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Everybody has their favorite conjecture

The one we shall talk about today... The Graded Classification
Conjecture

Conceived by Roozbeh. Contemplated by others...



Grothendieck group of a ring

A ring R

Start with the fin.
gen. projectives.

Look at the monoid
V(R) of their iso
classes with

[P] + [Q] = [P⊕Q].

Its K0-group

Force the
cancellativity,

complete to a
group. Get the
Grothendieck group

K0(R).



A general question...

How well K0(R) reflects the properties of R?

R ∼= S as rings iff K0(R) ∼= K0(S) as (pointed)
groups?

⇒ always holds.

⇐ “rarely” holds.

E.g. R , S are matricial
algebras over a field.

Classification



Let us focus on LPAs

For LPAs, ⇐ really rarely holds.

E = • F = •
��

LK (E ) � LK (F ) but K0(LK (E )) = K0(LK (F )) = Z

Also, for E = •
��
EE

LK (E ) � 0 but K0(LK (E )) = K0(0) = 0.



How to compute K0 of a LPA?

Starting from a (row-finite) graph E , define a monoid ME ,
called the graph monoid, generated by the elements [v ]
(think the iso class of LK (E )v) where v is a vertex, subject to
the relation

[v ] =
∑

e∈s−1(v)

[r(e)]

if v is regular.

Why? Because left multiplication by e is an iso of fin. gen.
proj. r(e)LK (E ) = e∗eLK (E ) and ee∗LK (E ). So, if v is
regular, then

[v ] =

 ∑
e∈s−1(v)

ee∗

 =
∑

e∈s−1(v)

[e∗e] =
∑

e∈s−1(v)

[r(e)].



ME and GE

Then form the Grothendieck group GE of ME and we have that

ME
∼= V(LK (E ))

GE
∼= K0(LK (E ))

For example, if E = •v
��

EE , then

ME = 〈v |v = v + v〉. Its Grothendieck group is trivial since
v = v + v ⇒ 0 = v .



Enter the grading to the rescue!

Leavitt path algebra is also graded.

If Γ is a group, a ring R is Γ-graded if

R =
⊕

γ∈Γ Rγ such that RγRδ ⊆ Rγδ.



In the world of graded rings...

... “element” is replaced by “homogeneous element”
(x ∈ Rγ for some γ) and “module” by “graded module”.

ring graded ring

Many rings are naturally graded: group rings, LPAs ...

For a LPA, Γ = Z and LK (E )n = span {pq∗ | |p| − |q| = n}.



Shifts, graded free modules, graded matrix rings

A module M is graded if M =
⊕

γ∈Γ Mγ such that RγMδ ⊆ Mγδ.

Every graded module M can be shifted by δ as follows.

M(δ) =
⊕

γ∈Γ Mγδ so that M(δ)γ = Mγδ.

A finitely generated graded free R-module is of the form

R(γ1)⊕ . . .⊕ R(γn).

Mn(R)(γ1, . . . , γn) is Mn(R) with a Γ-grading so that

Mn(R)(γ1, . . . , γn) ∼=gr EndR
(⊕n

i=1 R(γ−1
i )
)



Finitely generated graded free modules

If Γ = trivial, and K is a field, there is
just one one-dimensional free
module: K .

If Γ = Z, for example, and R is Γ-graded there can be

many one-dimensional graded free modules:

. . .R(−3), R(−2), R(−1), R(0), R(1), R(2), R(3), . . .



Three examples

Let Γ = 〈x〉 ∼= Z and R = K [x , x−1] = K [Z].

1. Let us grade R trivially, i.e.

K [x , x−1]0 = K [x , x−1]
K [x , x−1]n = 0 n 6= 0

then R(m) �gr R(n)

. . . , R(−3), R(−2), R(−1), R(0), R(1), R(2), R(3), R(4), . . .



The second two examples

2. Same Γ, same R . Let us grade R by

K [x , x−1]n = K{xn} then

R(m) ∼=gr R(n)

3. E = • // • // • F =
•

��
• // •

LK (E ) ∼= LK (F ) ∼= M3(K ) as algebras. However,

LK (E ) ∼=gr M3(K )(0, 1, 2) �gr LK (F ) ∼=gr M3(K )(0, 1, 1)

as graded algebras.



“Graded” version of the K0-group

If R is Γ-graded, replace “projective” by “graded
projective” and repeat the construction for V(R), get VΓ(R)
with the Γ-action induced by the shifts.

γ[P] = [P(γ)].

Then get the Grothendieck
Γ-group KΓ

0 (R). Roozbeh calls it
the graded Grothendieck group
and uses K gr

0 (R).



K Γ
0 classifies better

K Γ
0 of a Γ-graded ring is a Z[Γ]-module. Because of this

additional structure,

K Γ
0 is more sensitive than K0.

So, it classifies better.

For LPAs, Γ = 〈x〉 ∼= Z, Z[Γ] is Z[x , x−1] (Z[Z])

K Γ
0 (LK(E)) is a Z[x, x−1]-module.



Graph-only approach

Recall that ME is defined using a
graph E only and GE is its
Grothendieck completion. We
want the Γ-versions.

For a group Γ and a graph E , one
wants a monoid MΓ

E ,

the graph Γ-monoid.

Roozbeh and Huanhuan (Li) call it the talented monoid.

The Grothendieck group of MΓ
E is the the graph Γ-group G Γ

E .

MΓ
E
∼= VΓ(LK (E ))

G Γ
E
∼= K Γ

0 (LK (E ))



Computing MΓ
E and G Γ

E

Let us concentrate on Γ = 〈x〉.

MΓ
E has the same generators [v ] as ME but the defining

relation is modified by adding just one x in the formula from
before. It becomes

[v ] =
∑

e∈s−1(v)

x [r(e)]

for all regular vertices v .

Why x?
Because x = x1 is the length of the path e from v to r(e).



Two examples

E = • F = •
��

MΓ
E = Z+[x , x−1] MΓ

F = Z+ with trivial Γ-action.

G Γ
E = Z[x , x−1] G Γ

F = Z with trivial Γ-action.

Just like in the examples with and



One more example

Let us compare ME and MΓ
E

for the rose E = •v
��

EE

I ME = 〈v | v = v + v〉 so GE = 0.

I MΓ
E = 〈v | v = xv + xv〉 and G Γ

E is isomorphic to Z[ 1
2
]

if we identify v with 1 and the action of x by
multiplication by 1

2
.

In general, MΓ
E is cancellative.



All seems so good...

... that Roozbeh formed the following question (circa 2011):

Is for any two graphs E and F ,

LK(E) ∼=gr LK(F )
as graded algebras

iff
KΓ

0 (LK(E)) ∼= KΓ
0 (LK(F ))

as pointed Γ-groups?

Classification

Let us look into “pointed” next...



Structure of K Γ
0

I An abelian group

I with a Γ-action, and

I a pre-order ≤ (from [P] ≤ [Q] iff P is isomorphic to a
summand of Q).

There is a special element [R] in K0(R) which is an
order-unit (because for every a ∈ K0(R), there is a positive
integer n such that −n[R] ≤ a ≤ n[R]).

K0(R) considered with an
order-unit u is said to be pointed.



“Being pointed” and “having Γ-action” matter

E = • // • // • F = •

��
• // •

LK (E ) ∼=gr M3(K )(0, 1, 2) �gr LK (F ) ∼=gr M3(K )(0, 1, 1).

(G Γ
E , [1]) ∼= (Z[x , x−1], 1 + x−1 + x−2) �
(G Γ

F , [1]) ∼= (Z[x , x−1], 1 + x−1 + x−1).

Also
E = • // • yy F = •

��
•``

LK (E ) ∼=gr M2(K [x , x−1])(0, 1) �gr LK (F ) ∼=gr M2(K [x2, x−2])(0, 1)

Γ acts trivially on (G Γ
E , [1]) and non-trivially on (G Γ

F , [1]).



Known classifications

Roozbeh (circa 2011) – the
conjecture holds for finite
polycephaly graphs (every
path leads to a sink, a rose or a
cycle with no exits).

Ara and Pardo (2014) – a weaker version of the conjecture
holds for finite graphs without sources and sinks.

Eilers, Ruiz, Sims (2020) – the conjecture and its
C ∗-algebra version hold for countable “amplified” graphs.



Known classifications (continued)

Roozbeh and me (circa 2016) – the involutive version of
the conjecture holds for row-finite, no-exit graphs in which
every infinite path ends in a sink or a cycle.

The proof relies on representing
LPAs as (ultra)matricial
algebras and using properties
graded fields.



In 2020, Roozbeh and I were looking for...

... a graph-oriented (not
matrix-oriented) approach.

So, we went back to the Talented
Mr. Monoid and its structure.

In particular, for a ∈ MΓ
E , the relation a < xna is not possible

for any positive n. So, there are three possibilities:

1. a = xna for some positive n. Such a is periodic.

2. a > xna for some positive n. Such a is aperiodic.

3. a and xna are not comparable for any positive n. Such a
is incomparable (periodic or aperiodic = comparable).



Comparable and incomparable

Comparable

a xna a xna
a is periodic a is aperiodic

Incomparable

a xna for any n

a is incomparable



Examples

To understand examples a bit better: Look at the free
Γ-monoid F Γ

E generated by the vertices and look at a relation
→ “defined by the axioms” (i.e. v →

∑
e∈s−1(v) xr(e) if v is

regular). Then MΓ
E is the equivalence closure of →).

For example, for
•v // •w

uu

w → xw ⇒ [w ] = x [w ] ⇒ [w ] is periodic.

v → xw ⇒ [v ] = x [w ] = [w ] ⇒ [v ] is periodic also.

For
•v •woo

uu

w → xw + xv ⇒ [w ] > x [w ] ⇒ [w ] is aperiodic.

v → nothing ⇒ [v ] is incomparable.



Types of vertices

If v is a sink, [v ] is incomparable.
If v is an infinite emitter

[v ] is aperiodic if v is in a cycle.
[v ] is incomparable otherwise.

If v is in a cycle,
[v ] is periodic if the cycle has no exits,
[v ] is aperiodic otherwise.

[a] is comparable iff a→ b for some “stationary” element b of
F Γ
E .

b is stationary iff all generators
are either on cycles or on exits
from cycles which contain other
generators of b.



A taste of various characterizations

[a] ∈ MΓ
E is comparable iff a→ b for some stationary b.

[a] ∈ MΓ
E is periodic iff a→ b for some stationary b

with no generators
on cycles with exits.

Some [a] ∈ MΓ
E is comparable iff E has a cycle.

Some [a] ∈ MΓ
E is periodic iff E has a cycle without an exit.

Every [a] ∈ MΓ
E is periodic iff E is row-finite, no-exit,

without sinks, with infinite
paths ending in cycles.



Some corollaries

1. MΓ
E recognizes the following

properties:

I E being acyclic.
I E having a cycle with/without an

exit.
I E being no-exit.
I E being row-finite, no-exit, without

sinks and with infinite paths ending
in cycles.

2. The main results of
Roozbeh-Huanhuan paper on the
Talented Monoid (J. Algebra, vol 547,
2020) hold without the requirement
that E is row-finite.



Another corollary...

... related to the characterization of the cross product LPAs
and skew group ring LPAs (Roozbeh-Lia, 2020)

Characterization of when LK (E ) is strongly graded via MΓ
E

(equivalently of G Γ
E ).

graded ring strongly graded ring



Idea for the future

The three classes match the polycephaly graphs scenario:

periodic ! the comet part

aperiodic ! the rose part

incomparable ! the acyclic part

Not just that every element of MΓ
E is periodic, aperiodic or

incomparable, but it is a sum of a periodic, an aperiodic and
an incomparable parts.

Such representation exists, but uniqueness is still a problem.



The strong version of the conjecture

K Γ
0 is a full and...

... faithful functor.

The strong version, in fact, was shown for polycephaly and
row-finite no-exit etc graphs mentioned before.



Relation with another conjecture

The Isomorphism Conjecture.

LC(E ) ∼= LC(F ) as rings iff C ∗(E ) ∼= C ∗(F ) as ∗-algebras.

Formulated by Gene Abrams and Mark Tomforde. Note that

LC(E ) ∼= LC(F ) as ∗-algebras ⇒ C ∗(E ) ∼= C ∗(F ) as ∗-algebras.

Mark Gene



The graded (non-involutive) version

The Graded Isomorphism Conjecture.

LK (E ) ∼= LK (F ) as graded rings iff
LK (E ) ∼= LK (F ) as graded algebras.

Graded Classification ⇒ Graded Isomorphism

References, slides: liavas.net


