Some Clean and Almost Clean Von-Neumann-algebra-like rings Lia Vaš

University of the Sciences in Philadelphia

Mr. Clean meets the stars

How it all started?

At the conference at the Ohio U. in Athens, March 2005.

T. Y. Lam asked a question...

Which von Neumann algebras are clean as rings?

- Background on VNAs and VNA-like rings.
- Background on clean rings.
- Introducing stars: *-cleanness.
- ► A class of VNAs is (almost) clean idea of the proof.

The story of von Neumann Algebra begins...

John von Neumann's dream – to capture abstractly the concept of an algebra of observables in quantum mechanics.

- He constructed a non-commutative generalization of Hilbert space/ probability theory.
- Captured all the types of non-commutative measures that occur: (1) in classical theory, (2) in quantum systems (infinite in size or in degrees of freedom).
- Dimension function: Corresponds to normalized measure.

VNA - damsel in distress

- H Hilbert space
- $\mathcal{B}(H)$ bounded operators.
- A von Neumann algebra \mathcal{A} is a 1) *-closed unital subalgebra of $\mathcal{B}(H)$,
- 2a) equal to its double commutant \mathcal{A}'' (where $\mathcal{A}' = \{x \in \mathcal{B}(\mathcal{H}) \mid ax = xa$ for all $a \in \mathcal{A}\}$)

equivalently

2b) weakly closed in $\mathcal{B}(H)$.

Five Types

finite, discrete	l _f	"sum" of I_n with μ on $\{1, 2, \ldots, n\}$
infinite, discrete	I_{∞}	μ on $\{1,2,\ldots\}$
finite, continuous	<i>II</i> 1	μ on [0,1]
infinite, continuous	II_{∞}	μ on ${\mathbb R}$
very infinite	111	μ on $\{0,\infty\}$

Examples

I _n	$\mathcal{B}(H), \;\; dim(H) = n \;\;$ "finite matrices"
I_{∞}	$\mathcal{B}(H),\;\; dim(H) = \infty\;\;$ "infinite matrices"
111	group VNA for G "very infinite and nonabelian" G-invariant operators on Hilbert space $l^2(G)$ i.e. $f(xg) = f(x)g$
II_{∞}	"infinite matrices" over type II_1

Types I_f and II_1 are finite von Neumann algebras.

Von Neumann Algebra – in distress

"Von Neumann algebras are blessed with an excess of structure – algebraic, geometric, topological – so much, that one can easily obscure, through proof by overkill, what makes a particular theorem work."

"If all the functional analysis is stripped away ... what remains should (be) completely accessible through algebraic avenues".

Berberian, S. K. Baer *-rings; Springer-Verlag, Berlin-Heidelberg-New York, 1972.



The overkill that Berberian is referring to:

a mosquito

a machine gun

Law and Order – Enter the Rings

Von Neumann: studied lattice of projections. Led him to von Neumann regular rings.

Kaplansky's dream: to axiomatize (at least part of) the theory of VNAs. Followed similar path as von Neumann (looked at projections, idempotents, annihilators) – ended up defining Baer *-rings and AW*-algebras.

The Knight in shining armor – Baer *-Ring

- **Baer ring** every right annihilator is generated by an idempotent.
- **Baer** *-**ring** every right annihilator is generated by a projection.
- **AW**^{*}-algebra Baer *-ring that is also a C^* -algebra.
- AW* generalizes VNA's; Baer * generalizes AW*.

Finite "Von-Neumann-algebra-like" – Six Axioms

- A1 A Baer *-ring R is **finite** if $x^*x = 1$ implies $xx^* = 1$ for all $x \in R$.
- A2 *R* satisfies **existence of projections** and **unique positive square root** axioms.
- A3 Partial isometries are addable.
- A4 *R* is **symmetric**: for all $x \in R$, $1 + x^*x$ is invertible.
- A5 There is a central element $i \in R$ such that $i^2 = -1$ and $i^* = -i$.
- A6 *R* satisfies the **unitary spectral** axiom (if unitary *u* is such that $\operatorname{ann}_r(1-u)$ is sufficiently small, then 1-u is locally invertible in a sequence of subrings that converge to *R*).

Berberian: R can be embedded in a

unit-regular ring Q

satisfying A1-A6, having

the same projections

as R.

Moreover, R is **Ore** and $Q_{cl}(R) = Q = Q_{max}(R)$.

The story of clean rings begins...

Original Mr. Clean – Keith Nicholson

Nicholson introduced clean rings in 1977.

Ohio U., Zanesville, 2007.

Clean Rings

A ring R is **clean** if

every element = unit + idempotent

Additive version of unit-regular.

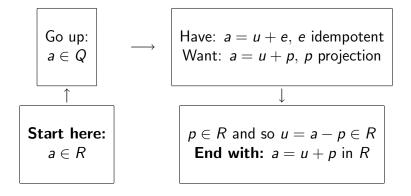
Examples: Unit-regular, local, semiperfect...

Non-examples: \mathbb{Z} , R[x] for R commutative, not all regular ("Bergman example")...

・ロト ・ 雪 ト ・ ヨ ト

Von-Neumann-algebra-like rings – "The Idea"

Recall that a VNA-like R has a **unit-regular** ring of quotients Q with **same projections**.



◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

Almost Clean Rings

A ring R is almost clean if

element = regular el. + idempotent

Additive version of (abelian) Rickart.

Examples: clean, abelian Rickart,...

 $\ensuremath{\mathbb{Z}}$ is almost clean and not clean.

Non-examples: Couchot's paper.

Introducing stars

Von Neumann algebras (and von-Neumann-algebra-like rings) are *-rings (have involution).

Involution *: is additive, $(xy)^* = y^*x^*$, and $(x^*)^* = x$.

For *-rings **projections** take over the role of **idempotents**.

- Baer becomes Baer *-ring,
- Rickart becomes Rickart *-ring,
- ► regular becomes *-regular.
- So clean should become...

イロト イポト イラト イラト

element = unit + projection

A *-ring R is almost *-clean if

element = regular el. + projection

Some corollaries:

- 1. (Almost) *-clean implies (almost) clean.
- 2. If R is *-clean, $M_n(R)$ is *-clean.
- 3. *-regular and abelian implies *-clean.

Von-Neumann-algebra-like rings are almost clean

Type I_n Baer *-rings that satisfying A2:

- R *-isomorphic to $M_n(Z(R))$,
- Z(Q) is abelian and *-regular so it is *-clean.
- Thus, $M_n(Z(Q)) \cong Q$ is *-clean.
- R is almost *-clean.

Type I_f Baer *-rings that satisfying A2–A6:

There are central orthogonal projections p_n such that p_nR is of type I_n.

- ロ ト - 4 回 ト - 4 □ - 4

- Q is the direct product of $p_n Q$.
- Rings $p_n Q$ are *-clean so Q is *-clean.
- *R* is almost *-clean.

Corollary: If R is regular, then Q = R and R is *-clean.

Back to Lam's question

Corollary.

An AW^* -algebra (in particular von Neumann algebra) of type I_f is almost *-clean.

If it is regular, then it is *-clean.

Other types?

Example. Let $G = \prod_n G_n$, where G_n are finite. Then $\mathcal{N}G$ is <u>*-clean</u>.

- If just finitely many G_n are not abelian, G is type I_f .
- ▶ If not, then $\mathcal{N}G$ is not type I_f .

Questions

- 1. **Other types?** Are type II_1 von Neumann algebras (almost) clean? <u>Good start:</u> consider $\mathcal{N}G$ for $G = \mathbb{Z} * \mathbb{Z}$.
- Clean and not *-clean? Is there a *-ring that is clean but not *-clean? <u>Known</u>: No such example for abelian Rickart *-rings.
- 3. **Strongly clean?** Can "clean" (or "*-clean") be replaced by "strongly clean"?

Some references

[Be] Berberian, S. K. Baer *-rings; Springer-Verlag, Berlin-Heidelberg-New York, 1972.

[Lu] Lück, W. L^2 -invariants: Theory and Applications to Geometry and K-theory, Springer-Verlag, Berlin, 2002.

[Va1] L. Vaš, Dimension and Torsion Theories for a Class of Baer *-Rings, Journal of Algebra 289 (2005) no. 2, 614–639.

[Va2] L. Vaš, *-Clean Rings; Some Clean and Almost Clean Baer *-rings and von Neumann Algebras, submitted for publication.

Preprints of my papers are available on http://www.usp.edu/~lvas and on arXiv.

