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It all started with Roozbeh Hazrat...

... who got into graded rings some
time circa 2010.

His motivation – some of the algebras we all love are naturally
graded: graph C ∗-algebras, Leavitt path algebras and their
many generalizations.



The Graded Classification Conjecture (GCC)

Formed circa 2011. Is for any two graphs E and F ,

LK (E ) ∼=gr LK (F )
as graded algebras

iff
K Γ

0 (LK (E ))
∼= K Γ

0 (LK (F ))
as pointed Γ-groups?

Classification

Γ = ⟨t⟩ ∼= Z, so K Γ
0 is a Z[Γ]-module, not a Z[Z]-module.



Pointed

Order-unit = the class corresponding to sum of all vertices.
Generating interval = summands of classes corresponding to
sums of finitely many vertices.

Considered with these elements,
the Grothendieck group is
“pointed”.

Recently, GCC is also referred to the statement on graded
Morita equivalence (without “pointed”). We consider only the
original formulation.



And many people jumped on the bandwagon...

... of looking at Roozbeh’s conjecture
and made progress towards settling it.



The state of the GCC

Hazrat (2013) – GCC holds
for finite polycephaly graphs
(every path leads to a sink, a
rose or a cycle with no exits).

Ara, Pardo (2014) – a weaker version of the GCC holds for
finite graphs without sources and sinks.

Eilers, Ruiz, Sims (2020) – the GCC and its C ∗-algebra
version hold for countable “amplified” graphs.



Known classifications (continued)

Hazrat, Vaš (circa 2016) – the involutive version of the
GCC holds for row-finite graphs in which every infinite path
ends in a (finite or infinite) sink or a cycle without exits and
the algebra is over a “nice enough” field (like C, for example).

Eilers, Ruiz (2025) – the GCC holds for two subclasses of
the class of graphs we consider: acyclic graphs with finitely
many vertices and 2-S-NE graphs with finitely many vertices.

Vaš (2025) – the GCC holds for graphs with

▶ disjoint cycles,

▶ finitely many cycles, sinks, and infinite
emitters, and

▶ each (right) infinite path ends in a cycle.



n-S-NE graphs

n = the number of cycles, sinks, and infinite emitters = the
length of the composition series of the graphs (or algebras,
or talented monoids, or K Γ

0 ’s).

S-NE = every composition factor has either a sink (“S” is for
a sink) or a no-exit cycle (“NE” is for no-exit).

Two of the four “primary colors”

in their composition series.

Example. •99 66//
(( ��• has one cycle, one infinite emitter and

one sink ⇒ composition length = 1+1+1= 3.



Our main prerequisite – the porcupine-quotient

LK (quotient graph) ∼=gr LK (E )/I (H , S) (Tomforde 2007)

LK (hedgehog) ∼= I (H , S) ≇gr I (H , S) (Tomforde 2007)

LK (porcupine) ∼=gr I (H , S) (Vaš 2021)



Porcupine-quotient (2023)

Given (H , S) ≤ (G ,T ) (this means H ⊆ G and S ⊆ G ∪ T )

we want to do the quotient construction with (H , S) but
relative to the porcupine graph of (G ,T ) so that

LK ((G ,T )/(H , S)) ∼=gr I (G ,T )/I (H , S).



Example with n = 2

Let E be •ve 77
g // •w and H = {w}. The paths ending

at w are
{w , g , eg , eeg , eeeg , . . .}

and the porcupine is

// • e2g // • eg // • g // •w

The composition series is (∅, ∅) ≤ ({w}, ∅) ≤ (E 0, ∅).
The composition factors are the above porcupine graph and
the quotient E/{w}

•v77

Thus, if one is to use the induction on n,
one needs to work with infinitely many vertices.



Example with n = 3

Let E be •v66 44//
** ""•w . For H = {w}, the composition

series is
(∅, ∅) ≤ (H , ∅) ≤ (H , {v}) ≤ (E 0, ∅)

and the three factors are: the porcupine graph of (H , ∅)
• // • // •

  
• // • // • // •w

• // • // •

>>

•

, the porcupine-quotient

(H , {v})/(H , ∅) • // • // • // •v , and the
quotient E/(H , {v}) •v66 .



The best part

For graph monoids:

M(G ,T )/(H,S)
∼= J(G ,T )/J(H , S)

For talented monoids:

MΓ
(G ,T )/(H,S)

∼= JΓ(G ,T )/JΓ(H , S).

So, the requirements that a composition series of any of
these exists are equivalent:

▶ admissible pairs of E ,

▶ graded ideals of LK (E ),

▶ order-ideals of ME ,

▶ Γ-order-ideals of MΓ
E .



Four colors

LK (E ) is graded simple iff
no nontrivial and proper admissible pairs.

The graph is the saturated closure of one of the four types of
objects.

1. A sink • // • // • • // •

2. A cycle without exits • // •
��

3. An extreme cycle • // • eeqq
��
QQ

4. A terminal path. • >>
��
• >>

��
• >>

��
•



S-NE and composition S-NE graphs

A graph E is an S-NE graph if (G ,T )/(H , S) has either a
sink or a cycle without exits for every (H , S) ≤ (G ,T ) such
that (G ,T )/(H , S) is cofinal.

S-NE ⇒ disjoint cycles. If E 0 is finite, disjoint cycles ⇒ S-NE.

composition S-NE graphs = S-NE + has a composition
series =

▶ disjoint cycles,

▶ each (right) infinite path ends in a cycle, and

▶ finitely many cycles, sinks, and infinite emitters.



Some examples

S-NE but not composition S-NE:

•
�� // •

�� // •
��

Acyclic but not S-NE:

•

• //

OO

• //

__

•

gg

and, for that matter, also

• // • // •



Now we can do induction!

Start with 1-S-NE graphs.

Since 2011, it has been known that the GCC holds for finite
1-S-NE graphs (because they are polycephaly).

The proof is via graded matrix representations. So one
would need to generalize the proof for finite-size matrices to
infinite-size.

But the matrix approach does
not help with n > 1. So,

no matrices.



The general idea – canonical forms

Want a graph which “represents” well all graphs with algebras
in the same graded isomorphism class:

a canonical form.

If we define E ≈ F by Ecan
∼= Fcan, then we aim to have:

The main result. For composition S-NE graphs E and F ,
TFAE.

1. K Γ
0 s (equiv. talented monoids) are pointed isomorphic.

2. E ≈ F

3. The algebras are graded ∗-isomorphic.

We realize any 1. isomorphism by a specific 3. isomorphism.



The timeline is also a part of this story...

Oberwolfach, March 2024



What came across...



March 2024 to January 2025 – no disjoint cycles



May 22, 2025 – v1 on arXiv



Canonical form of 1-S-NE graphs

Some notation: • 3 // • stands for • ((
66// •

• (3) // • stands for •

��
• // •

•

??

1-S-NE canonical form is a countably infinite generalization of
my 2020 Beitrage paper construction.

The NE case: LK (E ) ∼=gr Mκ[x
m, x−m](µ0, µ1, . . . , µm−1),

then Ecan is

• (µ1−1)// •v0

��

•vm−1
tt •(µ0−1)oo

• (µ2−1)// •v1 44 •vj

VV

•
(µj+1−1)
oo



The sink case

The sink case: LK (E ) ∼=gr Mκ(1, µ1, µ2, . . . , µk), then
k=spine length and Ecan is

// • // • // • // •

•
(µ4−1)

OO

•
(µ3−1)

OO

•
(µ2−1)

OO

•
(µ1−1)

OO

E = • // • ((
66 • , LK (E ) ∼=gr M5(K )(1, 2, 2), k = 2

Ecan = • // • // •

•

OO

•

OO



Relative construction

Let V ⊆ E 0. We repeat the Ecan construction but without
impacting the root R(V ) = {u ∈ E 0 | u ≥ v for some
v ∈ V } and have Ecan,V .

•v // • // •

��
•

HH •v

  

•

��

•oo

•

HH

The main application: E= 2-S-NE graph, H = nontrivial
and proper her and sat set, and V = R(V ) = vertices of the
porcupine of H which are not in H .

•

��

// • // •

��
•

HH

•

HH •

�� ��

•

��

•oo

•

HH

•

HH



We got ourselves some moves

Are they new?
E = • // • // •

��
•`` Ecan = • // •

��
•`` •oo

Are they moves in the Symbolic Dynamics playbook?
If V = {v1, v2, . . .} and E =

•v3 // • // •

  

•

}}

•v2oo

•v4 // • // • // • // •v0 •v1oo
== OO cc

then Ecan,V = •
(ω)

��

•
(ω)

��

•
(ω)

��

•
(ω)
��

// • // • // • // •v0

•v4

OO

•v3

OO

•v2

OO

•v1

OO



2-S-NE graphs

Two terminal clusters – easy: canonical is a disjoint union of
two 1-S-NE graphs.

Otherwise – four types.

•99 // • ee •99 // •

cycle-to-cycle cycle-to-sink

• 66//
(( ��• ee • 66//

(( ��•

infinite-emitter-to-cycle infinite-emitter-to-sink



Direct-exit forms

Using relative 1-S-NE canonical form,

(blank)-to-cycle: all exits end in the terminal cycle

• 66//
(( ��• ee • 66//

(( ��•
��

•(ω)oo

(blank)-to-sink: all exits end in the spine

•99 //

��

• // • // •

•

?? •99 //
>> • // • // •

•

OO

Still a lot of screws to tighten...



The tails can also be made canonical...

•
ω

''

ω

++

ω

��
• // • // • // • // •

• // • // • // •

OO

•
ω

''

ω

++

ω

��
• // • // • // • // •

•

OO

•

OO

•

OO

•

OO



Exit moves

Glorified out-splits.

• //��
•
��

• //��
• // •

��
• //��

•
��

•oo

Sometimes they produce the same thing.

•

��

•

��

•(ω)oo

• //

HH

•

HH

•(ω)oo



Reduced graphs, single-exit emitters

•

��

•

��

•(l1)oo

• //

??HH

•

HH

•(l0)oo

Reduced iff l0, l1 ∈ {0, ω}.

E = • //

��

•

��
• //

HH

•

HH , single-exit emitter for E •

��

•

��

•oo

• ((
66

HH

•

HH

Which vertex to make a
single exit-emitter?



Feasible vertices

•

��   

•

��
• // •v //

HH

•

HH •u

��   

•

��
•v //

II

•

HH

only v is feasible both u and v are feasible

Unique feasible vertex – unique canonical form

•

�� ��

•

��
• // • //

HH

•

HH •

��

•

��
• // •

??

//

HH

•

HH

•oo

More feasible vertices – more canonical forms.

•

��

2

��

•

��
• //

HH

•

HH •

��

//

2

��

•

��
•

HH

•

HH

•oo

•

��

•

��
•

2
??

//

HH

•

HH

•(2)oo



Idea of the proof

E1,E2,E3, and E4 :

•

��

•

��
• ((

66

HH

•

HH •

��

•

��
•

??

//

HH

•

HH • //

��

•

��
• //

HH

•

HH •

����

•

��
• //

HH

•

HH

Canonical for E3 and E4 :

•

��

•

��

•oo

• ((
66

HH

•

HH •

��

•

��
•

??

//

HH

•

HH

•oo

▶ Convert to a canonical form.

▶ Count the tails.



Tail cutting

E = • (ω) // • //��
•
��

F = • (ω) // • //��
•
��

•(1)oo

Moving (the only) exit of both creates

E ′ = • (ω) // • //��
•
��

•(ω)oo

Then E is the cut form of both E ′ and F .

Important because: If E and F are cut 2-S-NE and
f : MΓ

E → MΓ
F is the “identity”, then there is ι : E ∼= F such

that f = ι.



Realizing the talented monoid iso

The main result for 2-S-NE graphs.

TFAE

1. There is a pointed f : MΓ
E
∼= MΓ

F .

2. The relation E ≈ F holds.

3. There is a graded ∗-isomorphism ϕ : LK (E ) → LK (F ).

The “realizing” part.

If (1) holds, there are Ecan and Fcan and ϕE : E → Ecan,
ι : Ecan

∼= Fcan, and ϕF : F → Fcan, such that

ϕ−1
F ιϕE = f .



n-S-NE – the true party starts....

(∅, ∅) ⊊ (H1, S1) ⊊ (H2, S2) ⊊ . . .

⊊ (Hn−1, Sn−1) ⊊ (Hn, ∅) = (E 0, ∅)

can be made into

(∅, ∅) ⊊ (G1, ∅) ⊊ (G2, ∅) ⊊ . . . ⊊ (Gn−1, ∅) ⊊ (Gn, ∅) = (E 0, ∅)

by out-splits. For example,

•99 ω // • ee •99 // • ω // • ee



Direct-exit, spine, tails

Hj -to-H1 parts can be made direct-exit. The j1-spine is
defined and the j-tails are defined.

•99 //

��

•
�� // •

•

?? •99 // <<•
�� // • // •

k21 = 0 and k31 = 1 k21 = 1 and k31 = 0.



Exit-moves

Moving a j1-exit can create an l1-exit for some l > j .

•99 // • ω // • ee

•

��
•

��
99 // • ω // • ee

Reduction, tail-cutting,

feasible vertices, canonical quotient,

and, finally, – a canonical form

are defined analogously as when n = 2.



Outline of the proof for n-S-NE

▶ Use induction for E/H1 and F/G1 and obtain canonical
forms with E/H1

∼= F/G1.

▶ Messing with H2-to-H1 part does not impact the quotient
any more, only Hj -to-H1 part. We make the H2-to-H1

part canonical and then ...

▶ ... proceed with the
H3-to-H1 part and so on
until we reach Hn-to-H1.



Corollaries

▶ The GCC holds for graphs with disjoint cycles and finitely
many vertices.

▶ All the results hold for the graph C ∗-algebras.

▶ The graph operations preserve the diagonal (so ≈
leads to 111 relation in Eilers-Ruiz 3-bit codification).

▶ The Graded Isomorphism Conjecture holds:

1, 2, 3 are equivalent with any of these.

4, 5, 6. There is a (diagonal-preserving) graded algebra
(*-)isomorphism LK (E ) → LK (F ).

7, 8, 9. There is a (diagonal-preserving) graded ring
(*-)isomorphism LK (E ) → LK (F ).

10, 11. There is an equivariant (equiv. graded) isomorphism
C ∗(E ) → C ∗(F ).



Possible roads from here

▶ Transfinite induction to shows the GCC for all S-NE
graphs, not necessarily composition and not necessarily
countable.

▶ Cofinal graphs with extreme cycles?

▶ Then apply induction methods of S-NE to show that GCC
holds for all graphs with three original colors (including all
graphs with finitely many vertices).

Arxiv link is in the abstract (and the announcement). It is an
invitation for you to share your comments and thoughts.


