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Abstract

Many known results on finite von Neumann algebras are generalized, by purely
algebraic proofs, to a certain class C of finite Baer *-rings. The results in this paper
can also be viewed as a study of the properties of Baer *-rings in the class C.

First, we show that a finitely generated module over a ring from the class C
splits as a direct sum of a finitely generated projective module and a certain torsion
module. Then, we define the dimension of any module over a ring from C and prove
that this dimension has all the nice properties of the dimension studied in [11] for
finite von Neumann algebras. This dimension defines a torsion theory that we prove
to be equal to the Goldie and Lambek torsion theories. Moreover, every finitely
generated module splits in this torsion theory.

If R is a ring in C, we can embed it in a canonical way into a regular ring Q
also in C. We show that K0(R) is isomorphic to K0(Q) by producing an explicit
isomorphism and its inverse of monoids Proj(P ) → Proj(Q) that extends to the
isomorphism of K0(R) and K0(Q).
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1 Introduction

This paper is motivated by the remark of Sterling K. Berberian from the
introduction to his book [2] on Baer *-rings: ”The subject of Baer *-rings
has its roots in von Neumann theory of ’rings of operators’ (now called von
Neumann algebras) ... Von Neumann algebras are blessed with an excess of
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structure – algebraic, geometric, topological – so much, that one can easily
obscure, through proof by overkill, what makes a particular theorem work.”
Relying just on algebra, we generalize some results from [11], [17] and [18]
to a certain class of finite Baer-* rings that contains the class of all finite
von Neumann algebras. The proofs in [11] rely on some of the geometric or
topological structure of finite von Neumann algebras. All proofs in this paper
rely strictly on algebraic properties. We follow Berberian’s idea: ”if all the
functional analysis is stripped away ... what remains should (be) completely
accessible through algebraic avenues”.

We impose some restrictions onto the Baer *-ring R that are sufficient for
defining the dimension function, the regular ring of R, and ensuring that all the
matrix algebras over R are sufficiently nice (we need the lattice of projections
of all the matrix algebras to be complete). In Section 2, we list the axioms
imposed onto the Baer *-ring. These axioms are the same ones Berberian uses
in [2] in order to ensure that the matrix rings over R are Baer *-rings. Baer
*-rings that satisfy those axioms form a class that we shall denote by C. Every
finite AW ∗-algebra (so a finite von Neumann algebra in particular) is in C.

As in [17], torsion theories are used to study the modules over the rings of
interest. In Section 3, we recall the definition of an arbitrary torsion theory
and some related notions. Then we list the examples of torsion theories we
shall use in the rest of the paper (Lambek, Goldie, classical, etc.).

In Section 4, we prove the main results. First, we show that a finitely generated
module over a ring from class C splits as a direct sum of a finitely generated
projective module and a certain torsion module (Theorem 11). This generalizes
an analogous result for finite von Neumann algebras proven in [11].

Secondly, if R is a ring from the class C, we prove (Theorem 17) that a dimen-
sion of any R-module can be defined so that it has all the nice properties of the
dimension defined in [11] (i.e. we prove that Theorem 0.6 from [11] holds for
the class C). This dimension defines a torsion theory that proves to be equal to
the Goldie and Lambek torsion theories and every finitely generated module
splits in this torsion theory (Theorem 19). In Theorem 23, we demonstrate
how the torsion theories reflect the ring-theoretic properties of R.

If R is a finite von Neumann algebra, our construction gives us precisely
the central-valued dimension considered in [10] for finitely presented mod-
ules. Moreover, Theorem 17, guarantees that we can extend the definition to
any R-module. Thus, in the case of finite von Neumann algebras, we can define
the real-value dimension (as in [11] or [12]) and the central-valued dimension.
In Section 5, we show that both dimensions define the same torsion theory
(Corollary 24). Thus, our Theorem 19 generalizes Proposition 4.2 from [17].

In Section 5 we also generalize Theorem 5.2 from [17] and show that K0 of R
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is isomorphic to K0 of the regular ring Q of R. Specifically, in Corollary 25,
we show that the map µ : Proj(R) → Proj(Q) given by [P ] 7→ [P ⊗R Q] is
the isomorphism of monoids with the inverse [S] 7→ [S ∩ Rn] if S is a direct
summand of Qn, and that µ induces the isomorphism K0(R) ∼= K0(Q).

2 Class C of Baer *-Rings

2.1 Basics.

Let R be a ring. R is a *-ring (or ring with involution) if there is an operation
∗ : R→ R such that

(x+ y)∗ = x∗ + y∗, (xy)∗ = y∗x∗, (x∗)∗ = x for all x, y ∈ R.

If R is also an algebra over k with involution ∗, then R is an *-algebra if
(ax)∗ = a∗x∗ for a ∈ k, x ∈ R.

An element p of a *-ring R is called a projection if p is idempotent (p2 = p)
and self-adjoint (p∗ = p). There is a partial ordering on the set of projections
of R defined by p ≤ q iff p = pq. The following conditions are equivalent p ≤ q;
p = qp; pR ⊆ qR; Rp ⊆ Rq.

There is an equivalence relation on the set of projections of a *-ring R defined
by p ∼ q iff w∗w = p and ww∗ = q for some w ∈ R. Such an element w is
called a partial isometry.

Define another relation on the set of projections of a *-ring R : p � q, if p is
equivalent to a subprojection of q (i.e. p ∼ r ≤ q for some projection r). The
relation � is reflexive and transitive.

A Rickart *-ring is a *-ring R such that, for every x ∈ R, the right annihilator
annr(x) = {y ∈ R | xy = 0} is generated by a projection p

annr(x) = pR.

The projection p from the above definition is unique. Also, if R is a Rickart
*-ring, the left annihilator of each element x of R is Rq for some (unique)
projection q since annl(x) = (annr(x

∗))∗.

Every element x of a Rickart *-ring R determines a unique projection p such
that xp = x and annr(x) = annr(p) = (1−p)R and a unique projection q such
that qx = x and annl(x) = annl(q) = R(1− q). p is called the right projection
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of x and is denoted by RP(x). q is the left projection of x and is denoted by
LP(x).

The involution in every Rickart *-ring is proper: x∗x = 0 implies x = 0 (Propo-
sition 2, p. 13, [2]). From this condition it easily follows that a Rickart *-ring is
a nonsingular ring (since in a proper *-ring R annr(x)∩x∗R = 0 for all x ∈ R).
Let us also recall that a *-ring is called n-proper if x∗1x1 +x∗2x2 + . . .+x∗nxn = 0
imply x1 = x2 = . . . = xn = 0. It is easy to see that a *-ring R is n-proper if
and only if the ring of n× n matrices over R is proper.

The projections in a Rickart *-ring form a lattice (Proposition 7, p. 14 in [2]).

A Rickart C∗-algebra is a C∗-algebra (complete normed complex algebra with
involution such that ||a∗a|| = ||a||2) that is also a Rickart *-ring.

A Baer *-ring is a *-ring R such that, for every nonempty subset S of R, the
right annihilator annr(S) = {y ∈ R | xy = 0 for all x ∈ S} is generated by a
projection p

annr(S) = pR.

Since annl(S) = (annr(S
∗))∗, it follows that annl(S) = Rq for some projection

q.

A *-ring is Baer *-ring if and only if it is Rickart *-ring and the lattice of
projections is complete (Proposition 1, p. 20, [2]).

If R is a Baer *-ring and {pi|i ∈ I} is a nonempty family of projections in R,
then

(inf
i∈I

pi)R =
⋂
i∈I
piR (1)

This is an easy exercise (Exercise 1A in [2]).

A C∗-algebra that is a Baer *-ring is called an AW ∗-algebra.

If H is a Hilbert space and B(H) the algebra of bounded operators on H, then
B(H) is an AW ∗-algebra. If A is a ∗-subalgebra of B(H) such that A = A′′

where A′ is the commutant of A, then A is called a von Neumann algebra.

A von Neumann algebra is an AW ∗-algebra ([2], Proposition 9). The converse
is not true (see [5]) namely there is an AW ∗-algebra that cannot be represented
as a von Neumann algebra on any Hilbert space.

2.2 Dimension.

We now focus our attention on a special class of Baer *-rings.
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(A1) A Baer *-ring R is finite if x∗x = 1 implies xx∗ = 1 for all x ∈ R.

The Baer *-ring R satisfies the generalized comparability (GC) axiom if: for
every two projections p and q, there is a central projection c such that

cp � cq and (1− c)q � (1− c)p.

We are interested in finite Baer *-rings with (GC) because of the dimension
function that we can define on the set of all projections. Let R be a finite Baer
∗-ring with (GC). Let Z denote the center of R. The projection lattice P (Z)
of Z is a complete Boolean algebra and, as such, may be identified with the
Boolean algebra of closed-open subspaces of a Stonian space X. The space
X can be viewed as the set of maximal ideals in P (Z); p ∈ P (Z) can be
identified with the closed-open subset of X that consist of all maximal ideals
that exclude p.

The algebra C(X) of continuous complex-valued functions on X is a com-
mutative AW ∗-algebra. An element p ∈ P (Z) can be viewed as an element
of C(X) by identifying p with the characteristic function of the closed-open
subset of X to which p corresponds.

If R is an AW ∗-algebra, then Z is the closed linear span of P (Z) and we may
identify Z with C(X).

For more details on this construction, see [2].

Theorem 1 If R is a finite Baer ∗-ring that satisfies (GC), then there exist
unique a function d : P (R)→ C(X) such that

(D1) p ∼ q implies d(p) = d(q),
(D2) D(p) ≥ 0,
(D3) d(c) = c for every c ∈ P (Z),
(D4) pq = 0 implies d(p+ q) = d(p) + d(q).

The function D will be called the dimension function. It satisfies the following
properties:

(D5) 0 ≤ d(p) ≤ 1,
(D6) d(cp) = cd(p) for every c ∈ P (Z),
(D7) d(p) = 0 iff p = 0,
(D8) p ∼ q iff d(p) = (q),
(D9) p � q iff d(p) ≤ d(q),

(D10) If pi is an increasingly directed family of projections with supremum p, then
d(p) = sup d(pi),

(D11) If pi is an orthogonal family of projections with supremum p, then d(p) =∑
d(pi).
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Chapter 6 of [2] is devoted to the proof of this theorem.

2.3 The Regular Ring of R

Next, we would like to be able to enlarge our Baer *-ring to a regular Baer
*-ring. Recall that a ring Q is regular if, for every x ∈ Q there is y ∈ Q such
that xyx = x. Equivalently, a ring is regular if every right (left) module is
flat. A regular ring can also be characterized by the condition that all finitely
presented right modules are projective.

If Q is a regular Rickart *-ring and x ∈ Q, then xQ = pQ for some projection
p ∈ Q (Proposition 3, p. 229 in [2]).

Every finite von Neumann algebra A can be enlarged (in a canonical way)
to a regular ring Q of certain unbounded operators affiliated (densely defined
and closed) with A. In chapter 8 of [2], this construction is generalized for a
certain class of finite Baer *-rings. The conditions that we must impose onto
a finite Baer *-ring R in order to be able to follow this construction are the
following:

(A2) R satisfies existence of projections (EP)-axiom: for every 0 6= x ∈ R, there
exist an self-adjoint y ∈ {x∗x}′′ such that (x∗x)y2 is a nonzero projection;
R satisfies the unique positive square root (UPSR)-axiom: for every x ∈ R

such that x = x∗1x1+x∗2x2+. . .+x∗nxn for some n and some x1, x2, . . . , xn ∈ R
(such x is called positive), there is a unique y ∈ {x∗x}′′ such that y2 = x
and y positive. Such y is denoted by x1/2.

(A3) Partial isometries are addable.
(A4) R is symmetric: for all x ∈ R, 1 + x∗x is invertible.
(A5) There is a central element i ∈ R such that i2 = −1 and i∗ = −i.
(A6) R satisfies the unitary spectral (US)-axiom: for each unitary u ∈ R such that

RP(1− u) = 1, there exist an increasingly directed sequence of projections
pn ∈ {u}′′ with supremum 1 such that (1 − u)pn is invertible in pnRpn for
every n.

(A7) R satisfies the positive sum (PS)-axiom; if pn is orthogonal sequence of
projections with supremum 1 and an ∈ R such that 0 ≤ an ≤ fn, then there
is a ∈ R such that apn = an for all n.

By Theorem 1, p. 80, from [2], the generalized comparability (GC) follows from
(A2). Thus, all the Baer *-rings satisfying (A1) and (A2) have the dimension
function.

In the presence of (A2), the notion of positivity can be simplified so that x ∈ R
is positive if and only if x = y∗y for some y ∈ R.

6



(A2) – (A5) imply that R is n-proper (Lemma, p. 227 in [2]).

Theorem 2 If R is a Baer *-ring satisfying (A1)– (A7), then there is a
regular Baer *-ring Q satisfying (A1) – (A7) such that R is *-isomorphic to
a *-subring of Q, all projections, unitaries and partial isometries of Q are in
R, and Q is unique up to *-isomorphism.

If R is also an algebra over involutive field F , then so is Q.

This result is contained in Theorem 1, p. 217, Theorem 1 and Corollary 1 p.
220, Corollary 1, p. 221, Theorem 1 and Corollary 1 p. 223, Proposition 3 p.
235, Theorem 1 p. 241, Exercise 4A p. 247 in [2].

A ring Q as in Theorem 2 is called the regular ring of Baer *-ring R.

Proposition 3 If R is a Baer *-ring satisfying (A1)– (A7) with Q its regular
ring, then

(1) Q is the classical ring of quotients Qcl(R) of R.
(2) Q is the maximal ring of quotients Qmax(R) of R and, thus, self-injective

and equal to the injective envelope E(R) of R.

PROOF. 1. First, let us show that x ∈ R is a non-zerodivisor if and only if
it is invertible in Q. It is easy to see that x ∈ R that is invertible in Q cannot
have nontrivial left and right annihilators. Conversely, if x does not have a
right inverse, then the right annihilator of x in Q is nontrivial. Since Q is
Rickart, there is a nontrivial projection p that generates the right annihilator.
But p is in R by Theorem 2. Thus, xp = 0. The proof for the left handed
version is similar.

By Proposition 5, p. 241 of [2], for every x ∈ Q there is a partial isometry
w ∈ R such that x = w(x∗x)1/2. (x∗x)1/2 is positive and thus self-adjoint. By
Proposition 2, p. 228 [2], there is a unitary u such that 1−u is invertible in Q
and (x∗x)1/2 = i(1 + u)(1− u)−1. But u is in R by Theorem 2, so 1− u ∈ R.
Thus, every element x ∈ Q can be represented as the right fraction x = at−1,
a = wi(1 + u) ∈ R, t = 1− u ∈ R.

This proves the right Ore condition for R. Applying involution, we have the
left Ore condition. Since the non-zerodivisors of R are invertible in Q, the iso-
morphism of Q and Qcl(R) exists because of the universal property of Qcl(R).
It is easy to check that the isomorphism is a *-isomorphism.

2. In [13], a *-extension of a finite Baer *-ring is constructed that is (under
suitable assumptions) *-isomorphic to the maximal ring of quotients ([13],
Theorem 5.2) and *-isomorphic to the regular ring of that finite Baer *-ring
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([13], Theorem 5.3) with *-isomorphisms that fix the original ring. Thus, to
prove part 2. it is sufficient to show that R satisfies all the assumptions of
Theorems 5.2 and 5.3 from [13].

The assumptions for Theorem 5.2 are that the Baer *-ring is finite (given by
(A1)), every nonzero right ideal contains a nonzero projection (guaranteed
by EP, thus (A2)), LP ∼ RP (which follows from (A2) by Corollary, p. 131
[2]) and certain condition called Utumi’s condition. By Corollary 3.7 from [13],
Utumi’s condition is satisfied for every Baer *-ring that is finite (A1), 2-proper
(we have shown that (A2)-(A5) imply n-proper for any positive n) and that
(EP) and (SR) hold. (SR) is an axiom that follows from (A2) and (A3) (see
Exercise 7C p. 131, [2]). Thus, all the assumptions are satisfied by R.

The assumptions for Theorem 5.3 are the same as (A1) – (A6) with the ex-
ception that (UPSR) in (A2) is replaced by (SR). But (SR) follows from (A2)
and (A3) and thus the assumptions of Theorem 5.3 hold for R. 2

2.4 Matrix Rings over R

Let Mn(R) denotes the ring of n× n matrices over R.

If R is a Baer *-ring, the lattice of projections of R is complete. In order to
ensure the completeness of lattice of projections of Mn(R) it is necessary for
Mn(R) to be Baer. To ensure that we need two more axioms.

(A8) Mn(R) satisfies the parallelogram law (P): for every two projections p and
q,

p− inf{p, q} ∼ sup{p, q} − q.
(A9) Every sequence of orthogonal projections in Mn(R) has a supremum.

If Q is a regular ring of Baer *-ring R that satisfies (A1)– (A9), then Mn(Q)
is a regular Rickart *-ring that has the same projections, unitaries and partial
isometries as Mn(R) (Propositions 2 and 3, p. 250 in [2]). Thus, Q satisfies
(A1) – (A7) by Theorem 2 and statements (A8) and (A9) are true in Mn(Q)
(they are statements about projections and the projections in Mn(Q) and
Mn(R) are the same). Thus, Q satisfies (A1)– (A9).

Theorem 4 If R is a Baer *-ring satisfying (A1)– (A9), then Mn(R) is a
finite Baer *-ring with (GC).

If Q is a regular Baer *-ring satisfying (A1)– (A9), then Mn(Q) is a regular
Baer *-ring.

This result is Theorem 1 and Corollary 2, p. 262 in [2].
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Corollary 5 (1) If R is a Baer *-ring satisfying (A1) – (A7), then Mn(R)
is semihereditary (i.e., every finitely generated submodule of a projective
module is projective or, equivalently, every finitely generated ideal is pro-
jective) for every positive n.

(2) If R is a Baer *-ring satisfying (A1) – (A9), then the lattice of projections
of Mn(R) is complete for every positive n.

PROOF. 1. (A1) – (A7) guarantees that Mn(R) is a Rickart *-ring (Theorem
1, p. 251 in [2]).

A ring is right semihereditary if and only if the algebra of n × n matrices is
right Rickart for every positive n (see e.g. Proposition 7.63 in [9]). Note that
this result has a corollary that if R is right semihereditary, then Mn(R) is
right semihereditary for every positive n (simply identify Mm(Mn(R)) with
Mmn(R) and use the result).

Thus, Mn(R) is semihereditary for every positive n.

2. Since every Baer *-ring has a complete lattice of projections, this is a simple
corollary of the fact that Mn(R) is a Baer *-ring. 2

Definition 6 Let C be the class of Baer *-rings that satisfy the axioms (A1)
– (A9.)

Every finite AW ∗-algebra satisfies the axioms (A1) – (A9) (remark 1, p. 249
in [2]). Thus, the class C contains the class of all finite AW ∗-algebras and, in
particular, all finite von Neumann algebras.

3 Torsion Theories

To study the properties of the class C, we shall use a notion that will facilitate
the understanding of modules over a ring from C.

We begin with a general setting: Let R be any ring. A torsion theory for R is
a pair τ = (T ,F) of classes of R-modules such that

i) HomR(T, F ) = 0, for all T ∈ T and F ∈ F .
ii) T and F are maximal classes having the property i).

Thus, if (T ,F) is a torsion theory, the class T is closed under quotients, direct
sums and extensions and the class F is closed under taking submodules, direct
products and extensions.
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Conversely, if M is a class of R-modules closed under quotients, direct sums
and extensions, then it is a torsion class for a torsion theory (M,F) where
F = { F | HomR(M,F ) = 0, for all M ∈ M }. Dually, if M is a class of R-
modules closed under submodules, direct products and extensions, then it is a
torsion-free class for a torsion theory (T ,M) where T = { T | HomR(T,M) =
0, for all M ∈M }.

The modules in T are called τ -torsion modules (or torsion modules for τ) and
the modules in F are called τ -torsion-free modules (or torsion-free modules
for τ).

If τ1 = (T1,F1) and τ2 = (T2,F2) are two torsion theories, we say that τ1 is
smaller than τ2 (τ1 ≤ τ2) iff T1 ⊆ T2 (equivalently F1 ⊇ F2).

IfM is a class of R-modules, then torsion theory generated byM is the small-
est torsion theory (T ,F) such that M ⊆ T . The torsion theory cogenerated
by M is the largest torsion theory (T ,F) such that M⊆ F .

If (T ,F) is a torsion theory for a ring R and M is a R-module, there exists
submodule N such that N ∈ T and M/N ∈ F (Proposition 1.1.4 in [3]). From
this it follows that every module M has the largest submodule that belongs
to T (i.e. submodule generated by the union of all torsion submodules of M).
We call it the torsion submodule of M and denote it with TM . The quotient
M/TM is called the torsion-free quotient and we denote it FM.

We say that a torsion theory τ = (T ,F) is hereditary if the class T is closed
under taking submodules. A torsion theory is hereditary if and only if the
torsion-free class is closed under formation of injective envelopes (Proposition
1.1.6, [3]). Also, a torsion theory cogenerated by a class of injective modules
is hereditary (easy to see) and, conversely, every hereditary torsion theory is
cogenerated by a class of injective modules (Proposition 1.1.17, [3]).

The notion of the closure of a submodule in a module is another natural
notion that can be related to a torsion theory. Let M be an R-module and K
a submodule of M. The closure clMT (K) of K in M with respect to the torsion
theory (T ,F) is

clMT (K) = π−1(T (M/K)) where π is the natural projection M �M/K.

If it is clear in which module we are closing the submodule K, we suppress the
superscript M from clMT (K) and write just clT (K). If K is equal to its closure
in M, we say that K is closed submodule of M .

For more details on closure see Proposition 3.2 in [17].

10



3.1 Examples.

3.1.1

The torsion theory cogenerated by the injective envelope E(R) of R is called
the Lambek torsion theory. We denote it τL. It is hereditary, as it is cogenerated
by an injective module, and faithful. Moreover, it is the largest hereditary
faithful torsion theory.

3.1.2

The class of nonsingular modules over a ring R is closed under submodules,
extensions, products and injective envelopes. Thus, it is a torsion-free class of
a hereditary torsion theory. This theory is called the Goldie torsion theory.
Let us denote it with τG = (T,P).

The Lambek theory is smaller than the Goldie theory (see example 3, p. 26 in
[3]). If R is nonsingular, then the Lambek and Goldie theories coincide (also
see [3] for details).

Here we mention a few results that we shall be using in the sequel. By Corollary
7.30 in [9], if M an R-module and K a submodule of M, then the Goldie
closure of K in M is complemented in M . By Proposition 7.44 in [9], if R
is a nonsingular ring and M nonsingular R-module, then the Goldie closure
of K in M is the largest submodule of M in which K is essential. From this
it follows that a submodule K is Goldie closed in M if and only if K is a
complement in M .

The above has the following result of R.E. Johnson (introduced in [7]) as a
corollary.

Corollary 7 Let R be any ring and M a nonsingular R-module. There is an
one-to-one correspondence

{complements in M} ←→ {direct summands of E(M)}

given by K 7→ the Goldie closure of K in E(M) that is equal to a copy of
E(K). The inverse map is given by L 7→ L ∩M.

The proof can be found also in [9] (Corollary 7.44’).
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3.1.3

If R is an Ore ring with the set of regular elements T (i.e., Tr ∩ Rt 6= 0, for
every t ∈ T and r ∈ R), we can define a hereditary torsion theory by the
condition that a right R-module M is a torsion module iff for every m ∈ M ,
there is a nonzero t ∈ T such that mt = 0. This torsion theory is called the
classical torsion theory of an Ore ring. It is faithful and so it is contained in
the Lambek torsion theory.

3.1.4

The class of flat modules is closed under extensions. If R is semihereditary,
the class of flat modules is closed under direct products (Theorem 4.47 and
Example 4.46 b), [9]). If R is subflat (i.e. every submodule of a flat module
is flat), it is closed under submodules. Since every semihereditary ring R is
subflat (Theorem 4.67, [9]), semihereditary R has a torsion theory in which
the class of all flat modules is the torsion-free class. Denote this torsion theory
with τflat.

3.1.5

Let R be a subring of a ring S. Let us look at a collection of all R-modules M
such that S ⊗R M = 0. This collection is closed under quotients, extensions
and direct sums. Moreover, if S is flat as an R-module, then this collection is
closed under submodules and, hence, defines a hereditary torsion theory. In
this case we denote this torsion theory by τS.

From the definition of τS it follows that

1. The torsion submodule of M in τS is the kernel of the natural map M →
S ⊗R M.

2. All flat modules are τS-torsion-free.

By 2., τS is faithful. Thus, τS is contained in the Lambek torsion theory.

If R is an Ore ring, then τQcl(R) is the classical torsion theory.

If R is right semihereditary ring R, the ring of maximal right quotients that
is left R-flat (Theorem 2.10 in [15]) and all torsion-free modules in τQr

max(R)

are flat (Theorem 2.1 in [16]). Thus, if R is Ore and semihereditary ring with
Qcl(R) = Qmax(R) (as is the case with any ring from the class C) , then

Classical torsion theory = τQcl(R) = τQmax(R) = τflat.

In this case, let us denote this torsion theory by (t,p).
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3.1.6

If R is any ring, let (b,u) be the torsion theory cogenerated by the ring R.
We call a module in b a bounded module and a module in u an unbounded
module. This theory is not necessarily hereditary.

The Lambek and (b,u) torsion theory are related such that M is a Lambek
torsion module if and only if every submodule of M is bounded. This is a direct
corollary of the fact that HomR(M,E(R)) = 0 if and only if HomR(N,R) = 0,
for all submodules N of M, that is an exercise in [4]. Also, it is easy to
show that (b,u) is equal to the Lambek torsion theory if and only if (b,u) is
hereditary.

(b,u) is the largest torsion theory in which R is torsion-free. Thus, for a ring
from class C

(t,p) ≤ (T,P) = Lambek ≤ (b,u).

4 Torsion Theories for Rings from Class C

For the remainder of this section, let R denote a ring from class C with Q the
regular ring of R. If p is a matrix from Mn(R), we will identify p with the
R-map Rn → Rn defined by r 7→ pr.

4.1 Splitting of (b,u) for Finitely Generated Modules.

First, we shall show that M = bM ⊕ uM for every finitely generated M and
that uM is finitely generated projective. We need a few preliminary results.

Lemma 8 Let P be a right R-module.

(1) If P is a submodule of Rn, then the following conditions are equivalent
i) P is a complement in Rn.

ii) There is a projection p ∈Mn(R) such that P = imp.
iii) P is a direct summand of Rn.

(2) P is finitely generated projective if and only if there is a nonnegative
integer n and a projection p ∈Mn(R) such that P = imp.

PROOF. (1) i)⇒ ii) Let P be a complement in Rn. By Corollary 7, E(P ) is a
direct summand of E(Rn) = E(R)n = Qn. The projection from Qn onto E(P )
is an idempotent element q ∈ Mn(Q) such that imq = E(P ). Since Mn(Q) is
a Rickart *-ring (by Theorem 4), there is a projection p ∈ Mn(Q) such that

13



pMn(Q) = annr(1− q) = qMn(Q). But the projections in Mn(Q) and Mn(R)
are the same so p ∈Mn(R).

P is a complement, so P = E(P )∩Rn by Corollary 7. Thus, P = p(Qn)∩Rn.
Since p ∈Mn(R), p(Rn) ⊆ Rn and so p(Rn) ⊆ p(Qn)∩Rn = P. Conversely, if
p(r) is an element of p(Qn)∩Rn = P, then p(r) ∈ Rn has unique decomposition
as p(r′) + (1− p)(r′′). But that decomposition still holds in Qn. Thus, p(r) =
p(r′) and (1− p)(r′′) = 0. Since r′ ∈ Rn, p(r) = p(r′) is in p(Rn). This proves
that P = p(Rn).

ii)⇒ iii) Trivial.

iii)⇒ i) Trivial.

(2) If P is finitely generated projective, then there is a nonnegative integer n
such that P is a direct summand in Rn. Then P = imp for some projection
p ∈Mn(R) by (1). The converse is obvious. 2

The following lemma asserts that we can separate a direct summand and an
element in the image of a projection out of the direct summand, with an R-
valued map. This will turn out to be the key ingredient in the proof that a
finitely generated module M splits as bM ⊕ uM.

Lemma 9 If P is a direct summand of Rn, p ∈ Mn(R) a projection, and
a ∈ Rn any element such that p(a) /∈ P , then there is a map f ∈ HomR(Rn, R)
such that f(P ) ≡ 0 and f(p(a)) 6= 0.

PROOF. Let S be the complement of P and prS be the projection of Rn

onto S. p(a) = rP + rS where rP ∈ P and rS ∈ S. Since p(a) /∈ P, rS is
nontrivial. Let (q1, q2, . . . , qn) be the coordinates of rS in the standard basis.
Define the map q : Rn → R by

g : (a1, a2, . . . , an) 7→
n∑

i=1

q∗i ai

Now define map f ∈ HomR(Rn, R) as f = g◦prS. Clearly P ∈ ker f. f(p(a)) =
q(rS) =

∑n
i=1 q

∗
i qi 6= 0 since R is n-proper and rS 6= 0. 2

The idea here is to study finitely generated projective modules by treating the
projections and benefit from the nice properties of the matrix rings over R.
This is possible since if p, q ∈Mn(R), then

pMn(R) = qMn(R) if and only if p(Rn) = q(Rn) (2)

14



as basic matrix algebra shows. Now, we can understand the closures in Rn

better.

Proposition 10 If P is a submodule of Rn, then the following sets are equal
and are direct summands of Rn:

(1) clb(P ) = {x ∈ Rn|f(x) = 0 for all f ∈ HomR(Rn, R) s.t. P ⊆ ker f} =⋂{ker f |f ∈ HomR(Rn, R) s.t. P ⊆ ker f},
(2)

⋂{S|S is a direct summand of Rn and P ⊆ S},
(3) inf{p|p ∈ Mn(R) a projection with P ⊆ p(Rn)}(Rn) =

⋂{p(Rn)|p ∈
Mn(R) a projection with P ⊆ p(Rn)},

(4) clT(P ) = (largest submodule of Rn in which P is essential) = (smallest
submodule of Rn that contains P and that is a complement in Rn) =
E(P ) ∩Rn.

Moreover, if P is a right ideal in R, then the above sets are equal to
annr(annl(P )).

PROOF. All sets in (1) are equal by the definition of closure in the torsion
theory (b,u). Also, if P is a right ideal of R, then it is easy to see that
clb(P ) = annr(annl(P )).

The sets in (3) are equal by formula (1) in subsection 2.1 and formula (2)
above.

The first three sets in (4) are equal by Proposition 7.44 from [9]. From Corol-
lary 7 also follows that clT(P ) = E(clT(P )) ∩ Rn. But P ⊆e clT(P ) and so
E(P ) = E(clT(P )). Thus clT(P ) = E(clT(P )) ∩Rn = E(P ) ∩Rn.

(2) ⊆ (1) since every f as in (1) determines one S as in (2).

(2) = (3) by Lemma 8.

(2) = (4) The intersection of complements is a complement by Proposition
7.44 in [9]. Thus, the set in (4) is the intersection of all complements in Rn

containing P . But by Lemma 8, this is the same as the intersection of all direct
summands of Rn containing P . Moreover, the set in (4) is a complement itself
and, thus a direct summand in Rn.

The set in (1) is also a complement since it is the intersection of complements.
Thus, the set in (1) is a direct summand as well.

Let us show now that (1) ⊆ (2). Since the set in (1) is a direct summand,
there is a projection p ∈Mn(R) such that clb(P ) = p(Rn). To show (1) ⊆ (2)
it is sufficient to show that p(a) is contained in all direct summands of Rn

that contain P for all a ∈ Rn (because then p(Rn) ⊆ (2)).
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Suppose the contrary: there is a ∈ Rn and a direct summand S such that
P ⊆ S and p(a) /∈ S. By Lemma 9, there is a map f ∈ HomR(Rn, R) such
that f(S) ≡ 0 and f(p(a)) 6= 0. But p(a) is in clb(P ) and f is a map such
that P ⊆ S ⊆ ker f so p(a) has to be in the kernel of f as well. Contradiction.
Thus, p(a) ∈ S. 2

Theorem 11 If M is finitely generated R-module and K submodule of M ,
then M/clb(K) is finitely generated projective and clb(K) is a direct summand
of M. In particular, for K = 0 we have that uM is finitely generated projective
and M = bM ⊕ uM.

PROOF. If M is Rn, clb(K) is a direct summand of M by Proposition 10.
Moreover, the inclusion of clb(K) in M splits since clb(K) = p(Rn) for some
projection p ∈Mn(Rn). Thus the claim follows for M = Rn.

Now let M be any finitely generated module. There is a nonnegative integer
n and an epimorphism f : Rn →M.

First, we shall show that clb(f−1(K)) = f−1(clb(K)).

Let x be in clb(f−1(K)). Then g(x) = 0, for every g ∈ HomR(Rn, R) such that
f−1(K) ⊆ ker g. We need to show that f(x) is in clb(K), i.e. that h(f(x)) = 0
for every h ∈ HomR(M,R) with K ⊆ kerh. Let h be one such map. Letting
g = hf, we obtain a map in HomR(Rn, R) such that g(f−1(K)) = hff−1(K) =
h(K) (since f is onto). But h(K) = 0, and so f−1(K) ⊆ ker g. Hence, g(x) = 0
i.e. h(f(x)) = 0.

To show the converse, let x be in f−1(clb(K)). Then h(f(x)) = 0 for every
h ∈ HomR(M,R) such that K ⊆ kerh. We need to show that g(x) = 0 for
every g ∈ HomR(Rn, R) such that f−1(K) ⊆ ker g. Let g be one such map.
Since f−1(0) ⊆ f−1(K) ⊆ ker g, we have ker f ⊆ ker g. This condition enables
us to define a homomorphism h : M → R such that h(f(p)) = g(p) for every
p ∈ Rn. Then h(K) = h(f(f−1(K))) = g(f−1(K)) = 0, and so h(f(x)) = 0.
But from this g(x) = 0.

It is easy to see that f : Rn → M induces an isomorphism Rn/f−1(clb(K))
→ M/clb(K). But clb(f−1(K)) = f−1(clb(K)), so we obtain that M/clb(K)
is finitely generated projective (since Rn/clb(f−1(K)) is). So 0 → clb(K) →
M →M/clb(K)→ 0 splits. 2
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4.2 Dimension.

Given that the dimension function on R and on all ringsMn(R) exist (Theorem
1 and Theorem 4) it would be desirable to have the dimensions on Mm(R)
and Mn(R) agree for m ≥ n i.e. dm �Mn(R)= dn for all m ≥ n.

The dimension on R is determined by its values on the central projections
(see chapter 6 of [2]). The centers of R and Mn(R) are isomorphic under the
identification of diag(a, a, ..., a) ∈ Z(Mn(R)) with a ∈ Z(R). If we identify
diag(a, a, ..., a) ∈ Z(Mn(R)) with na ∈ Z(R), we get the desired result on the
dimensions.

Now let us define the function dimR on the class of all right R modules ModR

and values in C(X) by

(1) If P is a finitely generated projective R-module, then there is a nonneg-
ative integer n and a matrix p ∈ Mn(R) such that p2 = p∗ = p and
imp ∼= P . It is clear that an idempotent matrix q with image isomorphic
to p exist. Choose p to be the projection such that pMn(R) = annr(1−q).
Recall that we can do that because Mn(R) is a Rickart *-ring. Then define

dimR(P ) = d(p).

The values of dimR are in C[0,∞)(X), the algebra of functions from
C(X) with values in [0,∞). The algebra C[0,∞)(X) is a boundedly com-
plete lattice with respect to the pointwise ordering (see pages 161 and
162 in [2]). Note, however, that the infinite lattice operations might differ
from the pointwise operations.

(2) If M is any R-module, define

dim′R(M) = sup{dimR(P ) | P fin. gen. projective submodule of M}

where the supremum on the right side is an element of C(X) if it exists
and is a new symbol∞ otherwise. We define a+∞ =∞+a =∞ =∞+∞
and a ≤ ∞ for every a ∈ C(X).

Our first goal is to show that the following theorem (proven by Wolfgang Lück
in [11]) holds for R with [0,∞) replaced by C[0,∞)(X) and [0,∞] replaced by
C[0,∞)(X) ∪ {∞}.

Theorem 12 Let R be a ring such that there exist a dimension function dim
that assigns to any finitely generated projective right R-module an element of
[0,∞) and such that the following two conditions hold

17



(L1) If P and Q are finitely generated projective modules, then

P ∼= Q⇒ dim(P ) = dim(Q)

dim(P ⊕Q) = dim(P ) + dim(Q),

(L2) If K is a submodule of finitely generated projective module Q, then clb(K)
is a direct summand of Q and

dim(clb(K)) = sup{dim(P ) | P is a fin. gen. projective submodule of K}.

Then, for every R-module M , we can define a dimension

dim′R(M) = sup{dimR(P ) | P fin. gen. projective submodule of M} ∈ [0,∞]

that satisfies the following properties:

(1) Extension: dim(P ) = dim′(P ) for every finitely generated projective mod-
ule P.

(2) Additivity: If 0 → M0 → M1 → M2 → 0 is a short exact sequence of
R-modules, then

dim′(M1) = dim′(M0) + dim′(M2).

(3) Cofinality: If M =
⋃

i∈I Mi is a directed union, then

dim′(M) = sup{ dim′(Mi) | i ∈ I }.

(4) Continuity: If K is a submodule of a finitely generated module M , then

dim′(K) = dim′(clb(K)).

(5) If M is a finitely generated module, then

dim′(M) = dim(uM) and dim′(bM) = 0.

(6) The dimension dim′ is uniquely determined by (1) – (4).

For proof see Theorem 6.7, p 239 of [12] or Theorem 0.6 and Remark 2.14 in
[11].

First, we show that the condition (L1) from Theorem 12 holds for R.

Proposition 13 If P and S are finitely generated projective R-modules, then

(1) P ∼= S if and only if dimR(P ) = dimR(S),
(2) dimR(P ⊕ S) = dimR(P ) + dimR(S).
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PROOF. (1) Let P ∼= S. Let p and s be projections such that dimR(P ) = d(p)
and dimR(S) = d(s). p and s might be matrices of different size. Then there
is an integer n such that

pn =

 p 0

0 0

 and sn =

 s 0

0 0


are both in Mn(R) and there is an invertible matrix u ∈ Mn(R) such that
upn = snu (see Lemma 1.2.1. in [14] for details).

Similar elements are algebraically equivalent (i.e a is algebraically equivalent
to b iff xy = a, yx = b for some x and y). Algebraic equivalence implies ∼
equivalence in all *-rings with (SR) (Exercise 8A, p. 9 in[2]). Since (SR) holds if
(A2) and (A3) hold, we have that pn ∼ sn. Thus, d(p) = d(pn) = d(sn) = d(s).

Conversely, if dimR(P ) = dimR(S), then d(p) = d(pn) = d(sn) = d(s) (we
might have to enlarge p and s again). So pn ∼ sn. It is easy to see (Exercise
5A, p. 8 in [2]) that then impn is isomorphic to imsn. But then P is isomorphic
to S.

(2) Let P and S be finitely generated projective modules with p and s projec-
tions such that dimR(P ) = d(p) and dimR(S) = d(s). Then we can use

p⊕ s =

 p 0

0 s


to compute the dimension of P ⊕ S. There is an integer n such that

pn =

 p 0

0 0

 and sn =

 0 0

0 s


are both in Mn(R). Then, pnsn = snpn = 0 and so dimR(P ⊕ S) = d(p⊕ s) =
d(pn + sn) = d(pn) + d(sn) = d(p) + d(s). 2

Note that this Proposition implies that

dimR(P ) = 0 iff P = 0

for every finitely generated projective module P.

In order to prove that R satisfies condition (L2) from Theorem 12, we need
two lemmas.
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Recall that the regular ring Q of R is also in the class C (see subsection 2.4).
Thus, we can define its dimension function dimQ . The following result relates
the dimensions of R and Q and is leading us one step closer to (L2) of Theorem
12.

Lemma 14 (1) If P is a direct summand of Rn, then

dimR(P ) = dimQ(E(P ))

(2) If S is a direct summand of Qn, then

dimQ(S) = dimR(S ∩Rn).

(3) If S is a submodule of Qn, then

dimQ(clb(S)) = sup{d(q) | q ∈Mn(R) a projection, q(Qn) ⊆ S}

(4) If P is a submodule of Rn, then

dimR(clb(P )) = sup{d(q) | q ∈Mn(R) a projection, q(Rn) ⊆ P}

PROOF. (1) If P is a direct summand of Rn, P = p(Rn) for some projection
p ∈Mn(R) by Lemma 8. By definition of dimR it follows that dimR(P ) = d(p).

From the proof of i)⇒ ii) in Lemma 8, it follows that p(Rn) = p(Qn) ∩ Rn.
Thus, P = p(Qn) ∩ Rn, and so E(P ) = E(p(Qn) ∩ Rn) = p(Qn) by Corollary
7. Thus dimQ(E(P )) = d(p).

(2) If S is a direct summand of Qn, S = p(Qn) for some projection p ∈Mn(R).
Then dimQ(S) = d(p). Then, S∩Qn = p(Qn)∩Rn = p(Rn) again by the proof
of i)⇒ ii) in Lemma 8. Thus, dimR(S ∩Qn) = d(p).

(3) First we shall show that

clb(S) = sup{q|q ∈Mn(R) a projection with q(Qn) ⊆ S}(Qn).

Let p denote the projection sup{q|q ∈ Mn(R) a projection with q(Qn) ⊆ S},
and r denote the projection such that clb(S) = r(Qn). We shall show that
p = r.

Since q(Qn) ⊆ S ⊆ r(Qn) for all projections q with q(Qn) ⊆ S, then q ≤ r for
all such q and so p ≤ r.

Conversely, it is sufficient to show S ⊆ p(Qn) since then p(Qn) ⊇ inf{q|q ∈
Mn(R) a projection with S ⊆ q(Qn)}(Qn) = clb(S) = r(Qn) by Proposition
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10 and thus p ≥ r. So, let x ∈ S. Consider a matrix X ∈Mn(Q) such that the
entries in the first column are coordinates of x in the standard basis and the
entries in all the other columns equal zero. Since Mn(Q) is a regular Rickart
*-ring (Theorem 4), there is a projection px ∈ Mn(Q) such that XMn(Q) =
pxMn(Q). But x ∈ X(Qn) = xQ ⊆ S and so we have that px(Qn) ⊆ S for all
x ∈ S. So, px ≤ p for all x ∈ S. Thus, x ∈ px(Qn) ⊆ p(Qn) for all x ∈ S and
so S ⊆ p(Qn).

Now it is easy to see that

dimQ(clb(S)) = dimQ(sup{q|q ∈Mn(R) a projection with q(Qn) ⊆ S}(Qn))

= sup{d(q)|q ∈Mn(R) a projection with q(Qn) ⊆ S}

by property (D10) of Theorem 1.

(4) Let p denote the projection sup{q|q ∈ Mn(R) a projection with q(Rn) ⊆
P}, and r denote the projection such that clb(P ) = r(Rn). Since q(Rn) ⊆
P ⊆ r(Rn), for all projections q such that q(Rn) ⊆ P, then q ≤ r. Thus, p ≤ r
and so

dimR(clb(P )) = d(r) ≥ d(p) = sup{d(q)|q ∈Mn(R) projection, q(Rn) ⊆ P}

For the converse, first note that E(clb(P )) = E(clT(P )) by Proposition 10,
E(clT(P )) = E(P ) since P is essential in clT(P ), and E(P ) = E(P ) ∩ Qn =
clQb (P ) again by Proposition 10. Thus, E(clb(P )) = clQb (P ). Then,

dimR(clb(P )) = dimQ(E(clb(P ))) (by part (1))

= dimQ(clQb (P ))) (by remark above)

= sup{d(q)|q ∈Mn(R) proj., q(Qn) ⊆ P} (by part (3))

≤ sup{d(q)|q ∈Mn(R) proj., q(Rn) ⊆ P} (q(Rn) ⊆ q(Qn)).

2

Lemma 15 (1) If P is a finitely generated projective module in Rn, then

dimR(P ) = dimR(clb(P )).

(2) If P and S are finitely generated projective modules in Rn, then

P ⊆ S imples dimR(P ) ≤ dimR(S).
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PROOF. (1) Let p ∈Mn(R) be a projection such that p(Rn) ∼= P and q be a
projection such that q(Rn) = clb(P ). To prove the claim, it is sufficient to show
that p ∼ q (since then dimR(P ) = d(p) = d(q) = dimR(clb(P ))). For p ∼ q,
it is sufficient to show that q(Qn) ∼= p(Qn) by the same argument we used in
the proof of part (1) of Proposition 13. q(Qn) = E(P ) since q(Qn) ∩ Rn =
q(Rn) = clb(P ) = E(P ) ∩Rn (by Corollary 7). Thus,

q(Qn) = E(P ) ∼= E(p(Rn)) = E(p(Qn) ∩Rn) = p(Qn).

(2) Let p be a projection such that p(Rn) = clb(P ) and s a projection with
s(Rn) = clb(S). P ⊆ S implies p(Rn) = clb(P ) ⊆ clb(S) = s(Rn). Thus, p ≤ s
and so d(p) ≤ d(s). Hence

dimR(P ) = dimR(clb(P )) = d(p) ≤ d(s) = dimR(clb(S)) = dimR(S)

by part (1). 2

Now we can prove the formula from Condition (L2), Theorem 12.

Proposition 16 If K is a submodule of a finitely generated projective module
S, then

dimR(clSb(K)) = sup{dimR(P ) | P is a fin. gen. projective submodule of K}

PROOF. Since S is a finitely generated projective, there is a nonnegative
integer n such that S is a direct summand of Rn. clSb(K) is a direct summand
of S by Theorem 11. Thus, clR

n

b (K) ⊆ clSb(K) by Proposition 10. S ⊆ Rn

implies clSb(K) ⊆ clR
n

b (K). Hence, clSb(K) = clR
n

b (K) so we can work in Rn.

dimR(clR
n

b (K)) = sup{d(q) | q a projection in Mn(R) such that q(Rn) ⊆ K}

≤ sup{dimR(P ) | P is a fin. gen. proj. submodule of K}

by Lemma 14.

Conversely,

sup{dimR(P ) | P is a fin. gen. projective submodule of K} ≤

sup{dimR(P ) | P is a fin. gen. projective submodule of clR
n

b (K)} =

dimR(clR
n

b (K)).

22



The last equality holds since we have monotony for dimensions of finitely
generated projective modules by the Lemma 15 (this gives us ≤). The converse
follows since clR

n

b (K) is finitely generated projective by Theorem 11. 2

Finally, we can prove that our dimension is just as in Lück’s Theorem 12.
Recall that we need to replace [0,∞) by C[0,∞)(X) and [0,∞] by C[0,∞)(X) ∪
{∞} in the formulation of the theorem. Luckily, that will not influence the
proof.

Theorem 17 Theorem 12 holds for R and dimR .

PROOF. R satisfies condition (L1) of Theorem 12 by Proposition 13 and the
condition (L2) by Theorem 11 and by Proposition 16.

The Extension property holds by Proposition 16 and Lemma 15. The proof
of the rest of the theorem is identical to the original proof by Lück (proof of
Theorem 6.7, p 239 of [12] or Theorem 0.6 and Remark 2.14 in [11]). 2

From now on we shall not distinguish between dimR and dim′R and will denote
them both by dimR .

Further, the dimension has the following properties.

Corollary 18 If M =
⊕

i∈I Mi, then dimR(M) =
∑

i∈I dimR(Mi).

PROOF. This is an easy corollary of Cofinality of dimR . 2

Theorem 17 and Corollary 18 enable us to define another torsion theory: for an
R-module M define TdimM as the submodule generated by all submodules of
M of zero dimension. It is zero-dimensional by Cofinality of dimR . So, TdimM
is the largest submodule of M of zero dimension.

Let us denote the quotient M/TdimM by PdimM .

The class Tdim = {M ∈ ModR|M = TdimM} is closed under submodules,
quotients and extensions by additivity of dimension. The closure under the
formation of direct sums follows from Corollary 18. Thus, Tdim defines a hered-
itary torsion theory with torsion-free class equal to Pdim = {M ∈ ModR|M =
PdimM}.

Since R is semihereditary and a nontrivial finitely generated projective module
has nontrivial dimension, R is in Pdim. Thus, the torsion theory (Tdim,Pdim) is
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faithful. Since the Lambek torsion theory is the largest hereditary and faithful
theory,

(Tdim,Pdim) ≤ (T,P) ≤ (b,u).

Theorem 19

(Tdim,Pdim) = (T,P).

If M is finitely generated, then Tdim(M) = bM. Thus, M splits as TdimM ⊕
PdimM.

The theorem allows us to drop the subscript dim from (Tdim,Pdim). The proof
is the same as the proof of Proposition 4.2 from [17]. We quote it for com-
pleteness.

PROOF. If M is finitely generated, then dimR(bM) = dimR(clb(0)) = 0 by
Continuity Property of dimension. Thus, bM ⊆ TdimM. Since the converse
always holds, the claim follows. The splitting follows from Theorem 11.

Since (Tdim,Pdim) ≤ (T,P) = Lambek torsion theory, to prove the equality
it is sufficient to prove that every Lambek torsion module M has dimension
zero. Recall that M is Lambek torsion module iff all submodules of M are
bounded. This means that all finitely generated submodules of M are in Tdim.
The dimension of M is equal to the supremum of the dimensions of finitely
generated submodules of M by Cofinality. But that supremum is 0, so M is
in Tdim. 2

4.3 Comparing the Torsion Theories for C

Let us summarize the situation with various torsion theories of a ring R from
C. The trivial torsion theory is the theory (0,ModR), where ModR is the class
of all R-modules and the improper torsion theory is the theory (ModR, 0). The
various torsion theories for R are ordered as follows:

Trivial ≤ Classical = τQ = (t,p) ≤ (Tdim,Pdim) = (T,P) ≤ (b,u) ≤
Improper

where all of the above inequalities can be strict. The theory (t,p) can be
nontrivial by Example 2.9 in [12]. The inequality (t,p) ≤ (T,P) can be strict
by Example 8.34 in [12]. The inequality (T,P) ≤ (b,u) can be strict by
example given in Exercise 6.5 in [12]. Note that all of the above examples are
given for finite von Neumann algebras.
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For any nontrivial R the theory (b,u) is not improper since R is a module in
u.

We have seen that the classes T and b coincide for finitely generated modules.
Next, we shall show that the classes T and t coincide when restricted on the
class of finitely presented R-modules. First, we need the following result proven
in [17] for finite von Neumann algebras.

Proposition 20 If P is finitely generated projective R-module, then

P ⊗R Q = E(P ).

For the proof, see Theorem 5.1 from [17]. In [17], this result was proven for a
finite von Neumann algebra but the proof transfers to any R ∈ C. The idea
is to show that P ⊆e P ⊗R Q (which holds because Q is the classical ring of
quotients) and that P ⊗R Q is injective (which holds because P is a direct
summand of some finitely generated free R-module). The Lemma 5.1 from [17]
also holds for a ring in C.

Now we can prove the following.

Proposition 21 If M is finitely presented R-module, then TM = tM.

PROOF. Since tM ⊆ TM, it is sufficient to prove the converse. We shall
show that if M has dimension zero (i.e. M ∈ T), then M ⊗R Q = 0 (i.e.
M ∈ t). Since M is finitely presented, there are finitely generated projective
modules P0 and P1 such that

0→ P1 → P0 →M → 0.

dimR(M) = 0 and so dimR(P0) = dimR(P1). Then

dimQ(P0 ⊗R Q) = dimQ(E(P0)) = dimR(P0) =

= dimR(P1) = dimQ(E(P1)) = dimQ(P1 ⊗R Q)

by Proposition 20 and part (1) of Lemma 14. Q is R-flat, so

0→ P1 ⊗R Q→ P0 ⊗R Q→M ⊗R Q→ 0

is an exact sequence. Thus, dimQ(M ⊗R Q) = dimQ(P0 ⊗R Q)− dimQ(P1 ⊗R

Q) = 0. Moreover, the modules P0 ⊗R Q and P1 ⊗R Q are finitely generated
projective Q-modules and hence M ⊗R Q is finitely presented Q-module. But
Q is a regular ring so all finitely presented modules are projective. Thus,
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M ⊗R Q is a finitely generated projective module of dimension zero and so it
is trivial. 2

Before proving the main result of this subsection, let us prove another corollary
of Theorem 17, Proposition 20 and Lemma 14.

Corollary 22 For any R-module M,

dimQ(M ⊗R Q) = dimR(M).

PROOF. If M is a finitely generated projective module, this follows from
Lemma 14 and Proposition 20. If M is a submodule of any projective R-
module, write M as a directed union its finitely generated modules Mi, i ∈ I.
All the modules Mi are projective as they are finitely generated submodules
of a projective module and R is semihereditary. Thus,

dimR(M) = sup
i∈I

dimR(Mi) = sup
i∈I

dimQ(Mi ⊗R Q) = dimQ(M ⊗R Q)

by Cofinality of dimR and dimQ and the fact that tensor commutes with direct
limit.

Finally, if M is an arbitrary R-module, then M is a quotient of some projective
module P and its submodule K. Then, dimR(M) = dimR(P ) − dimR(K) =
dimQ(P ⊗RQ)−dimQ(K⊗RQ) = dimQ(M⊗RQ) by Additivity of dimensions
dimR and dimQ and since Q is R-flat. 2

We now show how torsion theories reflect the ring-theoretic properties of R.

Theorem 23 (1) R is regular if and only if (t,p) is trivial.
(2) If R is self-injective, then (T,P) = (b,u).
(3) The regular ring Q of R is semisimple if and only if (t,p) = (T,P) for

R.
(4) The following are equivalent

(a) R is semisimple,
(b) (b,u) is trivial,
(c) (T,P) is trivial.

(5) R is trivial if and only if (b,u) is improper.

PROOF. (1) R is regular if and only if all the R-modules are flat. But, (t,p)
is trivial if and only if all R-modules are in p i.e. flat.
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(2) If R is self-injective, then R = E(R). Thus, the torsion theories cogenerated
with R and E(R) coincide.

(3) Suppose that Q is semisimple. We show that T ⊆ t by showing that every
R-module M with dimension zero is such that M ⊗RQ = 0. If dimR(M) = 0,
then dimQ(M ⊗R Q) = dimR(M) = 0 by Corollary 22. Thus, M ⊗R Q is a
projective (since Q is semisimple) and of dimension 0. Hence, M ⊗R Q = 0.

Conversely, if t = T, we shall show that every right ideal I of Q is a direct sum-
mand (thus Q is semisimple). Since clQT(I) is a direct summand by Proposition
10, it is sufficient to show that I = clQT(I). Let us look at clRT(I ∩R).

clRT(I∩R)/(I∩R) = T(R/(I∩R)) = t(R/(I∩R)) by assumption that t = T.
Thus, clRT(I ∩R)⊗R Q = (I ∩R)⊗R Q. Then,

clQT(I) = E(I) (by Proposition 10)

= E(I ∩R) (since I ∩R ⊆e I)

= E(clRT(I ∩R)) (since I ∩R ⊆e clRT(I ∩R))

= clRT(I ∩R)⊗R Q (by Proposition 20)

= (I ∩R)⊗R Q (by what we showed above)

⊆ I (I is a right ideal).

Since I ⊆ clQT(I) always holds, I = clQT(I).

(4) (a) ⇒ (b) If R is semisimple, then all nontrivial R-modules are projective
and, thus, in u. So, (b,u) is trivial.

(b) ⇒ (c) is trivial since (T,P) ≤ (b,u).

(c) ⇒ (a) If (T,P) is trivial, then (t,p) is trivial and then R is regular by
(1). Thus, R = Q. But (T,P) is trivial implies that (t,p) = (T,P) and so Q
is semisimple by (3). Then, R = Q is semisimple.

(5) If (b,u) is improper, then R ∼= HomR(R,R) = 0. The converse is triv-
ial. 2

Part (3) of the above theorem generalizes the result (Theorem 6.6) from [18]
proven there for group von Neumann algebras. Part (2) and Theorem 19 gen-
eralize Theorem 5.1 from [18].

The order of torsion theories for R implies that for every R-module M, we
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have a filtration:

0 ⊆ t︸ ︷︷ ︸
tM

M ⊆ T︸ ︷︷ ︸
TpM

M ⊆M︸ ︷︷ ︸
PM

The quotient TM/tM is equal to TpM = T(M/tM) = clT(tM)/tM since
clT(tM) = TM as one can easily show (see Proposition 4.3 in [17]).

For M finitely generated, the finitely generated quotient pM splits as the
direct sum of TpM and PpM = PM and thus we have a short exact sequence
0 → tM → M → TpM ⊕ PM → 0. Of course, M also splits as TM ⊕ PM
by Theorem 19.

If Q is a regular ring from C, then it is its own regular ring (by Theorem 2)
and is self-injective by Proposition 3. By Theorem 23, the torsion theories of
Q are ordered as follows:

Trivial = (t,p) ≤ (T,P) = (b,u) ≤ Improper

The first inequality is strict if and only if Q is not semisimple and the second
if and only if Q is nontrivial. Thus, for general regular ring in C, there seem
to be only one nontrivial and proper torsion theory of interest.

5 Corollaries

5.1 Finite Von Neumann Algebras.

If A is a finite von Neumann algebra, the center Z of A can be identified with
C(X) (because Z is the closed linear span of central projections). Thus, the
dimension dimA is central-valued.

Also, a finite von Neumann algebra A has a function trA : A → Z uniquely
determined by the following properties:

(T1) trA is C-linear,
(T2) trA(ab) = trA(ba),
(T3) trA(c) = c for every c ∈ Z,
(T4) trA(a) is positive for every positive a (i.e. a = b∗b for some b).

The restriction of trA to the set of projections in A satisfies the properties (D1)
– (D4) of Theorem 1 (for proof and details see section 8.4 of [8]). Thus, we
can use the center-valued trace to define the center-valued dimension function
dimA using the approach given in this paper.
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In [12], [11] and [17] the real valued dimension dimR
A of a module over a finite

von Neumann algebra A was considered and results analogous to those we
proved here for a ring in C, were proven for A. Since the real-valued dimension
dimR

A depends on the complex-valued trace used (that is not unique), it was
surprising that the torsion theory (TdimR

A
,PdimR

A
) coincided with Lambek and

Goldie theories (Proposition 4.2 in [17]) regardless of the complex-valued trace
used to define the dimension.

A direct corollary of our Theorem 19 and Proposition 4.2 in [17] is the following

Corollary 24

(TdimA
,PdimA

) = (TdimR
A
,PdimR

A
).

i.e. for every A-module M , the central-valued dimension of M is zero if and
only if a real-valued dimension of M is zero.

It is interesting to note that in the case of a finite von Neumann algebra A,
the algebra of affiliated operators U does not automatically come equipped
with a trace (and thus a dimension) function since U might not be a finite
von Neumann algebra. In [12] it is shown that we can still get the real-valued
U -dimension of any U -module in the following way: if S is a finitely generated
projective U -module, the U -dimension of S is the A-dimension of a finitely
generated projective A-module P such that P ⊗A U ∼= S (this is well defined
by Theorem 8.22, [12]). Then one proves that U satisfies Theorem 12. So, the
U -dimension can be extended to all U -modules (Lemma 8.27, [12]). Moreover,
Corollary 22 holds for A and U (Theorem 8.29, [12]).

The regular ring Q of a ring R from the class C is automatically equipped with
a dimension since Q is also in C (see subsection 2.4). Thus, by the results of
this paper, it readily follows that U has the dimension function dimU satisfying
Theorem 12 and Corollary 22.

Moreover, Q has all the properties of R and more (regularity, self-injectiveness
etc). In contrast, the algebra of affiliated operators U of a finite von Neumann
algebra A is regular but might not be a von Neumann algebra (i.e. U may
loose some properties of A).

5.2 Cofinal-measurable Modules.

Using the dimension function, we can view the theory (t,p) for R ∈ C from a
different angle. We say that an R-module M is measurable if it is a quotient of
a finitely presented module of dimension zero. M is cofinal-measurable if each
finitely generated submodule is measurable. The class of cofinal-measurable
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modules is equal to the class t by Lemma 8.36 (2) from [12]. The proof there
is given for a group von Neumann algebra but it converts to any R from C.

5.3 K0-theorem.

Theorem 9.20 (1) from [12] states that the inclusion i : A→ U of a finite von
Neumann algebra A to its algebra of affiliated operators U (same as regular
ring of A) induces an isomorphism of monoids µ : Proj(A) → Proj(U) given
by [P ] 7→ [P ⊗A U ] and an isomorphism µ : K0(A)→ K0(U).

The proof of this theorem relies solely on Theorem 8.22 in [12]. Theorem 8.22
holds for a ring R ∈ C and its regular ring Q. Thus, the result on K0-theories
holds for R ∈ C and its regular ring Q.

In [17], the inverse of the isomorphism µ is described. Namely, the following
corollary is proven for a finite von Neumann algebras. The proof transfers,
word-for-word, to a ring from class C.

Corollary 25 For every finitely generated projective R-module M , there is
an one-to-one correspondence

{direct summands of M} ←→ {direct summands of E(M)}

given by K 7→ K⊗RQ = E(K). The inverse map is given by L 7→ L∩M. This
correspondence induces an isomorphism of monoids µ : Proj(R) → Proj(Q)
and an isomorphism

µ : K0(R)→ K0(Q)

given by [P ] 7→ [P ⊗R Q] with the inverse [S] 7→ [S ∩ Rn] if S is a direct
summand of Qn.

Since we have Corollary 7, Proposition 20, and Theorem 11 (recall that com-
plements are (T,P)-closed modules and (T,P) = (b,u) for finitely generated
modules), it is not hard to see why Corollary 25 holds for R ∈ C.

Let us mention that Handelman proved (Lemma 3.1 in [6]) that for every finite
Rickart C∗-algebra A such that every matrix algebra over A is also Rickart,
the inclusion of A into its regular ring Q induces an isomorphism µ : K0(A)→
K0(Q). By Theorem 3.4 in [1], a matrix algebra over a Rickart C∗-algebra is
a Rickart C∗-algebra. Thus, K0(A) is isomorphic to K0(Q) for every finite
Rickart C∗-algebra. Corollary 25 describes the inverse of this isomorphism.
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5.4 Questions.

We conclude by listing some interesting questions.

(1) Is it possible to obtain the same results using the weaker axioms than
(A1) – (A9)? Note that (A8) and (A9) are particularly strong.

(2) Let R be in C and Q be the regular ring of R. Does Q semisimple imply
R semisimple? Note that this is the case for group von Neumann algebras
by Exercise 9.11 from [12] (if the algebra of affiliated operators of a group
von Neumann algebra NG is semisimple, then the group G is finite so
NG is finite dimensional over C and, thus, semisimple).

(3) Let R be in C and (T,P) = (b,u) for R. Is R self-injective? The converse
holds by Theorem 23.
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