Classes of Almost Clean rings

Lia Vaš University of the Sciences in Philadelphia

Mr. Almost Clean

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The story of clean rings begins...

Original Mr. Clean – Keith Nicholson

Nicholson introduced clean rings in 1977.

Ohio U., Zanesville, 2007.

Clean Rings

A ring R is **clean** if

every element = unit + idempotent

Additive version of unit-regular.

Examples: Unit-regular, local, semiperfect...

Non-examples: \mathbb{Z} , R[x] for R commutative, not all regular ("Bergman example")...

・ロト ・ 雪 ト ・ ヨ ト

How it all started for me?

At the conference at Ohio Univ., in Athens, OH, March 2005.

T. Y. Lam asked a question...

Which von Neumann algebras are clean as rings?

Von Neumann algebras – "The Idea"

A VNA R has a **unit-regular** ring of quotients Q with the **same projections**.

Two problems: (1) want idempotent, have projection; (2) u may not be unit in R.

Fix for (2) – Almost Clean Rings

A ring R is almost clean if

element = regular el. + idempotent

Additive version of (abelian) Rickart.

Examples: clean, abelian Rickart,...

 $\ensuremath{\mathbb{Z}}$ is almost clean and not clean.

Non-examples: Couchot's paper.

Fix for (1) – Introducing stars

Von Neumann algebras are *-rings (have involution). Involution * : is additive, $(xy)^* = y^*x^*$, and $(x^*)^* = x$.

For *-rings **projections** take over the role of **idempotents**.

- Baer becomes Baer *-ring,
- Rickart becomes Rickart *-ring,
- ▶ regular becomes *-regular.

So clean should become...

A *-ring R is *-clean if

element = unit + projection

A *-ring R is almost *-clean if

element = regular el. + projection

Using this concept, I could show that:

An AW^* -algebra (in particular von Neumann algebra) of type I_f is almost *-clean.

It works for **any** ring that has a clean overing with the same idempotents.

◆□▶ ◆圖▶ ◆필▶ ◆필▶ - ヨー のへで

Exploring "The Idea" with Evrim Akalan

- *R* r. quasi-continuous ⇒
 E(*R*) and *R* have same idempotents.
- ► R r. quasi-continuous + r. nonsingular \Rightarrow

 $E(R) = Q_{\max}^{r}(R)$ is clean, has same idempotents as R.

So,

R is almost clean.

Less obvious: works for modules as well.

Work with Evrim continued: C1 – C3 conditions

- R. quasi-continuous = C1 + C3.
- C1 = r. CS (or r. extending).
 CS is for "complements are summands".
- ► R. continuous = C1 + C2. $C2 \Rightarrow C3$ so.

right continuous \Rightarrow r. quasi-continuous \Rightarrow right CS.

C1–C3 situation. Module case.

Let $f \in End(M)$ be arbitrary, $e \in End(M)$ be idempotent.

・ロト ・ 雪 ト ・ ヨ ト

э

C1, C3 situation. Ring case.

Let $a \in R$ be arbitrary, $e \in R$ be idempotent.

Thus,

Right CS + right nonsingular \Rightarrow almost clean.

Corollary:

Finite AW*-algebras are almost clean.

Camillo-Khurana Theorem and special clean

Camillo-Khurana:

$$\begin{array}{c} \text{unit-regular} \\ a = eu \end{array} \longleftrightarrow \begin{array}{c} \text{special clean} \\ a = e + u, \ aR \cap eR = 0 \end{array}$$

Almost clean – Rickart connection:

Rickart
$$a = er$$
abelian
 \longleftrightarrow special almost clean
 $a = e + r, aR \cap eR = 0$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙

Known:

- 1. Left and right nonsingular, left and right CS \Rightarrow Rickart.
- 2. Right nonsingular, right CS ring \Rightarrow right Rickart.

Uniqueness

Adapting the results to *-rings

(日) 日

Questions

- 1. Weaken abelian? Cannot completely drop it: End(V), V inf. dim., is Rickart and not special almost clean.
- 2. Condition (C): Any essential mono is an iso.

3. **VNAs?** For AW^* -algebras: finite, type $I \longrightarrow \text{finite}$ $\downarrow \qquad \qquad \downarrow$ almost *-clean \longrightarrow almost clean

Some references

L. Vaš, *-Clean Rings; Some Clean and Almost Clean Baer *-rings and von Neumann Algebras, *Journal of Algebra*, 324 (12) (2010), 3388 – 3400.

E. Akalan, L. Vaš, Classes of almost clean rings, *Algebras and Representation Theory*, in print.

Preprints of these papers are available on http://www.usciences.edu/~lvas and on arXiv.