#### **Rings with Dimension**

# Lia Vaš

#### University of the Sciences, Philadelphia



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

### Let us imagine...

#### ... a ring-theory perfect world:

#### Freedom –

all modules are free!

#### Equality –

no ideal with infinitely many direct summands!

#### Brotherhood –

nonzero elements do not annihilate each other!



Birds singing... flowers blooming...



#### What a boring world!



#### Long live ring diversity!

We would want the same, both general and nice enough, for

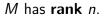
rings with dimension.

### Some rings have a nice dimension...

For example, if M is a finitely generated  $\mathbb{Z}$ -module,

 $M = \mathbb{Z}^n \oplus$  torsion part

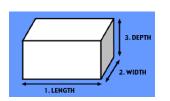
so we say that



This scenario remind us of vector spaces. In fact,

 $\operatorname{rank} M = \dim(M \otimes_{\mathbb{Z}} \mathbb{Q}).$ 

Generalizes to rank of right noetherian or semiprime Goldie rings.



This rank-dimension does not work for **every** ring (it would be utopia if it does) but some **other** dimension can be defined on every ring.

#### The Goldie reduced rank

**Roughly put**: this rank measures how many direct summands a module allows.

#### Too restrictive versus too rough

- Good nice properties;
- Bad defined just for some rings;
- Ugly tricky for "non-discrete cases".



- Good defined for all the rings;
- ► Bad all modules with ∞ many direct summands treated the same.



The year was 2010. I was looking for a class of rings with dimension that is not too restrictive and still general enough.

Finding middle ground during sabbatical in Málaga, Spain.



イロト 不得 トイヨト イヨト

# Von Neumann algebra

H – Hilbert space.  $\mathcal{B}(H)$  – bounded operators.

A von Neumann algebra  ${\mathcal A}$  is a

- 1) \*-closed unital subalgebra of  $\mathcal{B}(H)$ ,
- 2) closed in some sense. Either

equal to its double commutant  $\mathcal{A}''$ 

or, equivalently,

weakly closed in  $\mathcal{B}(H)$ .



# Five types

| type                 | dimension range      |
|----------------------|----------------------|
| finite, discrete     | $\{1, 2, \dots, n\}$ |
| infinite, discrete   | $\{1,2,\ldots\}$     |
| finite, continuous   | [0,1]                |
| infinite, continuous | $\mathbb R$          |
| very infinite        | $\{0,\infty\}$       |

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

# Tracing the dimension

A finite VNA  $\mathcal{A}$  has a normal and faithful linear **trace**  $tr_{\mathcal{A}} : \mathcal{A} \to \mathbb{C}$ .

The trace extends to matrices:  $tr([a_{ij}]) = \sum_{i=1}^{n} tr(a_{ii})$ .

#### Examples.

- 1. Usual trace on  $M_n(\mathbb{C})$ .
- 2. "Kaplansky trace" on group rings:

 $\operatorname{tr}(\sum a_g g) = a_1.$ 

Extends from  $\mathbb{C}G$  to  $l^2(G)$ , then to  $\mathcal{N}G$  by

 $\operatorname{tr}(f) = \operatorname{tr}(f(1)).$ 



## Define dimension in two steps [Lück]

1. If P is a fin. gen. proj. module,

 $\dim_{\mathcal{A}}(P) = \operatorname{tr}(f) \in [0,\infty).$ 

where  $f : \mathcal{A}^n \to \mathcal{A}^n$  is a projection with image P.

2. If *M* is **any** module,

 $\dim_{\mathcal{A}}(M) =$  supremum of dimensions of fin. gen. proj. submodules  $\in [0, \infty]$ .



## Nice properties

- 1. Extension: the two steps agree.
- 2. Additivity for short exact sequences.
- 3. **Cofinality**: dimension of directed union is supremum of dimensions.
- 4. Continuity: closure and dimension agree.
- 5. Every fin. gen. module **splits** as

finitely generated projective  $\oplus$  torsion part

and the dimension faithfully measures the projective part.

6. A finite VNA 
$$\mathcal{A}$$
 has a regular overing  $Q$ .  
 $Q = Q_{cl}^r(\mathcal{A}) = Q_{max}^r(\mathcal{A})$  and

$$\dim_{\mathcal{A}}(M) = \dim_{Q}(M \otimes_{\mathcal{A}} Q).$$

[V. 2005] This whole story **generalizes** to Baer \*-rings satisfying certain nine **eight** ([V. 2006]) axioms. Let us call this class

#### Von-Neumann-algebra-like rings

### Algebraic avenues

**Berberian 1972.** "Von Neumann algebras are blessed with an excess of structure – algebraic, geometric, topological – so much, that one can easily obscure, through proof by overkill, what makes a particular theorem work."

"If all the functional analysis is stripped away ... what remains should (be) completely accessible through algebraic avenues".





# Our goal

- Algebraic avenue to dimension of VNA.
- Preferably to get rid of requirements for some fancy axioms.
- To have dimension on much wider class of rings keeping all nice properties.



"but this is too general!" "but this can be generalized!"

▲□▶ ▲□▶ ▲目▶ ▲目▶ = 目 - のへで

Suitable class of rings

#### Right strongly semihereditary rings.

#### Few equivalent definitions.

| Definition 1.                                                                                | Useful for                                                                                                                                                                              |
|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <i>R</i> is right nonsingular<br>and<br>every fin. gen. nonsingular<br>module is projective. | getting a splitting<br>of a fin. gen. $M$ as<br>fin. gen. proj $PM \oplus$ torsion $TM$ .<br>dim <sub>R</sub> ( $M$ ) = dim <sub>R</sub> ( $PM$ )<br>and dim <sub>R</sub> ( $TM$ ) = 0. |

| Definition 2.             | Useful for                           |
|---------------------------|--------------------------------------|
| R is right semihereditary | defining dim <sub>Q</sub> first      |
| and $Q = Q_{\max}^r(R)$   | and                                  |
| is a perfect left         | getting dim <sub>R</sub> ( $M$ ) as  |
| ring of quotients         | dim <sub>Q</sub> ( $M \otimes_R Q$ ) |
| of $R$ .                  | for any $M$ .                        |

| Definition 3.                                                                                                                                          | Useful for                                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| <i>R</i> is right nonsingular and $R^n$ is CS, or extending,<br>(CS = "complements are summands")<br>for all <i>n</i> .<br><b>And so is</b> <i>Q</i> . | defining dim <sub>Q</sub> (P) via the<br>closure of the image<br>of a map f<br>$f: Q^n \rightarrow Q^n$ with<br>image $f = P$ . |

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

**Definition 4.** R is right nonsingular and  $R^2$  is CS.

### **Examples**

Many rings for which you may want a dimension are on this list.

- 1. Regular and self-injective rings.
- 2. Commutative, semihereditary and noetherian rings.
- 3. Finite AW\*-algebras. More generally, finite von-Neumann-algebra-like rings.
- 4. There are some non-Baer-\* rings on this list. For example, Leavitt path algebra over:

$$\bullet \longrightarrow \bullet \bigcirc$$

Examples with: semiher.  $\geq$  strongly semiher.; left  $\neq$  right.

### Even nicer with \* around

If R is right strongly semihereditary **and** has an involution, then

- ► *R* is left strongly semihereditary as well.
- $M_n(R)$  is Baer for every *n*. (Note: not Baer \*-necessarily).
- Q is unit-regular and directly finite.
- If \* is positive definite

$$\sum_{i=1}^{n} x_i^* x_i = 0 \Rightarrow x_i = 0$$
  
for all *i*, for all *n*

then  $M_n(Q)$  is \*-regular Baer \*-ring for every *n*.



### These rings have dimension!

Strongly semihereditary rings with positive definite involution have dimension...

... and all the nice properties (additivity, cofinality etc) of dimension hold.



・ロト ・四ト ・ヨト ・ヨ

**Idea of the proof:** given in "Useful for" parts of the definitions.

1. Von-Neumann-algebra-like-rings have dimension by algebraic arguments.

Q. Didn't we know that before?A. Yes, but this time we used just seven axioms. Particularly ugly axioms 8 (and 9) are not needed.

- 2. Leavitt path algebras over finite no-exit graphs have dimension.
- Q. Why is that relevant?A. It gives us hope for non Rickart \*-rings.

### Another really cool corollary

In his book on Baer \*-rings, Berberian asks

If R is Baer \*-ring when is  $M_n(R)$  also Baer \*-ring?

If *R* satisfies nine axioms (recall: 8 and 9 are bad), then **yes**. [V. 2006] Axiom 9 is not needed.

Now we know,

Neither 8 nor 9 are needed.



## Rougher lego world



Another Berberian's agenda: Study general relation  $\sim$  on projections.

The real "main result": everything is formulated in terms of axioms on  $\sim$  .

The fact that a strongly semihereditary \*-ring has a dimension is just a corollary of this general statement if  $\sim$  is interpreted as

$$p \stackrel{a}{\sim} q$$
 iff  $xy = p$  and  $yx = q$   
for some  $x, y$ .



## References

 Strongly semihereditary rings and rings with dimension, Algebras and Representation Theory, 15 (6) (2012) 1049 - 1079.

#### **Preprints on**

#### http://www.usciences.edu/~lvas and on arXiv.

