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Modern mathematics...



And then there are also mutants...



Even within the same area...

... we may not speak the same language or understand each
other.



Some bridges were built...

Galois group

solving ! groups
polynomials

Laplace transform

(some) differential ! algebraic
equations equations

homology

topological ! algebraic
structures structures



So, building bridges is important...

... and I would like to talk about one of them.

Operator
theory

Algebra

(or at least about one lane on the multi-lane highway of this
bridge)



Let us start with the operator theory...

operators ! generalized matrices

So, you can think of operator theory as the study of
generalized matrices with the concept of continuity present.

Operator Theory ! generalized Linear Algebra
+ some Real Analysis present

It is a part of functional analysis which is the mathematical
theory behind quantum mechanics and machine learning,
among some other applications.



Hilbert spaces, von Neumann algebras

David Hilbert generalized the finite dimensional vector
spaces to spaces possibly infinite dimensional today known as
Hilbert spaces.
John von Neumann wanted to capture abstractly the
concept of an algebra of observables in quantum mechanics.
Studied algebras today known as von Neumann algebras.

We shall talk about an algebra which generalizes operators on
Hilbert spaces and, also, generalizes von Neumann algebras.



C ∗-algebra – damsel in distress

A C∗-algebra is

I an algebra (meaning we can add
and multiply with scalars, just as in
a vector space, and we can
multiply its elements)

I with a norm (meaning that we
have a way to measure distances)

I with an involution ∗ (like taking
adjoint and transpose for matrices)

and

I the norm makes the algebra complete and all of the above
agrees with each other.



Example – Matrices

Consider 2× 2 matrices containing real numbers.

I We can add and multiply two
such matrices and we can multiply
a matrix with a real number.

I The vectors in R2 have a norm
(|x| =

√
x2
1 + x2

2 ), so one can take
the norm to be

|A| = sup
x6=0

|A(x)|
|x|

I The involution is the transpose[
a b
c d

]∗
=

[
a c
b d

]



The “agreeing”

The statements that all of the operations the algebra has
agree with each other means that some relations as those
below have to hold.

I + and · a(b + c) = ab + ac

I | | and + |a + b| ≤ |a|+ |b|
I | | and · |ab| ≤ |a||b|
I + and ∗ (a + b)∗ = a∗ + b∗

I · and ∗ (ab)∗ = b∗a∗

I | | and ∗ |a∗| = |a|

More generally, if H is a Hilbert space, the algebra B(H) of all
bounded (i.e. continuous) operators on H is a C ∗-algebra.



Algebraization of Operator Theory

”Von Neumann algebras are blessed with an excess
of structure – algebraic, geometric, topological – so
much, that one can easily obscure, through proof by
overkill, what makes a particular theorem work.”

”If all the functional analysis is stripped away ...
what remains should (be) completely accessible
through algebraic avenues”.

Berberian, S. K. Baer ∗-rings;
Springer-Verlag,
Berlin-Heidelberg-New York,
1972.



The overkill

The overkill that Berberian is referring to:

a mosquito a machine gun



What structure do we need?

I With + and · −→
a ring.

I With an involution,

an additive map ∗
with (xy)∗ = y ∗x∗

and (x∗)∗ = x −→

a ∗-ring.



The Knight in shining armor

A ∗-ring with enough

projections

A projection p is a
self-adjoint (p∗ = p)
idempotent (pp = p).

Traditional candidates:

I Baer ∗-rings,

I group rings (lead to
Hopf algebras).

Novices:

I Leavitt path algebras.



Going back to C ∗-algebras...

The examples of C ∗-algebras
were so vast and so diverse,
that a need for their
classification became
evident.

This initiative is known as the

Elliott Classification Program.

Elliott completely classified one type of C ∗-algebras (the “best
behaved” type).



The algebra of a little graph

Some of the types more difficult to capture found a good
representative in a C ∗-algebra the graph below.

•99 ee
The algebra A over this little graph has a surprising property

A2 ∼= A.

A vector space of a finite dimension cannot have such a
property (think how different R2 and R are), but with infinite
dimensions, think that an ordered pair consisting of two
vectors with countably infinitely many entries is

equally infinite

as the single such vector.

(1, 2, 3, . . . , 1, 2, 3, . . .) ! (1, 1, 2, 2, 3, 3, . . .)



Graph algebra evolution

1. 1950s: Leavitt algebras as
examples of rings R with
Rm ∼= Rn.

2. 1970s: Cuntz algebras –
C ∗-algebras defined by
analogous identities.

3. 1980s: Cuntz-Krieger
algebras – generalization of 2.

4. 1990s: C ∗-algebras of other graphs considered – the
birth of graph C ∗-algebras.

5. 2000s: Leavitt path algebras introduced as the algebraic
analog of 4. and a generalization of 1.



Graphs and paths

Start with a directed graph: vertices, edges, and source and

range map, s and r. s(e)•
e

%%
•r(e)

A path is a sequence
e1 . . . en of edges such that

the range of ei is the
source of ei+1

for i = 1, . . . , n − 1 (such
path has the length n) or a
vertex (of length zero).

For example, the paths of •u e // •v f // •w are
u, v ,w (length 0), e, f (length 1) and ef (length 2).



Adding and multiplying paths – path algebra

The addition of two paths p and q is p + q.

The product of p and q is the concatenation.

pq is •
p

��
•

q

��
• if r(p) = s(q) and 0 otherwise.

For example, for •u e // •v f // •w , e · f = ef and f · e = 0.

Form a vector space over your favorite coefficient field, say K ,
with the paths as the basis. This is the path algebra PK (E ).

For example, an element of PR(E ) is a R-linear combination of
the six paths. So, 3e +

√
5 ef , and 2v − 3

4
f are some of the

elements of PR(E ).



Example •u e // •v f // •w continued

Let eij denote the standard matrix unit with 1 on (i , j) spot

and 0 elsewhere. So, e11 =

 1 0 0
0 0 0
0 0 0

 , e12 =

 0 1 0
0 0 0
0 0 0


etc.

The map

u 7→ e11, e 7→ e12, ef 7→ e13, v 7→ e22, f 7→ e23, and
w 7→ e33

extends to an isomorphism of PK (E ) and the algebra of the
upper triangular matrices. We represent this iso by u e ef

0 v f
0 0 w





Another way to think of PK (E )

Let E 0 be the set of vertices, E 1 the set of edges, and s and r
the source and the range maps.

PK (E ) is a free K -algebra with vertices and edges as
generators subject to the two axioms below. For any
v ,w ∈ E 0 and e ∈ E 1,

V vw = 0 if v 6= w and vv = v , and
E1 s(e)e = er(e) = e. s(e)• e // •r(e)

The path algebra is nice, but to get to a C ∗-algebra we need to
have an involution and a norm. We are adding more structure.



Ghost paths

1. Add the ghost edges – elements of the form e∗ for
e ∈ E 1.

2. Add the “ghost version” of
the axiom E1

E2 r(e)e∗ = e∗s(e) = e∗

s(e)•
e
((
•r(e)

e∗

dd

The vertices are selfadjoint: v ∗ = v for v ∈ E 0.



Example

In the example with E being

•u e // •v f // •w

some of the “obvious” products are

e∗f = 0, f ∗u = 0, ef ∗ = 0, ue∗ = 0.

There are some not so obvious products. For example,

What are e∗e and f ∗f (if anything)?
What are ee∗ and ff ∗ (if anything)?

To understand the answers, we briefly digress to...



... projections and partial isometries

In a ∗-ring, an idempotent (pp = p)
and selfadjoint (p∗ = p) element is
called a projection.

(So, the vertices are projections.)

An element x is a partial isometry if xx∗x = x . In this case,
p = xx∗ and q = x∗x are projections and

px = x and xq = x

Isn’t this just as s(e)e = e and er(e) = e?

Because of this, one can think of p as “the source” and q as
“the range” of x .



This leads us to the last two axioms. First, CK1.

1. One wants edges to be partial isometries. So, one
requires that

e∗e = r(e)

since then ee∗e = er(e) = e by E1.
In this case, e∗ is also a partial isometry.

2. The edges have mutually orthogonal “sources”. This
ends up being equivalent by requiring that e∗f = 0 for
e 6= f .

e∗f = e∗ee∗ff ∗f = e∗(ee∗)(ff ∗)f = e∗0f = 0.

The two steps are combined in

CK1 e∗e = r(e) and e∗f = 0 if e 6= f .



Then, CK2.

3. We keep track of the number of other edges the source of
an edge emits. So, we require that the following holds.

CK2 v =
∑

ee∗ where the sum is taken over
e ∈ s−1(v).

for every vertex v which emits at least one but finitely
many edges. We say that such v is regular.

For example, in the graph •u e // •v f // •w
e∗e = v , f ∗f = w , ee∗ = u, ff ∗ = v .

And in the graph •u •veoo f // •w
v = ee∗ + ff ∗ (so ee∗ 6= v and ff ∗ 6= v).



We got ourselves some algebras

K = field. The Leavitt path algebra LK (E ) of E is a free
K -algebra on vertices, edges and ghost edges subject to the
following.

V vv = v and vw = 0 if v 6= w ,

E1 e = s(e)e = er(e)

E2 e∗ = e∗s(e) = r(e)e∗

CK1 e∗e = r(e), and e∗f = 0 if e 6= f

CK2 v =
∑

e∈s−1(v) ee∗ if v is regular.

If K = C, the graph C ∗-algebra C ∗(E ) of E is the
completion of LC(E ). It is the universal C ∗-algebra with

vertices = generating projections
edges = partial isometries

and CK1, CK2, CK3.

(CK3 follows from E2 so we do not need to require it for LPAs.)



Example 1 – Matrices

Recall that the path algebra of u• e // •v f // •w is the
algebra of upper triangular matrices.

The correspondence e !

 0 1 0
0 0 0
0 0 0

 implies that

e∗ !

 0 1 0
0 0 0
0 0 0

∗ =

 0 0 0
1 0 0
0 0 0


Thus, LK (E ) corresponds to the set of
all matrices over K . u e ef

e∗ v f
(ef )∗ f ∗ w


Graph C∗-algebra: all 3x3 matrices
M3(C) – the bounded operators on C3.



n × n matrices

Generalizes to n-line.

• e1 // • e2 // • • en−1 // •

Path algebra: upper triangular
nxn matrices
Leavitt path algebra: all nxn
matrices

Graph C∗-algebra: bounded
operators on Cn (so all nxn
matrices but considered with the
norm).



Example 2 – Loop

•v

e

��

Paths: v = 1 = e0, e = e1, e2, e3, . . . Representation: e = x

Path algebra: Polynomials with coefficients in K . Think that
3v + 5e2 ! 3 + 5x2.

Ghost edge e∗. Representation:
e∗ = x−1

Leavitt path algebra: Laurent
polynomials (like regular
polynomials but with negative
powers of x also). For example,
2e∗+ 3v + 5e2 ! 2x−1 + 3 + 5x2.

Graph C∗-algebra: continuous
functions on a circle C (S1).



Example 3 – two-petal rose

•ve 77 f
vv

Paths: v = 1, e, f , e2, ef , fe, f 2, e3, eef , . . . All the products
are defined. Representation: e = x , f = y Path algebra:
Free algebra on x and y (like polynomials but without
xy = yx).

Ghost edges e∗, f ∗. CK1 is e∗e = f ∗f = 1
CK2 is ee∗ + ff ∗ = 1 (so e and f have left inverses but not the
right inverses). The pair of maps

a 7→ (e∗a, f ∗a) and

(a, b) 7→ ea + fb

are mutually inverse isomorphisms
ensuring that

LK (E )2 ∼= LK (E ).



Example 3 – roses

Leavitt path algebra is known as the Leavitt algebra L(1, 2).
It is a universal example of a ring R with R2 ∼= R .

Graph C∗-algebra: Cuntz algebra O2.

Generalizes to n-rose.
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Path algebra: free K algebra on
n variables.

Leavitt path algebra: Leavitt
algebra L(1, n) – universal example
of a ring with Rn ∼= R .

Graph C∗-algebra: Cuntz algebra On



Some research trends. 1. Characterizations

For a given algebra property P , find a graph property Q so that

the algebra has a property P ⇔ the graph has a property Q.

For example,

1. LK (E ) has the identity ⇔ E has
finitely many vertices.

2. LK (E ) is finite dimensional over K ⇔ E is finite and has
no cycles.

3. Characterization of LK (E ) being
simple.

Gives us that • // •
��
YY has a simple

LPA and

• • //oo •
��
YY does not.



Research trends. 2. Generalizations

1. Separated graphs. Consider partitions of the set of
edges a vertex emits and modify CK1 and CK2
accordingly.

2. Non-field coefficients. The coefficients may not have
inverses.

3. Steinbeg algebras – algebras over groupoid instead of
graphs.



Research trends. 3. Classifications

1. Field Dependence. If LK (E ) ∼= LK (F ) is
LK ′(E ) ∼= LK ′(F )?

2. Isomorphism Conjecture. LC(E ) ∼= LC(F ) as algebras
(as rings) ⇔ C ∗(E ) ∼= C ∗(F ).

3. Graded Classification Conjecture. LK (E ) ∼= LK (F ) as
graded algebras ⇔ the graded Grothendieck groups are
(pointed) isomorphic.



Interested in more?

1. The book Leavitt path
algebras by Gene Abrams,
Pere Ara, and Mercedes Siles
Molina.

2. The Graph Algebra
Problem Page maintained
by Mark Tomforde.

Also, you can talk to me or visit http://liavas.net


