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How it all started?

At the conference at the Ohio U. in Athens, March 2005.

T. Y. Lam asked a question...



Lam’s Question

Which von Neumann algebras are
clean as rings?

I Background on VNAs and VNA-like rings.

I Background on clean rings.

I Introducing stars: *-cleanness.

I A class of VNAs is (almost) clean – idea of the proof.



The story of von Neumann Algebra begins...

John von Neumann’s dream – to capture abstractly the
concept of an algebra of observables in quantum mechanics.

I He constructed a non-commutative generalization of
Hilbert space/ probability theory.

I Captured all the types of
non-commutative measures
that occur: (1) in classical
theory, (2) in quantum
systems (infinite in size or in
degrees of freedom).

I Dimension function:
Corresponds to normalized
measure.



VNA - damsel in distress

H – Hilbert space

B(H) – bounded operators.

A von Neumann algebra A is a

1) ∗-closed unital subalgebra of B(H),

2a) equal to its double commutant A′′
(where A′ = {x ∈ B(H) | ax = xa
for all a ∈ A})

equivalently

2b) weakly closed in B(H).



Five Types

finite, discrete If “sum” of In with µ on {1, 2, . . . , n}

infinite, discrete I∞ µ on {1, 2, . . .}

finite, continuous II1 µ on [0,1]

infinite, continuous II∞ µ on R

very infinite III µ on {0,∞}



Examples

In B(H), dim(H) = n “finite matrices”

I∞ B(H), dim(H) =∞ “infinite matrices”

group VNA for G “very infinite and nonabelian”
II1 G -invariant operators on Hilbert space l2(G )

i.e. f (xg) = f (x)g

II∞ “infinite matrices” over type II1

Types If and II1 are finite von Neumann algebras.



Von Neumann Algebra – in distress

”Von Neumann algebras are blessed with an excess
of structure – algebraic, geometric, topological – so
much, that one can easily obscure, through proof by
overkill, what makes a particular theorem work.”

”If all the functional analysis is stripped away ...
what remains should (be) completely accessible
through algebraic avenues”.

Berberian, S. K. Baer ∗-rings;
Springer-Verlag,
Berlin-Heidelberg-New York,
1972.



The overkill

The overkill that Berberian is referring to:

a mosquito a machine gun



Law and Order – Enter the Rings

Von Neumann: studied lattice of
projections. Led him to
von Neumann regular rings.

Kaplansky’s dream: to axiomatize (at
least part of) the theory of VNAs.
Followed similar path as von Neumann
(looked at projections, idempotents,
annihilators) – ended up defining
Baer ∗-rings and AW ∗-algebras.



The Knight in shining armor – Baer ∗-Ring

Baer ring – every right annihilator is
generated by an idempotent.

Baer ∗-ring – every right annihilator is
generated by a projection.

AW∗-algebra – Baer ∗-ring that is also
a C ∗-algebra.

AW∗ generalizes VNA’s; Baer ∗
generalizes AW∗.



Finite “Von-Neumann-algebra-like“ – Six Axioms

A1 A Baer ∗-ring R is finite if x∗x = 1 implies xx∗ = 1 for
all x ∈ R .

A2 R satisfies existence of projections and unique
positive square root axioms.

A3 Partial isometries are addable.

A4 R is symmetric: for all x ∈ R , 1 + x∗x is invertible.

A5 There is a central element i ∈ R such that i2 = −1 and
i∗ = −i .

A6 R satisfies the unitary spectral axiom (if unitary u is
such that annr (1− u) is sufficiently small, then 1− u is
locally invertible in a sequence of subrings that converge
to R).



What do A1 – A6 bring?

Berberian: R can be embedded in a

unit-regular ring Q

satisfying A1–A6, having

the same projections

as R .

Moreover, R is Ore and Qcl(R) = Q = Qmax(R).



The story of clean rings begins...

Original Mr. Clean – Keith Nicholson
Nicholson introduced clean rings in 1977.

Ohio U., Zanesville, 2007.



Clean Rings

A ring R is clean if

every element = unit + idempotent

Additive version of unit-regular.

Examples: Unit-regular, local,
semiperfect...

Non-examples: Z, R[x ] for R
commutative, not all regular
(”Bergman example“)...



Von-Neumann-algebra-like rings – ”The Idea“

Recall that a VNA-like R has a unit-regular ring of quotients
Q with same projections.

Go up:
a ∈ Q

−→ Have: a = u + e, e idempotent
Want: a = u + p, p projection

↑ ↓

Start here:
a ∈ R

p ∈ R and so u = a − p ∈ R
End with: a = u + p in R



Almost Clean Rings

A ring R is almost clean if

element = regular el. + idempotent

Additive version of (abelian) Rickart.

Examples: clean, abelian Rickart,...

Z is almost clean and not clean.

Non-examples: Couchot’s paper.



Introducing stars

Von Neumann algebras (and von-Neumann-algebra-like rings)
are ∗-rings (have involution).

Involution ∗ : is additive, (xy)∗ = y ∗x∗, and (x∗)∗ = x .

For ∗-rings projections
take over the role of idempotents.

I Baer becomes Baer *-ring,

I Rickart becomes Rickart *-ring,

I regular becomes *-regular.

I So clean should become...



*-clean

A *-ring R is *-clean if

element = unit + projection

A *-ring R is almost *-clean if

element = regular el. + projection

Some corollaries:

1. (Almost) *-clean implies (almost) clean.

2. If R is *-clean, Mn(R) is *-clean.

3. *-regular and abelian implies *-clean.



Von-Neumann-algebra-like rings are almost clean

Type In Baer *-rings that satisfying A2:

I R *-isomorphic to Mn(Z (R)),

I Z (Q) is abelian and *-regular so it is *-clean.

I Thus, Mn(Z (Q)) ∼= Q is *-clean.

I R is almost *-clean.

Type If Baer *-rings that satisfying A2–A6:

I There are central orthogonal projections pn such that pnR
is of type In.

I Q is the direct product of pnQ.

I Rings pnQ are *-clean so Q is *-clean.

I R is almost *-clean.

Corollary: If R is regular, then Q = R and R is *-clean.



Back to Lam’s question

Corollary.

An AW ∗-algebra (in particular von Neumann
algebra) of type If is almost ∗-clean.

If it is regular, then it is ∗-clean.

Other types?

Example. Let G =
∏

n Gn, where Gn are finite.

Then NG is *-clean.

I If just finitely many Gn are not abelian, G is type If .

I If not, then NG is not type If .



Questions

1. Other types? Are type II1 von Neumann algebras
(almost) clean? Good start: consider NG for G = Z ∗ Z.

2. Clean and not *-clean? Is there a *-ring that is clean
but not *-clean? Known: No such example for abelian
Rickart *-rings.

3. Strongly clean? Can “clean” (or “*-clean”) be replaced
by “strongly clean”?
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