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And then there are abo muterts..
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.. we may not speak the same language or understand each

other.
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Some bridges were built...

Galois group

solving o
polynomials
Laplace transform
(some) differential s
equations
homology
topological PN

structures

groups
algebraic
equations

algebraic
structures




and | would like to talk about one of them.

Operator
theory

i Algebra

(or at least about one lane on the multi-lane highway of this
bridge)



Let us start with the operator theory...

operators «~s  generalized matrices

So, you can think of operator theory as the study of
generalized matrices with the concept of continuity present.

Operator Theory «~ generalized Linear Algebra
+ some Real Analysis present

It is a part of functional analysis which is the mathematical
theory behind quantum mechanics and machine learning,
among some other applications.



Hilbert spaces, von Neumann algebras

David Hilbert generalized the finite dimensional vector
spaces to spaces possibly infinite dimensional today known as
Hilbert spaces.

John von Neumann wanted to capture abstractly the
concept of an algebra of observables in quantum mechanics.
Studied algebras today known as von Neumann algebras.

We shall talk about an algebra which generalizes operators on
Hilbert spaces and, also, generalizes von Neumann algebras.



C*-algebra — damsel in distress

A C*-algebra is
» an algebra (meaning we can add
and multiply with scalars, just as in
a vector space, and we can
multiply its elements)

» with a norm (meaning that we
have a way to measure distances)

» with an involution = (like taking
adjoint and transpose for matrices)

and

» the norm makes the algebra complete and all of the above
agrees with each other.



Example — Matrices
Consider 2 x 2 matrices containing real numbers.

» We can add and multiply two
such matrices and we can multiply
a matrix with a real number.

» The vectors in R? have a norm

(x| = v/x2 + x2), so one can take

the norm to be

[AK)|

x#0  |X|
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» The involution is the transpose
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The “agreeing”

The statements that all of the operations the algebra has
agree with each other means that some relations as those
below have to hold.

> + and - a(b+c)=ab+ ac
> | | and + la+ b| < |a| + |b|
> | |and - ab] < |allb

> + and * (a+ b)* = a* + b*
» -and * (ab)* = b*a*

> | |and* |a*| = |al

More generally, if H is a Hilbert space, the algebra B(H) of all
bounded (i.e. continuous) operators on H is a C*-algebra.



Algebraization of Operator Theory

"Von Neumann algebras are blessed with an excess

of structure — algebraic, geometric, topological — so
much, that one can easily obscure, through proof by
overkill, what makes a particular theorem work."

"If all the functional analysis is stripped away ...
what remains should (be) completely accessible
through algebraic avenues”.

Berberian, S. K. Baer *-rings;
Springer-Verlag,
Berlin-Heidelberg-New York,
1972.



The overkill

The overkill that Berberian is referring to:

a mosquito

a machine gun



What structure do we need?

» With + and - —

a ring.

» With an involution,

an additive map
with (xy)* = y*x*
and (x*)* = x —

a *-ring.




The Knight in shining armor
A x-ring with enough
projections

A projection p is a
self-adjoint (p* = p)
idempotent (pp = p).
Traditional candidates:
> Baer x-rings,
» group rings (lead to
Hopf algebras).

Novices:

» Leavitt path algebras.



Going back to C*-algebras...

The examples of C*-algebras
were so vast and so diverse,
that a need for their
classification became
evident.

This initiative is known as the

Elliott Classification Program.

Elliott completely classified one type of C*-algebras (the “best
behaved” type).



The algebra of a little graph

Some of the types more difficult to capture found a good
representative in a C*-algebra the graph below.

GO
The algebra A over this little graph has a surprising property

A2 A

A vector space of a finite dimension cannot have such a
property (think how different R? and R are), but with infinite
dimensions, think that an ordered pair consisting of two
vectors with countably infinitely many entries is

equally infinite

as the single such vector.
(1,2,3,...,1,2,3,...) «w (1,1,2,2,3,3,...)



1. 1950s: Leavitt algebras as
examples of rings R with
R™ =~ R".

2. 1970s: Cuntz algebras —
C*-algebras defined by
analogous identities.

3. 1980s: Cuntz-Krieger
algebras — generalization of 2.
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Graphs and paths

Start with a directed graph: vertices, edges, and source and

range map, s and r.

A path is a sequence
e ...e, of edges such that

the range of ¢; is the
source of €11

fori=1,...,n—1 (such
path has the length n) or a
vertex (of length zero).

For example, the paths of e —=> e T e" are

u,v,w (length 0), e, f (length 1) and ef (length 2).



Adding and multiplying paths — path algebra

The addition of two paths p and g is p + g.

The product of p and g is the concatenation.
p q
pq is e o e if r(p) =s(q) and 0 otherwise.

For example, for ol _° . gv_ T g% ,e-f=efand f-e=0.

Form a vector space over your favorite coefficient field, say K,
with the paths as the basis. This is the path algebra Px(E).

For example, an element of Pg(E) is a R-linear combination of
the six paths. So, 3e + \/gef, and 2v — %f are some of the
elements of Pr(E).



Example o”—<-e"—'-e" continued

Let e; denote the standard matrix unit with 1 on (i, ) spot
1 00 010
and 0 elsewhere. So, e51=|10 0 0 |.,ep=1]0 0 0
0 0O 00O
etc.
The map

ur> ey, e ep, ef —e3, v en, i e3, and
W — €33

extends to an isomorphism of Pk (E) and the algebra of the
upper triangular matrices. We represent this iso by

O O Cc
o< o

D
T N3



Another way to think of Pk(E)

Let E° be the set of vertices, E! the set of edges, and s and r
the source and the range maps.

Px(E) is a free K-algebra with vertices and edges as
generators subject to the two axioms below. For any
v,w € E%and e € E!,

V. w=0ifv#wand v =v, and
El s(e)e=er(e) =e. s(c)g — ~ o)

The path algebra is nice, but to get to a C*-algebra we need to
have an involution and a norm. We are adding more structure.



Ghost paths
1. Add the ghost edges — elements of the form e* for

eec EL
2. Add the “ghost version” of

the axiom E1

E2  r(e)e* = e*s(e) =e*

The vertices are selfadjoint: v* = v for v € E°.



In the example with E being

e f
.U .V .W

some of the “obvious” products are

e'f=0, ffu=0, ef*=0, ue*

=0.
There are some not so obvious products. For example,

To understand the answers, we briefly digress to...
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... projections and partial isometries

In a x-ring, an idempotent (pp = p)
and selfadjoint (p* = p) element is
called a projection.

(So, the vertices are projections.)

An element x is a partial isometry if xx*x = x. In this case,
p = xx* and g = x*x are projections and

px = x and xq = x
Isn't this just as s(e)e = e and er(e) = e?

Because of this, one can think of p as “the source” and g as
“the range” of x.



This leads us to the last two axioms. First, CK1.

1. One wants edges to be partial isometries. So, one
requires that

e*e =r(e)

since then ee*e = er(e) = e by EL.
In this case, e* is also a partial isometry.

2. The edges have mutually orthogonal “sources’. This
ends up being equivalent by requiring that e*f = 0 for

e#f.

e*'f = e*ee*ff*f = e*(ee*)(ff*)f = e*0f = 0.

The two steps are combined in

CKl e*e=r(e)and e*f =0if e # f.



3. We keep track of the number of other edges the source of
an edge emits. So, we require that the following holds.

for every vertex v which emits at least one but finitely
many edges. We say that such v is regular.

For example, in the graph o,—>0,— >0,
*

efe=v, f'f=w, ee*=u, ff*=v.

And in the graph

e f
.Uh. —_—

v=-ee"+ ff* (so ee* # v and ff* # v).

DA



We got ourselves some algebras

K= field. The Leavitt path algebra Lx(E) of E is a free
K-algebra on vertices, edges and ghost edges subject to the
following.

V. o w=vand vw=0if v # w,
El e=s(e)e=er(e)
E2 e* =e*s(e) =r(e)e*
CK1 e*e=r(e),and e*f =0ife#f
CK2 v= Eeerl(v) ee* if v is regular.

If K =C, the graph C*-algebra C*(E) of E is the
completion of L¢(E). It is the universal C*-algebra with

vertices = generating projections

. ; and CK1, CK2, CKs3.
edges = partial isometries

(CK3 follows from E2 so we do not need to require it for LPAs.)



Example 1 — Matrices

is the

Recall that the path algebra of e —°>e' "~ ¢%
algebra of upper triangular matrices.

010
The correspondence e «~» | 0 0 0 [ implies that
0 0O
o107 000
e~ |0 00| =100
0 0O 0 0O
Thus, Lk (E) corresponds to the set of
all matrices over K.
u e ef
e v f
(ef)* f* w

Graph C*-algebra: all 3x3 matrices
M;(C) - the bounded operators on C3.



n X n matrices

Generalizes to n-line.

er =)
o—>0 —> 0

Path algebra: upper triangular
nxn matrices

Leavitt path algebra: all nxn
matrices

Graph C*-algebra: bounded
operators on C” (so all nxn
matrices but considered with the
norm).




Example 2 — Loop

o,

Paths: v =1=1¢% e = €', €2 €3 ... Representation: e = x

Path algebra: Polynomials with coefficients in K. Think that
3v + 5e? e~ 3 4 5x2.
Ghost edge e*. Representation:
e* — X—l
Leavitt path algebra: Laurent
polynomials (like regular
polynomials but with negative
powers of x also). For example,
2e* +3v +5e? «~s 2x1 + 34 5x2.

Graph C*-algebra: continuous
functions on a circle C(S?).



Example 3 — two-petal rose

eC.Vj) f
Paths: v =1,e,f,e? ef, fe, {2, e, eef,... All the products
are defined. Representation: e =x, f =y  Path algebra:
Free algebra on x and y (like polynomials but without
Xy = yx).
Ghost edges e*,f*. CKlis e*e=f*f =1
CK2is ee* + ff* =1 (so e and f have left inverses but not the
right inverses). The pair of maps

a— (e*a, f*a) and
(a,b) — ea+ b

are mutually inverse isomorphisms
ensuring that

Lk(E)? = Lk(E).




Example 3 — roses
Leavitt path algebra is known as the Leavitt algebra L(1,2).
It is a universal example of a ring R with R?> = R.

Graph C*-algebra: Cuntz algebra O,.

Generalizes to n-rose.

Path algebra: free K algebra on
n variables.

Leavitt path algebra: Leavitt
algebra L(1, n) — universal example
of a ring with R" = R.

Graph C*-algebra: Cuntz algebra O,



Some research trends. 1. Characterizations

For a given algebra property P, find a graph property Q so that
the algebra has a property P < the graph has a property Q.

For example, A
1. Lx(E) has the identity < E has u‘)
finitely many vertices.
2. Lk(E) is finite dimensional over K < E is finite and has
no cycles.
3. Characterization of Lk(E) being
simple.
Gives us that e —— e has a simple
LPA and

e<~——eo——>eo does not.



Research trends. 2. Generalizations

1. Separated graphs. Consider partitions of the set of
edges a vertex emits and modify CK1 and CK2
accordingly.

2. Non-field coefficients. The coefficients may not have
inverses.

3. Steinbeg algebras — algebras over groupoid instead of
graphs.




Research trends. 3. Classifications

1. Field Dependence. If Lx(E) = Ly(F) is
Lir(E) = Ly (F)?

2. Isomorphism Conjecture. Lc(E) =2 Lc(F) as algebras
(as rings) & C*(E) = C*(F).

3. Graded Classification Conjecture. Lx(E) = Lx(F) as
graded algebras < the graded Grothendieck groups are
(pointed) isomorphic.

oo ¥
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Interested in more?

1. The book Leavitt path ’\ 'Leavit Path

algebras by Gene Abrams, Algebras
Pere Ara, and Mercedes Siles
Molina.

2. The Graph Algebra
Problem Page maintained
by Mark Tomforde.

Also, you can talk to me or visit http://liavas.net



