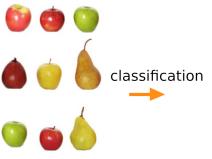
The Graded Classification Conjecture for graph algebras

context, some progress, current status

Lia Vaš University of the Sciences, Philadelphia



・ロット (雪) () () ()

Everybody has their favorite conjecture

The one we shall talk about today...

The Graded Classification Conjecture

Conceived by Roozbeh.

Contemplated by others...

(日) (四) (日) (日) (日)

A ring R

Start with the fin. gen. projectives.

Look at the monoid $\mathcal{V}(R)$ of their iso classes with

Its K₀-group

Force the cancellativity,

complete to a group. Get the Grothendieck group

 $K_0(R)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

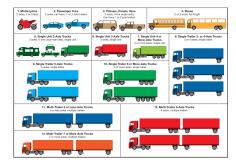
 $[P] + [Q] = [P \oplus Q].$

A general question...

How well $K_0(R)$ reflects the properties of R?

$R \cong S$ as rings iff $K_0(R) \cong K_0(S)$ as (pointed) groups?

- \Rightarrow always holds.
- ⇐ "rarely" holds.E.g. *R*, *S* are matricial algebras over a field.



Classification

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ・ つくぐ

Let us focus on LPAs

For LPAs, \leftarrow really rarely holds. $F = \mathbf{\bullet}^{(\mathbf{\bullet})}$ $E = \bullet$ $K_0(L_{\mathcal{K}}(E)) = K_0(L_{\mathcal{K}}(F)) = \mathbb{Z}$ $L_{\mathcal{K}}(E) \ncong L_{\mathcal{K}}(F)$ but $E = \mathbf{\mathbf{\hat{e}}}^{\mathbf{\hat{k}}}$ Also, for

 $L_{\kappa}(E) \ncong 0$

but

 $K_0(L_K(E)) = K_0(0) = 0.$

How to compute K_0 of a LPA?

Starting from a (row-finite) graph E, define a monoid M_E , called the **graph monoid**, generated by the elements [v] (think the iso class of $L_K(E)v$) where v is a vertex, subject to the relation

$$[v] = \sum_{e \in \boldsymbol{s}^{-1}(v)} [\boldsymbol{r}(e)]$$

if v is regular.

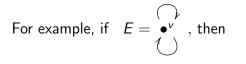
Why? Because left multiplication by *e* is an iso of fin. gen. proj. $r(e)L_{\mathcal{K}}(E) = e^*eL_{\mathcal{K}}(E)$ and $ee^*L_{\mathcal{K}}(E)$. So, if *v* is regular, then

$$[v] = \left[\sum_{e \in s^{-1}(v)} ee^*\right] = \sum_{e \in s^{-1}(v)} [e^*e] = \sum_{e \in s^{-1}(v)} [r(e)].$$

Then form the Grothendieck group G_E of M_E and we have that

$$M_E \cong \mathcal{V}(L_{\mathcal{K}}(E))$$

 $G_E \cong \mathcal{K}_0(L_{\mathcal{K}}(E))$



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 $M_E = \langle v | v = v + v \rangle$. Its Grothendieck group is trivial since $v = v + v \Rightarrow 0 = v$.

Enter the grading to the rescue!

Leavitt path algebra is also graded.

If Γ is a group, a ring R is Γ -graded if

 $R = \bigoplus_{\gamma \in \Gamma} R_{\gamma}$ such that $R_{\gamma}R_{\delta} \subseteq R_{\gamma\delta}$.

In the world of graded rings...

... "<u>element</u>" is replaced by "<u>homogeneous element</u>" ($x \in R_{\gamma}$ for some γ) and "<u>module</u>" by "graded module".

ring

graded ring

Many rings are naturally graded: group rings, LPAs ...

For a LPA, $\Gamma = \mathbb{Z}$ and $L_{\mathcal{K}}(E)_n = \text{span } \{pq^* \mid |p| - |q| = n\}$.

▲□▶▲□▶▲□▶▲□▶ = ● ● ●

Shifts, graded free modules, graded matrix rings

A module *M* is **graded** if

$$M=igoplus_{\gamma\in\Gamma}M_\gamma\;$$
 such that $\;R_\gamma M_\delta\subseteq M_{\gamma\delta}.$

Every graded module M can be **shifted** by δ as follows.

 $M(\delta) = \bigoplus_{\gamma \in \Gamma} M_{\gamma \delta}$ so that $M(\delta)_{\gamma} = M_{\gamma \delta}$.

A finitely generated graded free R-module is of the form

 $R(\gamma_1) \oplus \ldots \oplus R(\gamma_n).$

 $\mathbb{M}_n(R)(\gamma_1,\ldots,\gamma_n)$ is $\mathbb{M}_n(R)$ with a Γ -grading so that

 $\mathbb{M}_n(R)(\gamma_1,\ldots,\gamma_n) \cong_{\mathrm{gr}} \operatorname{End}_R\left(\bigoplus_{i=1}^n R(\gamma_i^{-1})\right)$

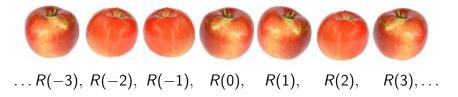
◆□▶ ◆□▶ ◆目▶ ◆目▶ □目 − のへぐ

Finitely generated graded free modules

If Γ = trivial, and K is a field, there is **just one one-dimensional free** module: K.

If $\Gamma = \mathbb{Z}$, for example, and *R* is Γ -graded there can be

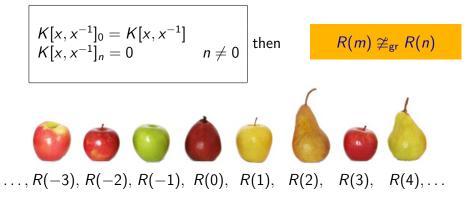
many one-dimensional graded free modules:



Three examples

Let
$$\Gamma = \langle x
angle \cong \mathbb{Z}$$
 and $R = K[x, x^{-1}] = K[\mathbb{Z}].$

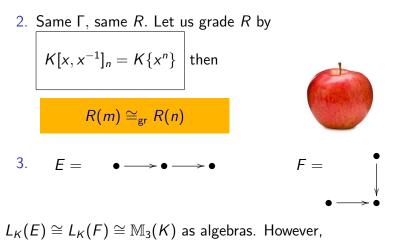
1. Let us grade *R* trivially, i.e.



イロト 不得 トイヨト イヨト

3

The second two examples



 $L_{\mathcal{K}}(E) \cong_{\mathrm{gr}} \mathbb{M}_{3}(\mathcal{K})(0,1,2) \ncong_{\mathrm{gr}} L_{\mathcal{K}}(F) \cong_{\mathrm{gr}} \mathbb{M}_{3}(\mathcal{K})(0,1,1)$ as graded algebras.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

"Graded" version of the K_0 -group

If *R* is Γ -graded, replace **"projective"** by **"graded projective"** and repeat the construction for $\mathcal{V}(R)$, get $\mathcal{V}^{\Gamma}(R)$ with the Γ -action induced by the shifts.

$$\gamma[\mathbf{P}] = [\mathbf{P}(\gamma)].$$

Then get the **Grothendieck** Γ -group $K_0^{\Gamma}(R)$. Roozbeh calls it the graded Grothendieck group and uses $K_0^{\text{gr}}(R)$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

K_0^{Γ} classifies better

 K_0^{Γ} of a Γ -graded ring is a $\mathbb{Z}[\Gamma]$ -module. Because of this additional structure,

$$K_0^{\Gamma}$$
 is **more sensitive** than K_0 .

So, it classifies better.

For LPAs,
$$\Gamma = \langle x \rangle \cong \mathbb{Z}, \mathbb{Z}[\Gamma]$$
 is $\mathbb{Z}[x, x^{-1}]$ $(\mathbb{Z}[\mathbb{Z}])$

 $K_0^{\Gamma}(L_{\mathcal{K}}(E))$ is a $\mathbb{Z}[x, x^{-1}]$ -module.

Graph-only approach

Recall that M_E is defined using a graph E only and G_E is its Grothendieck completion. We want the Γ -versions.

For a group Γ and a graph E, one wants a monoid M_E^{Γ} ,

the graph Γ -monoid.

Roozbeh and Huanhuan (Li) call it

the talented monoid.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The Grothendieck group of M_E^{Γ} is the **the graph** Γ -group G_E^{Γ} .

 $M_E^{\Gamma} \cong \mathcal{V}^{\Gamma}(L_{\mathcal{K}}(E))$ $G_E^{\Gamma} \cong \mathcal{K}_0^{\Gamma}(L_{\mathcal{K}}(E))$

Computing M_E^{Γ} and G_E^{Γ}

Let us concentrate on $\Gamma = \langle x \rangle$.

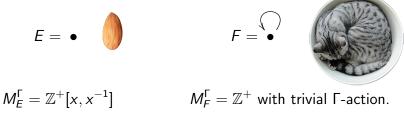
 M_E^{Γ} has the same generators [v] as M_E but the defining relation is modified by adding just one x in the formula from before. It becomes

$$[v] = \sum_{e \in \boldsymbol{s}^{-1}(v)} x[\boldsymbol{r}(e)]$$

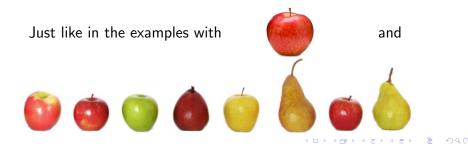
for all regular vertices v.

Why x? Because $x = x^1$ is the length of the path *e* from *v* to r(e).

Two examples

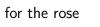


$$G_E^{\Gamma} = \mathbb{Z}[x, x^{-1}]$$
 $G_F^{\Gamma} = \mathbb{Z}$ with trivial Γ -action.



One more example

Let us compare M_E and M_E^{Γ}



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

•
$$M_E = \langle v \mid v = v + v \rangle$$
 so $G_E = 0$.

M^Γ_E = ⟨v | v = xv + xv⟩ and G^Γ_E is isomorphic to Z[¹/₂] if we identify v with 1 and the action of x by multiplication by ¹/₂.

In general, M_E^{Γ} is **cancellative**.

... that Roozbeh formed the following question (circa 2011): Is for any two graphs *E* and *F*,

 $\begin{array}{l} \mathcal{L}_{\mathcal{K}}(\mathcal{E}) \cong_{\mathrm{gr}} \mathcal{L}_{\mathcal{K}}(\mathcal{F}) \\ \text{as graded algebras} \\ & \text{iff} \\ \mathcal{K}_{0}^{\Gamma}(\mathcal{L}_{\mathcal{K}}(\mathcal{E})) \cong \mathcal{K}_{0}^{\Gamma}(\mathcal{L}_{\mathcal{K}}(\mathcal{F})) \\ \text{as pointed } \Gamma \text{-groups?} \end{array}$

Classification

Let us look into "pointed" next...

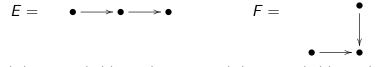
Structure of K_0^{Γ}

- An abelian group
- with a Γ-action, and
- ▶ a pre-order ≤ (from [P] ≤ [Q] iff P is isomorphic to a summand of Q).

There is a special element [R] in $K_0(R)$ which is an **order-unit** (because for every $a \in K_0(R)$, there is a positive integer *n* such that $-n[R] \le a \le n[R]$).

 $K_0(R)$ considered with an order-unit *u* is said to be **pointed**.

"Being pointed" and "having F-action" matter



 $L_{\mathcal{K}}(E) \cong_{\mathrm{gr}} \mathbb{M}_{3}(\mathcal{K})(0,1,2) \not\cong_{\mathrm{gr}} L_{\mathcal{K}}(F) \cong_{\mathrm{gr}} \mathbb{M}_{3}(\mathcal{K})(0,1,1).$

$$(G_{E}^{\Gamma}, [1]) \cong (\mathbb{Z}[x, x^{-1}], 1 + x^{-1} + x^{-2}) \ncong (G_{F}^{\Gamma}, [1]) \cong (\mathbb{Z}[x, x^{-1}], 1 + x^{-1} + x^{-1}).$$

Also

 $L_{\mathcal{K}}(E) \cong_{gr} \mathbb{M}_{2}(\mathcal{K}[x, x^{-1}])(0, 1) \ncong_{gr} L_{\mathcal{K}}(F) \cong_{gr} \mathbb{M}_{2}(\mathcal{K}[x^{2}, x^{-2}])(0, 1)$

 Γ acts trivially on $(G_{E}^{\Gamma}, [1])$ and non-trivially on $(G_{E}^{\Gamma}, [1])$.

Roozbeh (circa 2011) – the conjecture holds for finite **polycephaly** graphs (every path leads to a sink, a rose or a cycle with no exits).

Ara and Pardo (2014) – a weaker version of the conjecture holds for finite graphs without sources and sinks.

Eilers, Ruiz, Sims (2020) – the conjecture and its C^* -algebra version hold for countable "amplified" graphs.

Roozbeh and me (circa 2016) – the involutive version of the conjecture holds for row-finite, no-exit graphs in which every infinite path ends in a sink or a cycle.

The proof relies on representing LPAs as (ultra)matricial algebras and using properties graded fields.

◆□ → ◆圖 → ◆国 → ◆国 → □ ■

In 2020, Roozbeh and I were looking for...

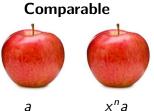
... a graph-oriented (not matrix-oriented) approach.

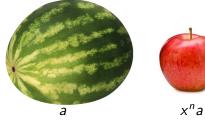
So, we went back to the Talented Mr. Monoid and its structure.

In particular, for $a \in M_E^{\Gamma}$, the relation $a < x^n a$ is not possible for any positive *n*. So, there are three possibilities:

- 1. $a = x^n a$ for some positive *n*. Such *a* is **periodic**.
- 2. $a > x^n a$ for some positive *n*. Such *a* is **aperiodic**.
- 3. *a* and $x^n a$ are not comparable for any positive *n*. Such *a* is **incomparable** (periodic or aperiodic = **comparable**).

Comparable and incomparable





a is periodic

a is aperiodic

Incomparable

а

A D > A P > A D > A D >

 $x^n a$ for any n

э

a is incomparable

Examples

To understand examples a bit better: Look at the free Γ -monoid F_E^{Γ} generated by the vertices and look at a relation \rightarrow "defined by the axioms" (i.e. $v \rightarrow \sum_{e \in s^{-1}(v)} xr(e)$ if v is regular). Then M_E^{Γ} is the equivalence closure of \rightarrow).

For example, for

$$w \to xw \Rightarrow [w] = x[w] \Rightarrow [w]$$
 is **periodic**.
 $v \to xw \Rightarrow [v] = x[w] = [w] \Rightarrow [v]$ is **periodic** also.

For

 $w \to xw + xv \Rightarrow [w] > x[w] \Rightarrow [w]$ is aperiodic. $v \to \text{nothing} \Rightarrow [v]$ is incomparable.

Types of vertices

If v is in a cycle,

If v is a sink, If v is an infinite emitter [v] is incomparable.

[v] is **aperiodic** if v is in a cycle.

[v] is **incomparable** otherwise.

[v] is **periodic** if the cycle has no exits, [v] is **aperiodic** otherwise.

[a] is comparable iff $a \to b$ for some "stationary" element b of F_E^{Γ} .

b is **stationary** iff all generators are either on cycles or on exits from cycles which contain other generators of *b*.

・ロト ・ 四 ト ・ ヨ ト ・ ヨ ト

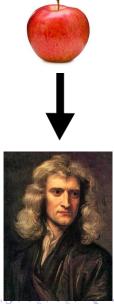
э

A taste of various characterizations

- $[a] \in M_E^{\Gamma}$ is comparableiff $a \to b$ for some stationary b. $[a] \in M_E^{\Gamma}$ is periodiciff $a \to b$ for some stationary b
with no generators
on cycles with exits.Some $[a] \in M_E^{\Gamma}$ is comparableiff E has a cycle.
- Some $[a] \in M_E^{\Gamma}$ is **periodic** iff *E* has a cycle without an exit
- Every $[a] \in M_E^{\Gamma}$ is **periodic** if
 - iff *E* is row-finite, no-exit, without sinks, with infinite paths ending in cycles.

Some corollaries

- 1. M_E^{Γ} recognizes the following properties:
 - E being acyclic.
 - *E* having a cycle with/without an exit.
 - E being no-exit.
 - E being row-finite, no-exit, without sinks and with infinite paths ending in cycles.
- The main results of Roozbeh-Huanhuan paper on the Talented Monoid (J. Algebra, vol 547, 2020) hold without the requirement that *E* is <u>row-finite</u>.



... related to the characterization of the **cross product LPAs** and skew group ring LPAs (Roozbeh-Lia, 2020)

Characterization of when $L_{\mathcal{K}}(E)$ is strongly graded via M_E^{Γ} (equivalently of G_E^{Γ}).

strongly graded ring

graded ring

Idea for the future

The three classes match the polycephaly graphs scenario:

periodic	\longleftrightarrow	the comet part
aperiodic	\longleftrightarrow	the rose part
incomparable	\longleftrightarrow	the acyclic part

Not just that every element of M_E^{Γ} is periodic, aperiodic or incomparable, but it is a sum of a periodic, an aperiodic and an incomparable parts.

Such representation exists, but uniqueness is still a problem.

The strong version of the conjecture

K_0^{Γ} is a **full** and...

... faithful functor.

The strong version, in fact, was shown for polycephaly and row-finite no-exit etc graphs mentioned before.

Relation with another conjecture

The Isomorphism Conjecture.

 $L_{\mathbb{C}}(E) \cong L_{\mathbb{C}}(F)$ as rings iff $C^*(E) \cong C^*(F)$ as *-algebras.

Formulated by Gene Abrams and Mark Tomforde. Note that $L_{\mathbb{C}}(E) \cong L_{\mathbb{C}}(F)$ as *-algebras $\Rightarrow C^*(E) \cong C^*(F)$ as *-algebras.

Gene

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Mark

The graded (non-involutive) version

The Graded Isomorphism Conjecture.

 $L_{\mathcal{K}}(E) \cong L_{\mathcal{K}}(F)$ as graded rings iff $L_{\mathcal{K}}(E) \cong L_{\mathcal{K}}(F)$ as graded algebras.

Graded Classification \Rightarrow Graded Isomorphism

References, slides: liavas.net

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○