables:

r(u, v) = (x(u, v), y(u, v), z(u, v)).

These equations are called parametric equations of the surface and the surface given via parametric
equations is called a parametric surface.

If x and y are used as parameters, the equations x = x, y = y, z = z(x, y) are frequently shortened
to just z = z(x, y) and r(x, y) = (x, y, z(x, y)) is also written shortly as z = z(x, y).

In some cases, a surface can be given by an implicit function F (x, y, z) = 0. In this case it
is often needed to find parametric equations r(u, v) = (x(u, v), y(u, v), z(u, v)). For example, a unit
sphere can be described by x2 + y2 + z2 = 1 can be parametrized as r = (cos θ sinφ, sin θ sinφ, cosφ).

We recall the cylindrical and spherical coordinates which are frequently used to obtain parametric
equations of some common surfaces.

Cylindrical coordinates.

x = r cos θ

y = r sin θ

z = z

Here x and y are converted using polar coordi-
nates and the only change in z may come just
from changes in x and y. The Jacobian deter-
minant can be computed to be J = r. Thus,
dxdydz = rdrdθdz.

Spherical coordinates. Let P = (x, y, z) be a point in space and O denote the origin.

• Let r denote the distance from the origin O
to the point P = (x, y, z). Thus,

x2 + y2 + z2 = r2.

• Let θ be the angle between the projection of

vector
−→
OP = 〈x, y, z〉 on the xy-plane and

the vector
−→
i (positive x axis).

• Let φ be the angle between the vector
−→
OP

and the vector
−→
k (positive z-axis).

5



The conversion equations are

x = r cos θ sinφ y = r sin θ sinφ z = r cosφ.

The Jacobian determinant can be computed to be J = r2 sinφ. Thus, dx dy dz = r2 sinφ dr dφ dθ.

Example 5. The following are examples of parametric surfaces.

1. The cone z =
√
x2 + y2 has representation using cylindrical coordinates as x = r cos θ, y =

r sin θ, z = r.

2. The paraboloid z = x2 + y2 has representation using cylindrical coordinates as x = r cos θ,
y = r sin θ, z = r2.

3. The sphere x2 + y2 + z2 = 9 has representation using spherical coordinates as x = 3 cos θ sinφ,
y = 3 sin θ sinφ, z = 3 cosφ.

4. The cylinder x2 + y2 = 4 has representation using cylindrical coordinates as x = 2 cos θ,
y = 2 sin θ, z = z. The parameters here are θ and z.

5. The cylinder x2 + z2 = 4 has representation using cylindrical coordinates as x = 2 cos θ, y = y,
z = 2 sin θ. The parameters here are θ and y.
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The Tangent Plane. For parametric sur-
face r = (x(u, v), y(u, v), z(u, v)), the derivatives
ru and rv are vectors in the tangent plane. Thus,
their cross product

∂r

∂u
× ∂r

∂v
= (xu, yu, zu)× (xv, yv, zv)

is perpendicular to the tangent plane and, thus,
to the surface as well.

If a surface is given by implicit function
F (x, y, z) = 0, then this cross product also corre-
sponds to the gradient ∇F of F,

∇F = (Fx, Fy, Fz).

Example 6. Find an equation of the plane tangent to the cylinder x2 + z2 = 4 at (0, 3, 2).

Solutions. The cylinder can be parametrized as x = 2 cos t, y = y, z = 2 sin t. We find
(xt, yt, zt) = (−2 sin t, 0, 2 cos t) and (xy, yy, zy) = (0, 1, 0). The cross product is (−2 cos t, 0, 2 sin t).
The t-value that corresponds to (0, 3, 2) can be obtained from x = 2 cos t = 0 and z = 2 sin t = 2.
Thus t = π

2
and plugging this value in the equation of the vector we obtained gives us (0, 0, 2). So

the tangent plane passes (0, 3, 2) and it is perpendicular to (0, 0, 2). An equation of this plane can be
obtained as 0(x− 0) + 0(y − 3) + 2(z − 2) = 0⇒ z = 2. Hence, the tangent plane is the horizontal
plane passing 2 on z-axis.

Surface Integrals of scalar functions

Similarly as for line integrals, we can integrate a scalar or a vector function over a surface.
Thus, we distinguish two types of surface integrals. The surface integrals of scalar functions are
two-dimensional analogue of the line integrals of scalar functions.

Line integral of a scalar function ←→ Length
Surface integral of a scalar function ←→ Area

The surface area of the surface r(u, v) over the region S in uv-plane can be obtained by integrating
surface area elements dS over sub-rectangles of region S. The area of each element dS can be
approximated with the area of the parallelogram in the tangent plane. The area of a parallelogram
formed by two vectors is the length of their cross product.

Thus,
dS = |ru × rv|dudv

and so

Surface area =
∫ ∫

S
dS =

∫ ∫
S
|ru × rv| dudv

This integral can be considered as a special case
of the situation when we integrate the scalar func-
tion f = 1 over the surface r(u, v).
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Let f(x, y, z) be a scalar (real-valued) function. Integrating f over the surface r(u, v) we obtain
the surface integral

∫ ∫
S
f(x, y, z) dS =

∫ ∫
S
f(r(u, v)) |ru × rv| dudv

This integral computes the total effect of function f over the surface S.
To evaluate a surface integral, you can follow the steps below.

1. Parametrize the surface: determine the parameters u and v and the equations r(u, v) =
(x(u, v), y(u, v), z(u, v)). This step is very important because without it you cannot proceed to
compute dS.

For example, if S is the plane 4x+ 2y + z = 8 or some part of it, you can use x and y for your
parameters and parametrize the plane as r = (x, y, 8− 4x− 2y). If S is the cone z =

√
x2 + y2

or some part of it, you can take r and θ for the parameters and parametrize the cone as
r = (r cos θ, r sin θ, r). If S is the cylinder x2 + y2 = 1, you can take t and h (think of h as
height) and parametrize the cylinder as r = (cos t, sin t, h). If S is a sphere you can parametrize
it using spherical coordinates.

2. Calculate dS using the formula dS = |ru × rv|dudv.

3. Determine the bounds of integration. Use the description of the surface and any con-
straints given in the problem to determine the bounds for u and v.

For example, if S is the part of the plane 4x + 2y + z = 8 in the first octant and the plane
is parametrized by x and y, then 0 ≤ x ≤ 2 and 0 ≤ y ≤ 4 − 2x. If S is part of the cone
z =

√
x2 + y2 below z = 5, and the cone is parametrized as r = (r cos θ, r sin θ, r), then 0 ≤ θ

and 0 ≤ r ≤ 5. If S is the part of the cylinder x2 + y2 = 1 between the planes z = 0 and z = 3,
and the cylinder is parametrized as r = (cos t, sin t, h), then 0 ≤ t ≤ 2π and 0 ≤ h ≤ 3.

4. Determine the integrand in terms of u and v. Substitute the parametrization x = x(u, v), y =
y(u, v), z = z(u, v) in the integrand f(x, y, z).

5. Evaluate the double integral of the integrand from step 4 in the bounds from step 3.

The applications of the this type of line integrals include finding the mass m of a thin sheet S
with the density function ρ(x, y, z). The mass m is given by

m =

∫ ∫
S

ρ(x, y, z) dS

Using this example, you can think of the surface integral as the total mass of the surface
density function over the surface S.

In the special case when the surface is parametrized by the parameters x and y as z = z(x, y)
(thus r = (x, y, z(z, y))), the surface area element can be computed to be dS =

√
1 + z2

x + z2
y dxdy

so the surface integral of f over region S is∫ ∫
S

f(x, y, z) dS =

∫ ∫
S

f(x, y, z(x, y))
√

1 + z2
x + z2

y dxdy
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Practice Problems.

1. Find the area of the following surfaces by using their parametric equations.

(a) Part of z = y2 + x2 between the cylinders x2 + y2 = 1 and x2 + y2 = 4.

(b) Part of the cone z =
√
x2 + y2 between the cylinders x2 + y2 = 4 and x2 + y2 = 9.

2. Evaluate the surface integral where S is the given surface.

(a)
∫ ∫

S
xz dS, S is the part of the plane 4x+ 2y + z = 8 that lies in the first octant.

(b)
∫ ∫

S
yz dS, S is the part of the plane z = y+ 3 that lies inside the cylinder x2 + y2 = 1.

(c)
∫ ∫

S
z dS, S is the hemisphere x2 + y2 + z2 = 4, z ≥ 0.

3. Find the mass of the hemisphere x2 + y2 + z2 = 4, z ≥ 0 if it has constant density ρ = a.

Solutions. In all the problems, follow the five steps from page 8.

1. (a) The paraboloid can be parametrized by x = r cos t, y = r sin t, z = x2 + y2 = r2. Thus
r(r cos t, r sin t, r2)⇒ rr = (xr, yr, zr) = (cos t, sin t, 2r), rt = (xt, yt, zt) = (−r sin t, r cos t, 0)⇒
rr × rt = (−2r2 cos t,−2r2 sin t, r) ⇒ The length |rr × rt| is

√
4r4 cos2 t+ 4r4 sin2 t+ r2 =√

4r4 + r2 =
√
r2(4r2 + 1) = r

√
4r2 + 1.

The bounds for the integration are determined by the projection in the xy-plane which is the
region between the circles x2 + y2 = 1 and x2 + y2 = 4. Thus 0 ≤ t ≤ 2π and 1 ≤ r ≤ 2. So,
the surface area is S =

∫ 2π

0
dt
∫ 2

1
r
√

4r2 + 1dr = 2π4.91 = 30.85.

(b) The cone can be parametrized by x = r cos t, y = r sin t, z =
√
x2 + y2 = r. rr =

(cos t, sin t, 1) and rt = (−r sin t, r cos t, 0). rr × rt = (−r cos t, −r sin t, r). The length of this

product is
√
r2 cos2 t+ r2 sin2 t+ r2 =

√
r2 + r2 =

√
2r2 =

√
2r.

The bounds for the integration are determined by the projection in the xy-plane which is the
region between the circles x2 + y2 = 4 and x2 + y2 = 9. Thus 0 ≤ t ≤ 2π and 2 ≤ r ≤ 3. So,
the surface area is S =

∫ 2π

0
dt
∫ 3

2

√
2rdr = 2π

√
2(9

2
− 4

2
) = 5π

√
2.

2. (a) Solve the equation of the plane for z and parametrize as r = (x, y, 8 − 4x − 2y) ⇒ rx =
(1, 0,−4), ry = (0, 1,−2)⇒ rx × ry = (4, 2, 1)⇒ dS =

√
16 + 4 + 1dxdy =

√
21dxdy.

The bounds of integration are determined
by the triangle in xy-plane z = 0 which is
bounded by the coordinate axes and the line
0 = 8− 4x− 2y ⇒ y = 4− 2x. So, the bounds
are 0 ≤ x ≤ 2, 0 ≤ y ≤ 4 − 2x.

∫ ∫
S
xz dS =∫ 2

0

∫ 4−2x

0
x(8 − 4x − 2y)

√
21dxdy =√

21
∫ 2

0
(8xy − 4x2y − xy2)|4−2x

0 dx = (sim-

plify) =
√

21
∫ 2

0
(16x − 16x2 + 4x3)dx =√

21 (8x2 − 16
3
x3 + x4)

∣∣2
0

= 16
√

21
3

.

(b) You can parametrize the plane as r = (x, y, y+ 3) and compute dS to be |(0,−1, 1)|dxdy =√
1 + 1dxdy =

√
2dxdy. The integral becomes

∫ ∫
y(y + 3)

√
2dxdy and it is taken over the
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disc in the xy-plane of radius 1. Use the polar coordinates to get nice bounds 0 ≤ t ≤ 2π
and 0 ≤ r ≤ 1. The Jacobian is r and the integral becomes

∫ 2π

0

∫ 1

0
r sin t(r sin t+ 3)

√
2rdrdt =√

2
∫ 2π

0
sin t(1

4
sin t + 1) =

√
2π

4
. Alternatively, you can use the parametrization x = r cos t,

y = r sin t, z = r sin t+ 3 with 0 ≤ t ≤ 2π and 0 ≤ r ≤ 1. Then |rr × rt| = r
√

2 so the integral

reduces to
∫ 2π

0

∫ 1

0
r sin t(r sin t+ 3)r

√
2 drdt which gives you the same final answer.

(c) Use spherical coordinates to parametrize the sphere as r = (2 cos θ sinφ, 2 sin θ sinφ, 2 cosφ).

Calculate the derivatives rθ and rφ and find
their cross product and then its length.
Obtain that |rθ × rφ| = 4 sinφ so that
dS = 4 sinφdθdφ. The bounds are 0 ≤
θ ≤ 2π and 0 ≤ φ ≤ π

2
(we need to

stay above the xy-plane) so the integral is∫ ∫
S
zdS =

∫ 2π

0

∫ π/2
0

2 cosφ 4 sinφ dθdφ =

2π
∫ π/2

0
2 cosφ 4 sinφ dφ = 2π 8 · 1

2
= 8π.

3. Use the parametrization of the previous problem so dS = 4 sinφdθφ again. The mass can be

computed as m =
∫ ∫

S
adS = a

∫ 2π

0

∫ π/2
0

4 sinφ dθdφ = 8aπ.

Surface Integrals of Vector Fields. Flux

If r(u, v) is a surface, vector ru × rv is perpendicular to the surface (i.e. the tangent plane).
Considering the normalization of this vector, ru×rv

|ru×rv | we arrive to the concept of the unit normal
vector n.

n =
ru × rv
|ru × rv|

If n is a unit normal vector, then −n is also a unit-length vector perpendicular to the surface, so
both vectors n and −n can be used as unit normal vectors. Thus, we would need to be able to make
a consistent choice of surface normal vector at every point. If that is possible, a surface is said to be
orientable or two-sided. In this case, vector n corresponds to unit normal vector of one side and
n to the unit normal vector of the other side.

Orientable and non-orientable surfaces. Examples of orientable surfaces include planes,
cylinders, and spheres.

A Möbius strip (or Möbius band) is an ex-
ample of a surface that is not orientable. A model
can be created by taking a paper strip and giving
it a half-twist (180◦-twists), and then joining the
ends of the strip together to form a loop.

The Möbius strip has several curious proper-
ties: it is a surface with only one side and only
one boundary. Convince yourself of these facts
by creating your own Möbius strip or studying
many animations on the web. Möbius strip
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Another interesting property is that if you cut a Möbius strip along the center line, you will get
one long strip with two full twists in it, not two separate strips. The resulting strip will have two sides
and two boundaries. So, cutting created a second boundary. Continuing this construction you can
deduce that a strip with an odd-number of half-twists will have only one surface and one boundary
while a strip with an even-number of half-twists will have two surfaces and two boundaries.

There are many applications of Möbius strip in science, technology and everyday life. For example,
Möbius strips have been used as conveyor belts (that last longer because the entire surface area of the
belt gets the same amount of wear), fabric computer printer and typewriter ribbons. Medals often
have a neck ribbon configured as a Möbius strip that allows the ribbon to fit comfortably around
the neck while the medal lies flat on the chest. Examples of Möbius strip can be encountered: in
physics as compact resonators and as superconductors with high transition temperature; in chemistry
as molecular knots with special characteristics (e.g. chirality); in music theory as dyads and other
areas.

For more curious properties and alternative construction of Möbius strip, see Wikipedia.

If a surface is two sided, n corresponds to one side and −n to the other. For a closed surface
(i.e. compact without boundary), the convention is that the positive orientation is the one that
corresponds to the normal vectors pointing outward and the negative orientation corresponds to
the normal vectors pointing inward.

If the surface is not closed, the positive orientation can be defined by the right hand rule.
Consider any closed, simple (i.e. does not cross itself nor it has missing points), smooth curve C
on the surface and consider the positive (counter-clockwise) orientation on C. The surface has the
positive orientation if the normal vector n is always on the left of any vector parallel with it which
is transversing the curve. That is: if you imagine yourself walking along C with your head pointing
in the direction of n, then the region S will always be on your left. Alternatively: if your index and
middle fingers follow the direction of the curve, your thumb is pointing in the same direction as the
vector n.

If a surface is given by implicit equation F (x, y, z) = 0, the unit normal vector n can also be
found as n = ∇F

|∇F | .

Example 7. Find the unit normal vector of the sphere x2 + y2 + z2 = a2.

Solutions. Consider F = x2 + y2 + z2 − a2 so that the gradient vector is ∇F = (2x, 2y, 2z) and

|∇F | =
√

4x2 + 4y2 + 4z2 = 2
√
x2 + y2 + z2 = 2a. Thus, n = (2x,2y,2z)

2a
= 1

a
(x, y, z).

Flux integral. If r(u, v) is an orientable surface with a tangent plane at every point, the vector
differential of the surface area element dS can be considered to be the product of n and dS up to
the sign. Thus,

dS = n dS = ± ru × rv
|ru × rv|

|ru × rv| dudv = ±(ru × rv) dudv.

So, if f is a vector field f(x, y, z) = (P (x, y, z), Q(x, y, z), R(x, y, z)), the surface integral of f over
region S on r(u, v) is given by

∫ ∫
S

f · dS =
∫ ∫

S
f · n dS = ±

∫ ∫
S

f · (ru × rv) dudv

11



The surface integral of a vector field is also
called flux integral. The name comes from the
fact that it computes the flux of fluid of density ρ
and velocity field v flowing through surface region
S when taking f to be the product ρv.

In fact, you can think of any flux integral of a
vector function f as the measure of the total
flow of f through the surface S.

To evaluate a flux integral, you can follow the steps below.

1. Parametrize the surface: determine the parameters u and v and the equations r(u, v) =
(x(u, v), y(u, v), z(u, v)). Note that is the same step as the first step for evaluation a surface
integral of a scalar function.

2. Calculate dS using the formula dS = ±(ru × rv)dudv. See the practice problems to see how
to determine the sign in various examples.

3. Determine the bounds of integration. Use the description of the surface and any con-
straints given in the problem to determine the bounds for u and v. Note that is also the same
to the corresponding step for evaluation a surface integral of a scalar function.

4. Determine the integrand in terms of u and v. Substitute the parametrization x = x(u, v), y =
y(u, v), z = z(u, v) in the integrand f(x, y, z) and calculate the dot product f · dS.

5. Evaluate the double integral of the integrand from step 4 in the bounds from step 3.

Besides the applications in fluid dynamics which we mentioned, the flux integral arises in other
areas of physics. For example, if ~E is an electric field, the surface integral of ~E over the surface
region S determines the electric flux of ~E through S. This integral is used to formulate the Gauss’
Law stating that the net charge enclosed by a closed surface region S is equal to the product of a
constant ε0 (the permittivity of free space) and the surface integral of ~E over S.

Another example of the use of this integral can be encountered in the study of heat flow. If K is
a constant (called conductivity) and T is the temperature at point (x, y, z), the heat flow is defined

as ~F = −K∇T and the rate of heat flow across the surface S is given by the surface integral of ~F
over S.

The following table summarizes the relation of the two types of surface integrals.

Surface integral of a scalar function f(x, y, z)
∫ ∫

S
f(r) dS =

∫ ∫
S
f(r(u, v)) |ru × rv| du dv

Surface integral of a vector function f(x, y, z)
∫ ∫

S
f(r) · dS = ±

∫ ∫
S

f(r(u, v)) · (ru × rv) du dv

Practice Problems.
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1. Find the flux integral of the vector field f = (y, x, z) over the part of the paraboloid z =
1− x2 − y2 above the plane z = 0.

2. Find the flux integral of the vector field f = (y, x, z) over the boundary of the region enclosed
by the paraboloid z = 1− x2 − y2 and the plane z = 0.

3. Find the flux integral of the vector field f = (xzey,−xzey, z) over the part of the plane x+y+z =
1 in the first octant with the upward orientation.

4. Find the flux integral of the vector field f = (x, 2y, 3z) over the cube with vertices (±1,±1,±1).

Solutions. (1) In polar coordinates, the paraboloid z = 1 − x2 − y2 is z = 1 − r2 so you
can parametrize the paraboloid as r = (r cos θ, r sin θ, 1 − r2). Thus rr = (cos θ, sin θ,−2r) and
rθ = (−r sin θ, r cos θ, 0)⇒ dS = ±(rr × rθ)drdθ = ±(2r2 cos θ, 2r2 sin θ, r)drdθ.

Note that you want the normal vector to point
outwards which is the case by choosing the pos-
itive sign (looking at the z-coordinate, which
should be positive, can tell you that, for exam-
ple). The paraboloid intersects the plane z = 0
in the circle 0 = 1− x2− y2 ⇒ x2 + y2 = 1 so the
bounds are 0 ≤ θ ≤ 2π and 0 ≤ r ≤ 1. Compute
the dot product f ·dS to be (r sin θ, r cos θ, 1−r2)·
((2r2 cos θ, 2r2 sin θ, r)drdθ = (4r3 sin θ cos θ+ r−
r3)drdθ. Thus, the integral is∫ ∫

S

f · dS =

∫ 2π

0

∫ 1

0

(4r3 sin θ cos θ + r − r3)drdθ =

∫ 2π

0

(sin θ cos θ +
1

2
− 1

4
)dθ = 0 +

1

4
θ

∣∣∣∣2π
0

=
π

2
.

Alternatively, you can use the parametrization r = (x, y, 1 − x2 − y2) and convert to polar
coordinates later. In this case, dS = (2x, 2y, 1)dxdy and the integral becomes

∫ ∫
S
(y, x, 1−x2− y2) ·

(2x, 2y, 1)dxdy =
∫ ∫

S
(2xy + 2xy + 1 − x2 − y2)dxdy. Then use the polar coordinates (don’t forget

the Jacobian r so that dxdy = rdrdθ) and obtain
∫ 2π

0

∫ 1

0
(4r2 sin θ cos θ + 1 − r2)rdrdθ which is the

same as above and is equal to π
2
.

(2) The flux integral is the sum of the integral of f over the paraboloid and the integral of f
over the disc of radius 1 in the plane z = 0. The first integral is π

2
by the previous problem. Let S2

denotes the disc in xy-plane z = 0 of radius 1. The plane can be parametrized by r = (x, y, 0) so
that dS = ±(0, 0, 1)dxdy. Here, we want the normal vector to point outwards which, in this case, is
downwards, so we need to chose the negative sign. Hence dS = (0, 0,−1)dxdy. The flux integral over
S2 is

∫ ∫
S2

(y, x, 0) · (0, 0,−1)dxdy =
∫ ∫

S
0dxdy = 0. So, the final answer remains π

2
+ 0 = π

2
.

(3) Parametrize the plane as r = (x, y, 1 − x − y) and compute dS to be ±(1, 1, 1)dxdy. The
normal vector should point upwards which is achieved if you choose the positive sign. The integrand
is (xzey,−xzey, 1 − x − y) · (1, 1, 1)dxdy = (xzey − xzey + 1 − x − y)dxdy = (1 − x − y)dxdy.
The bounds of the integration are determined by the projection of S in the xy-plane which is a
triangle determined by the line 1 − x − y = 0 ⇒ y = 1 − x (the intersection of z = 0 and the
given plane) and the coordinate axes. Hence 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1 − x. So, the flux integral is∫ ∫

S
f · dS =

∫ 1

0

∫ 1−x
0

(1− x− y)dxdy =
∫ 1

0
(1− x− x(1− x)− 1

2
(1− x)2) = 1

6
.
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(4) The cube consists of 6 sides so we need to evaluate 6 surface integrals (but by the time you
are done with all six, you will become a flux integral expert).

Let S1 be the top S2 the bottom, S3 the right, S4 the left side, S5 the front and S6 the back.

S1 The square S1 is in the plane z = 1 which can be parametrized by r = (x, y, 1). Compute
dS to be ±(0, 0, 1)dxdy and since the normal vector should point upwards, take the positive
sign. The bounds of the integration are −1 ≤ x, y ≤ 1 so the flux integral is

∫ ∫
S1

(x, 2y, 3(1)) ·
(0, 0, 1)dxdy =

∫ 1

−1

∫ 1

−1
3dxdy = 3x|1−1y|1−1 = 3(2)(2) = 12.

S2 The square S2 is in the plane z = −1 which can be parametrized by r = (x, y,−1). Compute dS
to be±(0, 0, 1)dxdy and since the normal vector should point downwards, take the negative sign.
The bounds of the integration are −1 ≤ x, y ≤ 1 and the flux integral is

∫ ∫
S2

(x, 2y, 3(−1)) ·
(0, 0,−1)dxdy =

∫ 1

−1

∫ 1

−1
3dxdy = 3x|1−1y|1−1 = 3(2)(2) = 12.

S3 The square S3 is in the plane y = 1 which can be parametrized by r = (x, 1, z). Compute dS
to be ±(0, 1, 0)dxdz and since the normal vector should point to the right, take the positive
sign. The bounds of the integration are −1 ≤ x, z ≤ 1 so the flux integral is

∫ ∫
S3

(x, 2(1), 3z) ·
(01, 0)dxdz =

∫ 1

−1

∫ 1

−1
2dxdz = 2x|1−1z|1−1 = 2(2)(2) = 8.

S4 The square S4 is in the plane y = −1 which can be parametrized by r = (x,−1, z). Compute
dS to be ±(0, 1, 0)dxdz and since the normal vector should point to the left, take the negative
sign. The bounds of the integration are −1 ≤ x, z ≤ 1 so the flux integral is

∫ ∫
S4

(x, 2(−1), 3z) ·
(0− 1, 0)dxdz =

∫ 1

−1

∫ 1

−1
2dxdz = 2x|1−1z|1−1 = 2(2)(2) = 8.

S5 The square S5 is in the plane x = 1 which can be parametrized by r = (1, y, z). Compute dS
to be ±(1, 0, 0)dydz and since the normal vector should point to the front, take the positive
sign. The bounds of the integration are −1 ≤ y, z ≤ 1 so the flux integral is

∫ ∫
S5

(1, 2y, 3z) ·
(1, 0, 0)dydz =

∫ 1

−1

∫ 1

−1
dydz = y|1−1z|1−1 = (2)(2) = 4.

S6 The square S6 is in the plane x = −1 which can be parametrized by r = (−1, y, z). Compute
dS to be ±(1, 0, 0)dydz and since the normal vector should point to the back, take the negative
sign. The bounds of the integration are −1 ≤ y, z ≤ 1 so the flux integral is

∫ ∫
S6

(−1, 2y, 3z) ·
(−1, 0, 0)dydz =

∫ 1

−1

∫ 1

−1
dydz = y|1−1z|1−1 = (2)(2) = 4.

Thus, the total flux is 12+12+8+8+4+4=48.

Stokes’ Theorem

Stokes’ Theorem is a three-dimensional version of Green’s Theorem. Recall that Green’s theorem
relates the line integral of a two-dimensional vector function f = (P,Q) over a positive oriented,
closed curve C and the double integral over the interior S of C.∮

C

Pdx+Qdy =

∫ ∫
S

(
∂Q

∂x
− ∂P

∂y

)
dxdy.
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In three-dimensional analogue, we relate the line integral of a three-dimensional vector function
f = (P,Q,R) over a closed curve C and the surface integral of curlf over the interior of C. Recall

that the curl of f is defined as the vector product of ∇ and ~f.

curl ~f = ∇× ~f =

∣∣∣∣∣∣
~i ~j ~k
∂
∂x

∂
∂y

∂
∂z

P Q R

∣∣∣∣∣∣ =

(
∂R

∂y
− ∂Q

∂z

)
~i +

(
∂P

∂z
− ∂R

∂x

)
~j +

(
∂Q

∂x
− ∂P

∂y

)
~k

Let S be a region on an oriented piecewise-
smooth surface r(u, v) that is bounded by a sim-
ple, closed, piecewise smooth curve C. Recall that
the orientation of r induces the positive orienta-
tion of C if the normal vector n of r will always
be on the left of any vector parallel with it that is
transversing the curve (i.e. if you imagine your-
self walking along C with your head pointing in
the direction of n, then the region S will always

be on your left). In this case, if f is a vector field, Stokes’ Theorem states that

∮
C

f · dr =
∫ ∫

S
curlf · dS =

∫ ∫
S

curlf · n dS

This relates to Green’s Theorem since if the curve C is in xy-plane, n = (0, 0, 1), curlf ·n = ∂Q
∂x
−∂P

∂y
,

and dS =
√

0 + 0 + 1dxdy = dxdy thus giving you the formula
∮
C
Pdx+Qdy =

∫ ∫
S

(
∂Q
∂x
− ∂P

∂y

)
dxdy.

Stokes’ Theorem may be especially useful in the following cases:

1. The curl of f is a simple function. In this case, evaluating the surface integral may be much
easier that evaluation the line integral.

2. The curve C consists of several pieces with different parametrization. In this case, it may be
much faster evaluation the surface integral than several line integrals (one for each piece of C).

3. Assume that S and S̄ are regions on surfaces r and r̄ that have the same boundary C. Assume
also that it is difficult to integrate over S. The Stokes’ theorem claims that we can use S̄ instead
since ∫ ∫

S

curlf · dS =

∮
C

f · dr =

∫ ∫
S̄

curlf · dS̄

Practice Problems.

1. Evaluate
∫
C

f ·dr for f = (x+ y2, y+ z2, z+x2) and the curve C is the intersection of the plane
x+ y + z = 1 and the coordinate planes. (a) Without using Stokes’ Theorem;
(b) Using Stokes’ Theorem.

2. Evaluate
∫
C

f · dr for f = (−y2, x, z2) and the curve C is the intersection of the plane y+ z = 2
and the cylinder x2 + y2 = 1 oriented upwards. (a) Without using Stokes’ Theorem;
(b) Using Stokes’ Theorem.
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3. Find the work done by the force field f = (−y, x, x2 + y2) when a particle moves under its
influence along the positively oriented boundary of the part of the paraboloid z = 4− x2 − y2

in the first octant. Note that the work has been found to be 2π in Example 3 by evaluating
three line integrals. Use Stokes’ Theorem and just one flux integral to obtain the same answer.

4. Show that the total work done by the force field f = (yz, xz, xy) moving the particle along the
intersection of the cylinder x2 + y2 = 1 and the sphere x2 + y2 + z2 = 4 above the xy-plane is∫
C

f · dr = 0. When using Stokes’ Theorem, this problem becomes much shorter then without
using it.

5. Find the work done by the force field f = (x+ z2, y + x2, z + y2) when a particle moves under
its influence around the positively oriented boundary of the part of the sphere x2 + y2 + z2 = 4
that lies in the first octant.

Solutions. (1) (a) Solution without using Stokes’ Theorem.

The curve C consists of three parts C1, C2 and
C3 which are in the intersection of the plane and
(1) the plane z = 6, (2) xz-plane, and (3) yz-
plane, respectively. Positive orientation of C im-
plies that C1 is traversed from (1, 0, 0) to (0, 1, 0),
C2 from (0, 1, 0) to (0, 0, 1) and C3 from (0, 0, 1)
to (1, 0, 0).

On C1 : x = x, y = 1−x and z = 0⇒ dx = dx, dy = −dx and dz = 0 and the bounds are from 1
to 0. So,

∫
C1

f · dr =
∫
C1

(x+ y2)dx+ (y+ z2)dy+ (z+x2)dz =
∫ 0

1
(x+ (1−x)2)dx+ (1−x)(−1)dx =∫ 0

1
(x+ 1− 2x+ x2 − 1 + x)dx =

∫ 0

1
x2dx = −1

3
.

On C2 : x = 0, y = y, z = 1 − y ⇒ dx = 0, dy = dy and dz = −dy. The bounds are from 1 to
0. So,

∫
C2

f · dr =
∫
C2

(x + y2)dx + (y + z2)dy + (z + x2)dz =
∫ 0

1
(y + (1− y)2)dy + (1− y)(−1)dy =∫ 0

1
(y + 1− 2y + y2 − 1 + y) =

∫ 0

1
y2dy = −1

3
.

On C3 : x = x, y = 0, z = 1 − x ⇒ dx = dx, dy = 0 and dz = −dx. The bounds are from 0
to 1. So,

∫
C3

f · dr =
∫
C3

(x + y2)dx + (y + z2)dy + (z + x2)dz =
∫ 1

0
xdx + (1 − x + x2)(−1)dx =∫ 1

0
(2x− 1− x2)dx = 1− 1− 1

3
= −1

3
.

Thus
∫
C

=
∫
C1

+
∫
C2

+
∫
C3

= −1
3
− 1

3
− 1

3
= −1.

(b) Using Stokes’ Theorem,
∫
C

=
∫ ∫

S
curlf · dS, where S is the part of the plane in the first

octant. Calculate that curlf = (−2z,−2x,−2y).

On the plane z = 1 − x − y, so r =
(x, y, 1−x−y) dS = (1, 0,−1)× (0, 1,−1)dxdy =
(1, 1, 1)dxdy. The normal vector should point up-
wards which is currently the case so you do not
have to change the sign. The dot product curlf ·dS
is (−2(1 − x − y),−2x,−2y) · (1, 1, 1)dxdy =
(−2(1 − x − y) − 2x − 2y) dxdy = (−2 + 2x +
2y − 2x− 2y) dxdy = −2dxdy and so
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∫ ∫
S

curlf · dS =

∫ 1

0

∫ 1−x

0

−2 dxdy =

∫ 1

0

−2(1− x)dx = −2x+ x2
∣∣1
0

= −2 + 1 = −1.

(2) (a) C has parametrization x = cos t, y = sin t, z = 2− y = 2− sin t, 0 ≤ t ≤ 2π.∫
C

f · dr =

∫
C

−y2dx+ xdy + z2dz =

∫ 2π

0

sin3 tdt+ cos2 tdt− (2− sin t)2 cos tdt.

You can use the calculator, Matlab or trigonometric identities and integrate by hand to obtain the
answer π.

(b) Using Stokes’ Theorem,
∫
C

=
∫ ∫

S
curlf · dS, where S is the part of the plane inside of the

cylinder. Calculate curlf = (0, 0, 1+2y). The plane can be parametrized as r = (x, y, 2−y). Calculate
that dS = (0, 1, 1)dxdy and the orientation of the normal vector is correct already (the vector points
upwards). Thus

∫ ∫
S

curlf · dS =
∫ ∫

S
(1 + 2y)dxdy. To evaluate this integral, you can use polar

coordinates so that y = r sin t and dxdy = rdrdt and the bounds are 0 ≤ t ≤ 2π and 0 ≤ r ≤ 1.
Thus the integral becomes∫ 2π

0

∫ 1

0

(1 + 2r sin t)rdrdt =

∫ 2π

0

(
1

2
+

2

3
sin t)dt = π.

(3) Using Stokes’ Theorem,
∫
C

=
∫ ∫

S
curlf · dS, where S is the part of the paraboloid in the first

octant. Calculate the curl of f to be curlf = (2y,−2x, 2).

The paraboloid can be parametrized by r =
(r cos θ, r sin θ, 4 − r2) ⇒ rr = (cos θ, sin θ,−2r)
and rθ = (−r sin θ, r cos θ, 0) ⇒ dS = ±(rr ×
rθ)drdθ = ±(2r2 cos θ, 2r2 sin θ, r)drdθ. Note that
you want the normal vector to point outwards
which is the case by choosing the positive sign
(looking at the z-coordinate, which should be pos-
itive, can tell you that, for example).

The bounds are 0 ≤ θ ≤ π
2

and 0 ≤ r ≤ 2. Compute the dot product curlf · dS to be
(2r sin θ,−2r cos θ, 2)·(2r2 cos θ, 2r2 sin θ, r)drdθ = (4r3 sin θ cos θ−4r3 sin θ cos θ+2r)drdθ = 2rdrdθ.
Thus, the work can be found as∫ ∫

S

curlf · dS =

∫ π/2

0

∫ 2

0

2rdrdθ = 2
π

2

r2

2

∣∣∣∣2
0

= 2
π

2
(2) = 2π ≈ 6.28

(4) curlf = 0. Thus
∫
C

f · dr =
∫ ∫

S
curlf · dS = 0.

(5) It is easier to evaluate the integral using Stokes’ theorem (otherwise there would be three line
integrals). Calculate curlf to be (2y, 2z, 2x). The surface r can be parametrized by x = 2 cos θ sinφ
y = 2 sin θ sinφ z = 2 cosφ. Thus, dS = ±(4 sin2 φ cos θ, 4 sin2 φ sin θ, 4 sinφ cosφ)dφdθ. One way to
determine the sign of the product is to consider a convenient value of θ or φ and to determine the
sign of such conveniently chosen vector. For example, when φ = π

2
(the equator) and θ = 0 (front
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meridian in xz plane), the vector should point to the front too. For these two angle values, the vector
is ±(4, 0, 0) and it points to the front if we take the positive sign.

Another way to determine the sign is to note that the normal vector and position vector are colin-
ear at every point (see also Example 7) and that dS = ±(4 sin2 φ cos θ, 4 sin2 φ sin θ, 4 sinφ cosφ)dφdθ =
±2 sinφ(2 sinφ cos θ, 2 sinφ sin θ, 2 cosφ)dφdθ = ±2 sinφ r dφdθ. Thus, dS has the same orientation
as r if we take the positive sign.

Since the region is in the first octant, the bounds of integration are 0 ≤ θ ≤ π
2

and 0 ≤ φ ≤ π
2
. The

flux integral is
∫ ∫

S
curlf ·dS = 16

∫ π/2
0

∫ π/2
0

(sin3 φ cos θ sin θ+sin2 φ sin θ cosφ+sin2 φ cosφ cos θ)dφdθ =

16
∫ π/2

0
(1

2
sin3 φ+ 2 sin2 φ cosφ) dφ dθ = 16.

Divergence Theorem

Recall that the divergence of f is defined as the scalar product of ∇ and ~f.

div ~f = ∇ · ~f =
∂P

∂x
+
∂Q

∂y
+
∂R

∂z

The Divergence Theorem can also be regarded as a three-dimensional version of Green’s Theorem
in the form

∮
C
Pdy − Qdx =

∮
C

f · N ds =
∫ ∫

S
divf dxdy. Here N is the normal vector to C at

point (x, y) and the product N ds can be calculated to be dy~i−dx~j. This version of Green’s theorem
relates the line integral of a two-dimensional vector function f over a closed curve C with the double
integral of divf over the interior of C. Adding one dimension to this formula, we relate the surface
integral of a vector function f with the triple integral of divf .

Let S be a region on a positive oriented sur-
face that is the boundary of a simple solid region
V . If f is a vector field, the Divergence Theorem
states that∫ ∫

S
f · dS =

∫ ∫ ∫
V

divf dV

where dV is the volume element dx dy dz.

Practice Problems.

1. Use the Divergence Theorem to find the flux of the vector field f = (x, 2y, 3z) over the cube
with vertices (±1,±1,±1). (Note: the flux is found to be 48 without the use of the Divergence
Theorem earlier.)

2. Find the flux of the vector field f = (z, y, x) over the unit sphere.

3. Use the Divergence Theorem to find the flux of the vector field f = (y, x, z) over the boundary
of the region enclosed by the paraboloid z = 1− x2 − y2 and the plane z = 0. (Note: the flux
is found to be π

2
without the use of the Divergence Theorem earlier.)

4. Find the flux of the vector field f = (xy, yz, xz) over the boundary of the region enclosed by
the cylinder x2 + y2 = 1 and the planes z = 0 and z = 2.
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5. Find the flux of the vector field f = (yez, 2y, xey) over the boundary of the region enclosed by
the cylinder x2 + y2 = 9 and the planes z = 0 and z = 4− y.

6. Use the Divergence Theorem to find the flux of the vector field f = (x, 2y, 3z) over the cube
with vertices (±1,±1,±1) without the top.

Solutions. (1) It is much easier to evaluate the integral using the Divergence Theorem – recall
that otherwise you have to do six flux integrals. Calculate divf = 1 + 2 + 3 = 6 and so∫ ∫

S

f · dS =

∫ ∫ ∫
V

divf dx dy dz =

∫ ∫ ∫
V

6 dx dy dz

where V is the interior of the cube. So the bounds are −2 ≤ x, y, z ≤ 1 and the integral becomes∫ 1

−1

∫ 1

−1

∫ 1

−1
6dxdydz = 6x|1−1y|1−1z|1−1 = 6(2)(2)(2) = 48.

(2) It is easier to evaluate the integral using the Divergence Theorem than directly because
finding the flux integral directly involves long computation of dS. Calculate that divf = 1 so that∫ ∫

S
f · dS =

∫ ∫ ∫
V

1dxdydz where V is the interior of the unit sphere. Hence the bounds of the
integration are 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π and 0 ≤ r ≤ 1 and the Jacobian for the spherical coordinates
is r2 sinφ. Thus the integral becomes∫ 2π

0

∫ π

0

∫ 1

0

r2 sinφ dr dφ dθ = 2π(1 + 1)
1

3
=

4π

3
.

(3) In this problem it is also easier to find the resulting flux using the Divergence Theorem since
the alternative involves two flux integrals (see the solution of problem 2 following the section on the

flux integrals). Compute that divf = 1 so that∫ ∫
S

f · dS =
∫ ∫ ∫

V
1dxdydz where V is the re-

gion between the paraboloid and xy-plane. Us-
ing the cylindrical coordinates, the paraboloid is
z = 1− r2 and the projection in the xy-plane is a
disc of radius 1 so the bounds of the integration
are 0 ≤ θ ≤ 2π, 0 ≤ r ≤ 1 and 0 ≤ z ≤ 1 − r2

and the Jacobian is r. Hence the integral is∫ 2π

0

∫ 1

0

∫ 1−r2

0

r dz dr dθ =

∫ 2π

0

∫ 1

0

(1−r2)r dr dθ = 2π
1

4
=
π

2
.

(4) Without the Divergence Theorem, one would have to evaluate three flux integrals and with
the Divergence Theorem, just one triple integral. Calculate that divf = y + z + x. Thus,

∫ ∫
S

f ·
dS =

∫ ∫ ∫
V

(x + y + z) dxdydz where V is the region between the cylinder and two planes. Using
cylindrical coordinates, the bounds are 0 ≤ θ ≤ 2π, 0 ≤ r ≤ 1 and 0 ≤ z ≤ 2. The integral is∫ 2π

0

∫ 1

0

∫ 2

0
(r cos θ+r sin θ+z)rdrdθdz =

∫ 2π

0

∫ 1

0
(r cos θ+r sin θ+2)rdrdθ =

∫ 2π

0

∫ 1

0
(r2 cos θ+r2 sin θ+

2r)drdθ =
∫ 2π

0
(1

3
cos θ + 1

3
sin θ + 1)dθ = 0 + 0 + 2π = 2π.

(5) Without the Divergence Theorem, one
would have to evaluate three flux integrals and

with the Divergence Theorem, just one triple inte-
gral. Calculate that divf = 2. Thus,

∫ ∫
S

f · dS =
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∫ ∫ ∫
V

2dxdydz where V is the region between the
cylinder and two planes. Using cylindrical coor-
dinates, the bounds are 0 ≤ θ ≤ 2π, 0 ≤ r ≤ 3
and 0 ≤ z ≤ 4− y = 4− r sin θ. The integral is

∫ 2π

0

∫ 3

0

∫ 4−r sin θ

0

2 r dr dθ dz =

∫ 2π

0

∫ 3

0

2r(4−r sin θ) dr dθ =

∫ 2π

0

∫ 3

0

(8r − 2r2 sin θ) dr dθ =

∫ 2π

0

(36− 18 sin θ) dθ = 36θ + 18 cos θ|2π0 = 72π.

(6) Recall that divf = 1 + 2 + 3 = 6 by problem 1. In order to use the Divergence Theorem, the
top has to be considered. The flux over the top has been found to be

∫ ∫
top(x, 2y, 3) · (0, 0, 1)dxdy =∫ 1

−1

∫ 1

−1
3dxdy = 12 (see problem 4 in the section on flux integrals).

Since ∫ ∫
no top

f · dS +

∫ ∫
top

f · dS =

∫ ∫ ∫
V

6 dx dy dz

we have that ∫ ∫
no top

f · dS =

∫ ∫ ∫
V

6 dx dy dz −
∫ ∫

top
f · dS

The triple integral was computed in problem 1 to be 48. Thus
∫ ∫

no top f ·dS =
∫ ∫ ∫

V
6dxdydz−∫ ∫

top f · dS = 48− 12 = 36.
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Flux, surface and line integrals in cylindrical and spherical coordinates

The vector fields in all of the previous examples were given in terms of the standard basis i, j
and k and each coordinate is a function of x, y and z. In many applications (e.g in Electricity and
Magnetism), a vector field may be given in terms of cylindrical, spherical or some other coordinates
and may be presented in terms of other coordinate systems.

Cartesian coordinates. Consider the position vector r = (x, y, z) of point (x, y, z) in space.
Taking the partial derivatives produces

rx = (1, 0, 0) = i, ry = (0, 1, 0) = j, and rz = (0, 0, 1) = k.

Note that we usually consider these vectors exactly in this order which correspond to the fact that
the cross product of the first two produces the third one. In other coordinate systems, you can use
the right-hand rule to check if the product of your first two orthogonal vectors produces the third
orthogonal vector or its opposite. If it is the opposite, switching any two vectors can give you the
desired order. For Cartesian coordinates, we indeed have that i× j = k.

Note also that the vectors i, j and k have unit length so they are equal to their normalizations1.
This fact is often denoted by

r̂x = i, r̂y = j, and r̂z = k.

Cylindrical coordinates. Let us repeat the
process of normalizing the partial derivatives for
the position vector r = (x, y, z) in cylindrical co-
ordinates

r = (r cos θ, r sin θ, z).

Taking the partial derivatives produces

rr = (cos θ, sin θ, 0),
rθ = (−r sin θ, r cos θ, 0), and
rz = (0, 0, 1).

Note that the length of rr and rz is 1 and the length of rθ is r.

Thus, normalizing these three vectors produces

r̂r = rr = (cos θ, sin θ, 0),
r̂θ = 1

r
rθ = (− sin θ, cos θ, 0), and

r̂z = rz = (0, 0, 1).

1Recall that the normalization of a vector a is

â =
a

|a|

where |a| is the length of a. As a result, the vector â has the same direction and sense as a but it has unit length.
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If the basis vectors are perpendicular to each other and of unit length, they constitute orthonormal
coordinates. Computing the dot product in such a basis boils down to the same process as comput-
ing the dot product in the standard basis (because the standard basis vectors i, j and k are also
orthonormal). In cylindrical coordinates, for example, note that the vectors r̂r, r̂θ, r̂z are orthogonal
to each other and, since we normalized them, they are of unit length, so

r̂r · r̂θ = r̂r · r̂z = r̂θ · r̂z = 0, and r̂r · r̂r = r̂θ · r̂θ = r̂z · r̂z = 1.

Thus, for example, to compute the dot product of vector fields given by f = 5rr̂r − 5 sin θr̂θ − 3r̂z
and g = sin θr̂r + rr̂θ − 2r̂z, we can dot them as follows.

f · g = (5rr̂r − 5 sin θr̂θ − 3r̂z) · (sin θr̂r + rr̂θ − 2r̂z) = 5r sin θr̂r · r̂r − 5 sin θr̂θ · r̂θ − 3(−2)r̂z · r̂z =

5r sin θ − 5 sin θ + 6 = 6.

Check also that r̂r× r̂θ = r̂z so the three vectors r̂r, r̂θ and r̂z are considered in the order enabling
one to compute the cross product of vectors using the determinant just like in the case of Cartesian
coordinates.

In some cases the three vectors r̂r, r̂θ, and r̂z are more convenient to use than the usual vectors
i, j and k for a representation of a vector field. In cases like this, it is useful to know the conversion
equations from one coordinate system to the other.

Representing the above three formula in terms of the vectors i, j and k produces.

r̂r = cos θi + sin θj, r̂θ = − sin θi + cos θj, and r̂z = k.

For example, consider the vector field f = 5r3r̂r + 3r̂θ + r sin θr̂z, given in cylindrical coordinates.
We use the conversion formulas to get f = 5r3(cos θi + sin θj) + 3(−r sin θi + r cos θj) + r sin θk and
then we can convert the vector field to Cartesian coordinates as follows.

f = 5r2(r cos θi + r sin θj) + 3(−r sin θi + r cos θj) + r sin θk =

5(x2 + y2)(xi + yj) + 3(−yi + xj) + yk = (5(x2 + y2)x− 3y)i + (5(x2 + y2)y + 3x)j + yk.

Note that this can be written shorter as f = (5(x2 + y2)x− 3y, 5(x2 + y2)y + 3x, y).
We have seen how to convert a vector field represented in terms of r̂r, r̂θ, and r̂z into a vector

field represented in term of i, j and k. For the converse problem, solving the first two equations for i
and j produces

i = cos θr̂r − sin θr̂θ, j = sin θr̂r + cos θr̂θ, and k = r̂z.

For example, the vector field f = (5x, 3, x2 + y2) = 5xr̂x + 3r̂y + (x2 + y2)r̂z given in Cartesian
coordinates, converts to cylindrical coordinates as follows.

f = 5r cos θ(cos θr̂r − sin θr̂θ) + 3(sin θr̂r + cos θr̂θ) + r2r̂z ⇒

f = (5r cos θ cos θ + 15r cos θ sin θ)r̂r + (− sin θ + 3 cos θ)r̂θ + r2r̂z.
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Line, flux, and triple integrals in cylindrical coordinates

If C is a curve, S is a surface, and f is a vector field given in cylindrical coordinates, we need
to express the terms dr, dS and dV in the same coordinates in order to compute the line integral∫
C

f · dr, the surface integral
∫ ∫

S
f · dS or to use Stokes’ or Divergence Theorems to compute any

of those integrals when applicable. For those theorems, we also need to have formulas computing
divergence and curl of a vector field in cylindrical coordinates.

Line integrals. Let us first consider the
length element dr in cylindrical coordinates.
Since dr = ∂r

∂r
dr + ∂r

∂θ
dθ + ∂r

∂z
dz substituting that

rr = r̂r, rθ = rr̂θ, and rz = r̂z we obtain that

dr = r̂r dr + rr̂θ dθ + r̂z dz.

The coefficients dr, rdθ, and dz with three vec-
tors r̂r, r̂θ, and r̂z in dr constitute the sides of a
“cylindrical box” on the figure on the right. Their
products is the volume element dV in cylindrical
coordinates as the figure below illustrates too.

dV = r dr dθ dz

Note that the term r in the formula dV = dxdydz = r dr dθ dz matches exactly the value of the
Jacobian in cylindrical coordinates.

Example 1. Find the work done by the force field f = 2rr̂r + 3r2zr̂θ − zr̂z acting along the
positive oriented circle x2 +y2 = a2 in the horizontal plane z = b where a and b are positive constants.

Solutions. We find the work as
∫
c
f · dr. To reduce the integrand to a single-variable function,

understanding the parametrization is the key, just as for line integrals before. One also aims to
describe all the three variables, r, θ and z in this case, in terms of a single variable.

Note that the relation x2 + y2 = a2 implies
that r2 = a2 so r = a is constant on the circle.
Also, z is constant and equal to b. Hence, we can
use θ for the parameter and we have that

r = a, θ = θ, z = b

parametrizes the curve. Since r and z are con-
stant, dr = 0 and dz = 0 so dr = rdθr̂θ.

Compute the dot product f ·dr to be (2rr̂r +3r2zr̂θ−zr̂z) ·rdθr̂θ = 3r3zdθ = 3a3bdθ. The bounds
for θ are 0 and 2π so the integral becomes∫

c

f · dr =

∫ 2π

0

3a3bdθ = 3a3bθ
∣∣2π
0

= 6a3bπ.

23



Flux integrals. Let us now consider the sur-
face area element dS of a positively oriented sur-
face. Let dSr, dSθ and dSz denote the three com-
ponents of dS in basis r̂r, r̂θ, and r̂z. Then dSr
corresponds to the surface area element of the
cylinder of radius r. This is area of the “par-
allelogram” with the sides rdθ and dz multiplied
by r̂r as the figure on the right illustrates. Simi-
larly, dSθ is the surface area element of the verti-
cal plane as on the figure, so that dSθ is the area
of the “parallelogram” with sides dr and dz multi-
plied by r̂θ. Lastly, dSz is the surface area element
of the horizontal plane and so dSz is the product
of dr, rdθ and r̂z. This produces the formula for
dS

dS = dSr + dSθ + dSz = r dθ dz r̂r + dr dz r̂θ + r dr dθ r̂z

In cases when r, θ or z are constant, the above
formula can be simplified. In particular,

• If r is constant (that is when the surface is
on a cylinder), then dr = 0 and

dS = r dθ dz r̂r.

The first figure on the right illustrates this
scenario.

• If z is constant (that is when the surface is
on a horizontal plane), then dz = 0 and

dS = r dr dθ r̂z.

The second figure on the right illustrates
this scenario.

• If θ is constant (that is when the surface is on a vertical plane), then dθ = 0 and

dS = dr dz r̂θ.

Example 2. Compute the flux of the vector field f = r sin θr̂r + 2r cos θr̂θ + 3rzr̂z over the
boundary of the region inside the cylinder x2 + y2 = 9 between the planes z = 0 and z = 4.

Solution. The boundary of the region consists of three surfaces: the cylinder S1, the top plane
S2 and the bottom plane S3.
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On the cylinder r is constant, r = 3 in
this case, so dr = 0 and, hence dS1 has only
the term – the one which does not contain dr.
This, dS1 = r dθ dzr̂r. The dot product f · dS1

is (r sin θr̂r + 2r cos θr̂θ + 3rzr̂z) · r dθ dzr̂r =
r2 sin θ dθ dzr̂r · r̂r = r2 sin θdθ dz. The radius is
3 so f · dS1 = 9 sin θdθ dz. Hence,

F1 =

∫ ∫
S1

f · dS1 =

∫ 2π

0

∫ 4

0

9 sin θdθ dz =∫ 2π

0

sin θdθ

∫ 4

0

9 dz = 0.

On the top plane, dS2 = r dr dθr̂z since z is constant so dz = 0. The dot product f · dS2 is
(r sin θr̂r + 2r cos θr̂θ + 3rzr̂z) · r dr dθr̂z = 3rzr dr dθ r̂z · r̂z = 3r2z dr dθ. The plane is z = 4 so
f · dS2 = 12r2 dr dθ. Hence,

F2 =

∫ ∫
S2

f · dS2 =

∫ 2π

0

∫ 3

0

12r2 dr dθ = 2π 4(3)3 = 216π.

On the bottom plane, the surface area element dS3 = −r dr dθr̂z because the length of this vector
is the same as for dS1 and the sense is opposite since it points outwards. The dot product f · dS3

is (r sin θr̂r + 2r cos θr̂θ + 3rzr̂z) · r dr dθr̂z = 3rzr dr dθ r̂z · r̂z = 3r2z dr dθ. The plane is z = 0 so
f · dS3 = 0 and so F3 = 0.

Thus, we have that F = F1 + F2 + F3 = 0 + 216π + 0 = 216π.

Gradient, curl and divergence in cylindrical coordinates. Recall that the gradient oper-
ator is given by ∇ = ( ∂

∂x
, ∂
∂y
, ∂
∂z

). In cylindrical coordinates, we have the relations

r̂r =
∂

∂r
r, r̂θ =

1

r

∂

∂θ
r, and r̂z =

∂

∂z
r

which imply that the gradient operator becomes ∇ = ∂
∂r

r̂r + 1
r
∂
∂θ

r̂θ + ∂
∂z

r̂z.

If f is a vector field which can be represented as f = P r̂r +Qr̂θ +Rr̂z in cylindrical coordinates,
it can be shown that the formulas below compute the divergence and the curl of f .

divf = ∇ · f =
1

r

∂(rP )

∂r
+

1

r

∂Q

∂θ
+
∂R

∂z
curlf = ∇× f =

1

r

∣∣∣∣∣∣
r̂r rr̂θ r̂z
∂
∂r

∂
∂θ

∂
∂z

P rQ R

∣∣∣∣∣∣
For example, if f = 5r3r̂r + 3r̂θ + r sin θr̂z, then P = 5r3, Q = 3, and R = r sin θ. The divergence

is divf = 1
r

20r3 + 1
r
(0) + 0 = 20r2 and the curl is curlf = 1

r

∣∣∣∣∣∣
r̂r rr̂θ r̂z
∂
∂r

∂
∂θ

∂
∂z

5r3 3r r sin θ

∣∣∣∣∣∣ = 1
r
(r cos θr̂r −

r sin θr̂θ + 3r̂z) = cos θr̂r − sin θr̂θ + 3
r
r̂z.

Example 3. Use the Divergence Theorem to compute the flux of the vector field f = r sin θr̂r +
2r cos θr̂θ + 3rzr̂z over the boundary of the region inside the cylinder x2 + y2 = 9 between the planes
z = 0 and z = 4.
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Solution. The divergence of f is divf = 1
r
∂(r2 sin θ)

∂r
+ 1

r
∂(r cos θ)

∂θ
+ ∂(3rz)

∂z
= 1

r
2r sin θ− 1

r
2r sin θ+3r =

2 sin θ − 2 sin θ + 3r = 3r. Hence

F =

∫ ∫ ∫
V

divf dV =

∫ ∫ ∫
V

3r r dr dθ dz =

∫ 2π

0

dθ

∫ 3

0

3r2 dr

∫ 4

0

dz = 2π 33 4 = 216π.

Example 4. Use Stokes’ Theorem to compute the work from Example 1 (i.e. the work done by
the force field f = 2rr̂r + 3r2zr̂θ − zr̂z acting along the positive oriented circle x2 + y2 = a2 in the
horizontal plane z = b where a and b are positive constants).

Solution. Calculate curlf to be curlf = 1
r

∣∣∣∣∣∣
r̂r rr̂θ r̂z
∂
∂r

∂
∂θ

∂
∂z

2r 3r3z −z

∣∣∣∣∣∣ = 1
r
(−3r3r̂r + 9r2zr̂z) = −3r2r̂r +

9rzr̂z. If S is the horizontal plane z = b in which the circle lies, then z is constant, so dz = 0 and
dS = rdrdθr̂z. Hence f · dS = 9rz rdrdθ = 9b r2drdθ. The bounds are 0 ≤ θ ≤ 2π and 0 ≤ r ≤ a so∫

c

f · dr =

∫ ∫
S

curlf · dS = 9b

∫ 2π

0

dθ

∫ a

0

r2dr = 9b 2π
a3

3
= 6a3bπ.

Spherical Coordinates

Recall that the position vector r = (x, y, z) in
spherical coordinates is

r = (r cos θ sinφ, r sin θ sinφ, r cosφ).

Taking the partial derivatives produces
rr = (cos θ sinφ, sin θ sinφ, cosφ),
rφ = (r cos θ cosφ, r sin θ cosφ,−r sinφ), and
rθ = (−r sin θ sinφ, r cos θ sinφ, 0).

Calculate that the length of rr is 1, the length
of rφ is r, and the length of rθ is r sinφ. Normal-
izing the three partial derivative produces

r̂r = rr = (cos θ sinφ, sin θ sinφ, cosφ),
r̂φ = 1

r
rφ = (cos θ cosφ, sin θ cosφ,− sinφ), and

r̂θ = 1
r sinφ

rθ = (− sin θ, cos θ, 0).

This implies that the conversion equations are as
below.

r̂r = cos θ sinφi + sin θ sinφj + cosφk,
r̂φ = cos θ cosφi + sin θ cosφj− sinφk,
r̂θ = − sin θi + cos θj.

Since the vectors r̂r, r̂φ, r̂θ are orthonormal (mutually orthogonal and of unit length), formulas
r̂r · r̂φ = r̂r · r̂θ = r̂φ · r̂θ = 0 and r̂r · r̂r = r̂φ · r̂φ = r̂θ · r̂θ = 1 hold and can be used to compute the
dot product of two vector fields in spherical coordinates.

Check that r̂r× r̂φ = r̂θ. Thus, the three vectors in the order r̂r, r̂φ, r̂θ satisfy the right-hand rule.
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Line, flux and triple integrals in spherical coordinates

If f is a vector field given in spherical coordi-
nates, we need to express the terms dr, dS and
dV in the same coordinates in order to compute a
line integral, a surface integral or to use Stokes’ or
Divergence Theorems for any of those integrals.
In spherical coordinates, rr = r̂r rφ = r r̂φ and
rθ = r sinφ r̂θ and so dr = rr dr+ rφ dφ+ rθ dθ ⇒

dr = r̂r dr + rr̂φ dφ+ r sinφ r̂θ dθ.

As the figure on the right illustrates, the product
of the coefficients dr, rdφ, and r sinφdθ with the
vectors r̂r, r̂φ, and r̂θ in the above expression

computes the volume element dV in spherical co-
ordinates. Thus,

dV = r2 sinφ dr dθ dφ.

The term r2 sinφ in the formula dV = dxdydz =
r2 sinφ dr dθ dφ is the Jacobian in spherical coor-
dinates.

Let us now consider the surface area element
dS. Let dSr, dSφ and dSθ denote the three compo-
nents of dS in basis r̂r, r̂φ, and r̂θ. Thus, dSr cor-
responds to the surface area element of the sphere
of radius r. This is area of the “parallelogram”

with the sides rdφ and r sinφdθ multiplied by r̂r as the figure on the right illustrates. Similarly, dSφ
is the surface area element of the plane as on the figure, so that dSφ is the area of the “parallelogram”
with sides dr and r sinφdθ multiplied by r̂φ. Lastly, dSθ is the product of dr, rdφ and r̂θ.

This produces the formula for dS

dS = r2 sinφ dφ dθ r̂r + r sinφ dr dθ r̂φ + r dr dφ r̂θ

In cases when r, φ or θ are constant, the above
formula can be simplified. In particular,

• If r is constant (that is when the surface is
on a sphere), then dr = 0 and

dS = r2 sinφ dφ dθ r̂r.
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• If φ is constant (that is when the surface is on a cone), then dφ = 0 and

dS = r sinφ dr dθ r̂φ.

• If θ is constant (that is when the surface is on a vertical plane), then dθ = 0 and

dS = r dr dφ r̂θ.

Example 5. Compute the flux of the vector field f = r sinφ r̂r + r cosφ r̂θ over the unit sphere.

Solution. Since r = 1, dr = 0 and so dS = r2 sinφ dφ dθ r̂r. As r̂r · r̂r = 1 and r̂θ · r̂r = 0, the dot
product f · dS is

(r sinφr̂r + r cosφr̂θ) · r2 sinφ dφ dθ r̂r = r sinφ r2 sinφ dφ dθ + 0 = r3 sin2 φ dφ dθ.

The radius of the sphere is 1 so f · dS = sin2 φ dφ dθ. Hence

F =

∫ ∫
S

f · dS =

∫ 2π

0

∫ π

0

sin2 φ dφ dθ = 2π

∫ π

0

sin2 φ dφ = 2π
π

2
= π2 ≈ 9.87.

Gradient, curl and divergence in spherical coordinates. In spherical coordinates, we have
the relations

r̂r =
∂

∂r
r, r̂φ =

1

r

∂

∂φ
r, and r̂θ =

1

r sinφ

∂

∂θ
r

which imply that the gradient operator becomes ∇ = ∂
∂r

r̂r + 1
r
∂
∂φ

r̂φ + 1
r sinφ

∂
∂θ

r̂θ.
If f is a vector field which can be represented as f = P r̂r + Qr̂φ + Rr̂θ in spherical coordinates,

it can be shown that the formulas below compute the divergence and the curl of f .

divf = ∇ · f =
1

r2

∂(r2P )

∂r
+

1

r sinφ

∂(sinφ Q)

∂φ
+

1

r sinφ

∂R

∂θ

curlf = ∇× f =
1

r2 sinφ

∣∣∣∣∣∣
r̂r rr̂φ r sinφr̂θ
∂
∂r

∂
∂φ

∂
∂θ

P rQ r sinφR

∣∣∣∣∣∣
For example, if f = r2 sinφr̂r + 4r2 cosφr̂φ + r sinφ

cosφ
r̂θ, then P = r2 sinφ,Q = 4r2 cosφ, and

R = r sinφ
cosφ

and

divf =
1

r2

∂(r4 sinφ)

∂r
+

1

r sinφ

∂(4r2 sinφ cosφ)

∂φ
+

1

r sinφ

∂( r sinφ
cosφ

)

∂θ
=

4r sinφ+
1

r sinφ
(4r2 cos2 φ− 4r2 sin2 φ) + 0 = 4r sinφ+

4r2 cos2 φ

r sinφ
− 4r sinφ =

4r cos2 φ

sinφ
.

Example 6. Use the Divergence theorem to find the flux of the vector field f = r sinφr̂r+r cosφr̂θ
over the unit sphere.

Solution. The divergence of f is divf = 1
r2
∂(r3 sinφ)

∂r
+ 1

r sinφ
∂(r cosφ)

∂θ
= 1

r2
3r2 sinφ + 0 = 3 sinφ.

Hence

F =

∫ ∫ ∫
V

divf dV =

∫ ∫ ∫
V

3 sinφ r2 sinφ dr dθ dφ =
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∫ 2π

0

∫ π

0

∫ 1

0

3r2 sin2 φ dr dθ dφ = 2π

∫ π

0

sin2 φ dφ = 2π
π

2
= π2 ≈ 9.87.

Example 7. Find the work done by the vector field f = r2r̂r + r2 sinφr̂φ + 2r̂θ acting along
the positive oriented intersection of the sphere of radius R centered at the origin and the horizontal
plane z = 1

2
R.

(a) directly, (b) using Stokes’ Theorem.

Solutions. Since the circle is on the sphere
of radius R, r is constant and equal to R. Con-
sidering the figure on the right, we can see that
φ is constant also, and its value can be deter-
mined by the triangle on the figure as follows:

cosφ =
R
2

R
= 1

2
⇒ φ = π

3
. Hence, the circle has

parametrization r = R, φ = π
3

and 0 ≤ θ ≤ 2π in
spherical coordinates. Thus, dr = 0, dφ = 0 and

so dr = r sinφdθr̂θ = R sin π
3
dθr̂θ =

√
3R
2
dθr̂θ. So, f · dr = 2

√
3R
2
dθr̂θ · r̂θ =

√
3Rdθ and

W =

∮
C

f · dr =
√

3R

∫ 2π

0

dθ = 2
√

3Rπ.

(b) Note that we can consider S to be any surface which has boundary C. Since we are in spherical
coordinates, it is not convenient to consider S to be the part of the horizontal plane inside of the circle
as we did in Example 4, but the part of the sphere of radius R inside of the circle. This surface has very
simple parametrization in spherical coordinates r = R so dr = 0 and dS = r2 sinφdθdφr̂r. Calculate

the curl to be curlf = 1
r2 sinφ

∣∣∣∣∣∣
r̂r rr̂φ r sinφr̂θ
∂
∂r

∂
∂φ

∂
∂θ

r2 r3 sinφ 2r sinφ

∣∣∣∣∣∣ = 1
r2 sinφ

(2r cosφr̂r − 2r sinφr̂φ + 3r3 sin2 φr̂θ).

Dotting by dS produces 2r cosφdθdφr̂r · r̂r = 2r cosφdθdφ. Since r = R, curlf · dS = 2R cosφdθdφ.
Hence

W =

∫ ∫
curlf · dS =

∫ 2π

0

∫ π
3

0

2R cosφdθdφ = 4Rπ

∫ π/3

0

cosφdφ = 4Rπ

√
3

2
= 2
√

3Rπ.

Practice Problems

Problem 1. Find the flux done by the vector field f = r sin θr̂r + 2r cos θr̂θ + 3rr̂z over the
boundary of the region between the paraboloids z = r2 and z = 4− r2.

Solution. Since computing the flux directly involves two flux integrals and using the Divergence
Theorem just one, we choose to use the Divergence Theorem. Calculate the divergence as divf =
1
r
∂(r2 sin θ)

∂r
+ 1

r
∂r cos θ
∂θ

+ ∂3r
∂z

= 1
r
2r sin θ − 1

r
2r sin θ + 0 = 2 sin θ − 2 sin θ = 0. So, the flux is F =∫ ∫ ∫

(0)dV = 0. Hence, the flux is zero.

Problem 2. The Ice cream problem. Compute the flux of the vector field f = r2r̂r +
2r2 sinφr̂φ + r4 sinφr̂θ over the boundary of the region inside the cone z =

√
3(x2 + y2) and the

sphere of radius a. To obtain the equation of the cone in spherical coordinates, note that the the
value of φ is constant on the cone and compute this value of φ. The problem is significantly shorter
if you use the Divergence Theorem.
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Solution. In rz-plane the cone is determined
by revolution of the line with tanα =

√
3⇒ α =

π
3

and so φ = π
2
− π

3
= π

6
. Hence the angle between

any line radiating from the vertex of the cone and
the z-axis is constant and equal to π

6
and so the

equation of the cone is given by φ = π
6
.

The divergence of f is divf = 1
r2
∂(r4)
∂r

+
1

r sinφ
∂(2r2 sin2 φ)

∂φ
+ 1

r sinφ
∂(r4 sinφ)

∂θ
= 4r + 4r cosφ =

4r(1 + cosφ). Hence F =
∫ ∫ ∫

V
divf dV =

∫ ∫ ∫
V

4r(1 + cosφ) r2 sinφ dr dθ dφ =

∫ 2π

0

∫ π/6

0

∫ a

0

4r3(1 + cosφ) sinφ dr dθ dφ =

2π a4

∫ π/6

0

(1 + cosφ) sinφ dφ = 2a4π (− cosφ− cos2 φ

2
)

∣∣∣∣π/6
0

= 2a4π

(
9

8
−
√

3

2

)
≈ 1.63a4.

Problem 3. The Ike Broflovski prob-
lem. Find the flux done by the vector field
f = rr̂r + 2rzr̂θ + r sin θr̂z over the boundary of
the region between the paraboloids z = r2 and
z = a2 − 3r2. Note that the problem is signifi-
cantly shorter if you use the Divergence Theorem.

Solution. Calculate the divergence of the

field to be divf = 1
r
∂(r2)
∂r

+ 1
r
∂(2rz)
∂θ

+ ∂(r sin θ)
∂z

=
2 + 0 + 0 = 2. The paraboloids intersect in a
circle whose radius can be obtained by solving
r2 = a2−3r2 ⇒ r2 = a2

4
⇒ r = a

2
. The paraboloid

z = a2 − 3r2 is upper and the paraboloid z = r2

is lower surface. Hence

Ike Broflovski

F =

∫ ∫ ∫
V

divf dV =

∫ 2π

0

∫ a/2

0

∫ a2−3r2

r2
2 r dr dθ dz =

2π

∫ a/2

0

((a2 − 3r2)2 − r4)dr = 2π

∫ a/2

0

(a4 − 6a2r2 + 9r4 − r4)dr = 2π

(
a5

2
− a5

4
+
a5

20

)
=

3a5π

5
.

Problem 4. Cylindrical version of Example 7. Find the work done by the vector field
f = r sin θr̂r + rr̂θ + 4r̂z acting along the positive oriented intersection of the sphere of radius R
centered at the origin and the horizontal plane z = 1

2
R

(a) directly, (b) using Stokes’ Theorem.

Solutions. (a) On a circle in horizontal plane, both r and z are constant. Here z = R
2
. To find

the value of r, considering the right triangle on the figure below and obtain it from the equation that
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r2 +z2 = R2. Since z = R
2
, we have that r2 + R2

4
=

R2 ⇒ r =
√
R2 − R2

4
=
√

3R2

4
=
√

3R
2
. Thus, the

circle has parametrization r =
√

3R
2
, z = R

2
and

0 ≤ θ ≤ 2π in cylindrical coordinates. Hence
dr = 0, dz = 0 and so dr =

√
3R
2
dθr̂θ and

W =

∮
C

f ·dr =

∫
C

√
3R

2

√
3R

2
dθ =

3R2

4

∫ 2π

0

dθ =
3R2π

2
.

(b) We can consider S to be part of the horizontal plane inside of the circle. Since z is constant,

dz = 0 and dS = rdrdθr̂z. Calculate the curl to be curlf = 1
r

∣∣∣∣∣∣
r̂r rr̂θ r̂z
∂
∂r

∂
∂θ

∂
∂z

r sin θ r2 4

∣∣∣∣∣∣ = 1
r
(2r−r cos θ)r̂z =

(2− cos θ)r̂z. Hence curlf · dS = (2− cos θ)rdrdθ.

W =

∫ ∫
S

curlf · dS =

∫ 2π

0

∫ √
3R
2

0

(2− cos θ)rdrdθ =

∫ √
3R
2

0

(4π − 0)rdr = 2π
3R2

4
=

3R2π

2
.

Problem 5. Problem “à la Dr. E”. Find
the work done by the vector field f = cos θr̂r −
r sin θr̂θ − 5rr̂z acting along the positive oriented
contour consisting of four curve segments repre-
sented on the figure on the right

(a) directly, (b) using Stokes’ Theorem.

Solutions. (a) Note that the curve consists of four parts C1, C2, C3 and C4.
On C1, r = 2, z = 0 and 0 ≤ θ ≤ π

2
. Hence dr = 0, dz = 0 and so dr = rdθr̂θ. Hence, f · dr =

−r sin θr̂θ · rdθr̂θ = −r2 sin θdθr̂θ · r̂θ = −4 sin θdθ. So,
∫
C1

=
∫ π/2

0
−4 sin θdθ = −4.

On C2, x = 0, z = 0 and y : 2 → 0. In cylindrical coordinates, x = 0 ⇒ cos θ = 0 ⇒ θ = π
2
, so

y = r sin θ = r with r : 2 → 0. Since θ and z are constant, dθ = 0, dz = 0 and so dr = drr̂r. Hence
f · dr = cos θdr(r̂r · r̂r) = cos θdr = 0 since θ = π

2
. So,

∫
C2

= 0.

On C3, y = 0, z = x and x : 0 → 2. In cylindrical coordinates, y = 0 ⇒ sin θ = 0 ⇒ θ = 0,
z = x = r cos θ = r cos π

2
= r and so r : 0→ 2. Hence dθ = 0, dz = dr and so dr = drr̂r + drr̂z. Thus,

f · dr = cos θ dr − 5r dr = dr − 5r dr. So,
∫
C3

=
∫ 2

0
dr − 5rdr = 2− 10 = −8.

On C4, x = 2, y = 0, and z = z. In cylindrical coordinates, y = 0⇒ θ = 0 and so 2 = x = r cos θ =
r. Hence dθ = 0, dr = 0 and so dr = dzr̂z, z : 2 → 0. Thus, f · dr = −5rr̂z · dzr̂z = −5rdz = −10dz
since r = 2. So,

∫
C4

=
∫ 0

2
−10dz = −10(−2) = 20.

Hence, the total work done is −4 + 0− 8 + 20 = 8.

(b) In order to use Stokes’ Theorem, calculate the curl to be curlf = 1
r

∣∣∣∣∣∣
r̂r rr̂θ r̂z
∂
∂r

∂
∂θ

∂
∂z

cos θ −r2 sin θ −5r

∣∣∣∣∣∣ =

1
r
(5rr̂θ − 2r sin θr̂z + sin θr̂z) = 5r̂θ − 2 sin θr̂z + 1

r
sin θr̂z.

Let S1 denote the quarter of the disc of radius 2 in the first quadrant of the xy-plane and S2

denote the triangle in xz-plane with vertices (0,0), (2,2) and (2,0).
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On S1, z = 0 and so dz = 0. Thus, dS = rdrdθr̂z, curlf · dS = (−2 sin θr̂z + 1
r

sin θr̂z) · rdrdθr̂z =
−2r sin θdrdθ + sin θdrdθ = (−2r sin θ + sin θ)drdθ and so∫ ∫

S

curlf · dS =

∫ π/2

0

∫ 2

0

(−2r sin θ + sin θ) dr dθ =

∫ π/2

0

(−4 sin θ + 2 sin θ) dθ = −4 + 2 = −2.

On S2, y = 0 and so sin θ = 0⇒ θ = 0. Hence, θ is constant and dθ = 0. Thus, dS = drdzr̂θ and
curlf · dS = 5r̂θ · drdzr̂θ = 5drdz. Since x = r cos θ = r and 0 ≤ x ≤ 2, we have that the bounds for
r are 0 ≤ r ≤ 2. Since 0 ≤ z ≤ x are the bounds for z and x = r, we have that the bounds for z are
0 ≤ z ≤ r so you have to integrate with respect to z first. Alternatively, you can also have 0 ≤ z ≤ 2
and z ≤ x = r ≤ 2 in which case you have to integrate with respect to r first.

With 0 ≤ r ≤ 2 and 0 ≤ z ≤ r,∫ ∫
S

curlf · dS =

∫ 2

0

∫ r

0

5drdz =

∫ 2

0

5rdr = 5
r2

2

∣∣∣∣2
0

= 5(2) = 10.

Thus the total work done is
∫ ∫

S1
+
∫ ∫

S2
= −2 + 10 = 8.

General curvilinear coordinates

Consider a general substitution

r = (x(u1, u2, u3), y(u1, u2, u3), z(u1, u2, u3))

of r = (x, y, z) with partial derivatives

ru1 = (xu1 , yu1 , zu1), ru2 = (xu2 , yu2 , zu2), and ru3 = (xu3 , yu3 , zu3).

If these three vectors are mutually orthogonal, they determine an orthogonal curvilinear coor-
dinate system. Let us order the vectors so that ru1 × ru2 has the same sense as ru3 .

Let us use h1, h2, h3 to denote the lengths of the three vectors above. Normalizing the three
partial derivative produces

r̂u1 =
1

h1

ru1 , r̂u2 =
1

h2

ru2 , and r̂u3 =
1

h3

r̂u3 .

The above relations and the relation dr = ru1du1 + ru2du2 + ru3du3 produce the formula for dr
below.

dr = h1r̂u1du1 + h2r̂u2du2 + h3r̂u3du3.

The product of the coefficients h1du1, h2du2, and h3du3 with three vectors r̂u1 , r̂u2 , and r̂u3 computes
the volume element dV in general curvilinear coordinates.

dV = h1h2h3 du1 du2 du3
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Since

r̂u1 =
1

h1

∂

∂u1

r, r̂u2 =
1

h2

∂

∂u2

r, and r̂u3 =
1

h3

∂

∂u3

r

the gradient operator becomes

∇ =
1

h1

∂

∂u1

r̂u1 +
1

h2

∂

∂u2

r̂u2 +
1

h3

∂

∂u3

r̂u3 .

If f is a vector field which can be represented as f = P r̂u1 +Qr̂u2 + Rr̂u3 , it can be shown2 that
the formulas below compute the divergence and the curl of f .

divf = ∇ · f =
1

h1h2h3

∂(h2h3P )

∂u1

+
1

h1h2h3

∂(h1h3Q)

∂u2

+
1

h1h2h3

∂(h1h2R)

∂u3

curlf = ∇× f =
1

h1h2h3

∣∣∣∣∣∣
h1r̂u1 h2r̂u2 h3r̂u3
∂
∂u1

∂
∂u2

∂
∂u3

h1P h2Q h3R

∣∣∣∣∣∣
These general formulas can be used for demonstrating the validity of the corresponding formulas

in cylindrical and spherical coordinates. For example, for cylindrical coordinates with u1 = r, u2 =
θ, u3 = z, we have that h1 = 1, h2 = r, h3 = 1 so that h1h2h3 = r and the above general formula for
divergence produces

divf = ∇ · f =
1

r

∂(rP )

∂r
+

1

r

∂Q

∂θ
+

1

r

∂(rR)

∂z
=

1

r

∂(rP )

∂r
+

1

r

∂Q

∂θ
+

1

r
r
∂R

∂z
=

1

r

∂(rP )

∂r
+

1

r

∂Q

∂θ
+
∂R

∂z

which agrees with the formula from the section on cylindrical coordinates.
Similarly, for spherical coordinates with u1 = r, u2 = φ, u3 = θ, we have that h1 = 1, h2 = r, h3 =

r sinφ so that h1h2h3 = r2 sinφ and the general formula for divergence produces

divf = ∇ · f =
1

r2 sinφ

∂(r2 sinφP )

∂r
+

1

r2 sinφ

∂(r sinφQ)

∂φ
+

1

r2 sinφ

∂(r R)

∂θ
=

1

r2

∂(r2 P )

∂r
+

1

r sinφ

∂(sinφQ)

∂φ
+

1

r sinφ

∂R

∂θ

which agrees with the formula from the section on spherical coordinates.
One can check that the general formula for curl of a vector field produces earlier formulas for the

curl of a vector field in cylindrical and spherical coordinates also.

2One of the project topics focuses on the proof of this.
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