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How it all started?

At the conference at Ohio Univ. in Athens, March 2005.

T. Y. Lam asked a question...



Lam’s Question

Which von Neumann algebras are
clean as rings?

I Background on VNAs and VNA-like rings.

I Background on clean rings.

I Introducing stars: *-cleanness.

I Cleanness of a class of VNA- like rings.

I Generalizations and specializations: almost clean and
strongly clean rings.

I Some more recent progress on Lam’s question.



The story of von Neumann Algebra begins...

John von Neumann’s dream – to capture abstractly the
concept of an algebra of observables in quantum mechanics.
He constructed algebras which

captured all the types of
non-commutative measures
that occur: (1) in classical
theory, (2) in quantum
systems (infinite in size or in
degrees of freedom).



VNA - damsel in distress

H – Hilbert space

B(H) – bounded operators.

A von Neumann algebra A is a

1) ∗-closed unital subalgebra of B(H),

2a) equal to its double commutant A′′
(where A′ = {x ∈ B(H) | ax = xa
for all a ∈ A})
equivalently

2b) weakly closed in B(H).



Five Types

finite, discrete If “sum” of In with µ on {1, 2, . . . , n}

infinite, discrete I∞ µ on {1, 2, . . .}

finite, continuous II1 µ on [0,1]

infinite, continuous II∞ µ on R

“very” infinite III µ on {0,∞}



Examples

In B(H), dim(H) = n “finite matrices”

I∞ B(H), dim(H) =∞ “infinite matrices”

group VNA for G
II1 “very infinite and nonabelian”

(more on the next two slides)

II∞ “infinite matrices” over type II1

Types If and II1 are finite von Neumann algebras.



Group von Neumann algebras

Recall: l2(G ) = square summable complex valued functions
over G . Hilbert space.

l2(G ) = {
∑
g∈G

agg |
∑
g∈G

|ag |2 <∞ }.

The group von Neumann algebra NG is

I the space of G -invariant operators on l2(G ) i.e.
f (xg) = f (x)g for x ∈ l2(G ), g ∈ G .

equivalently

I Weak closure of CG in l2(G ).



Types of group von Neumann algebras

NG is always finite (so either If , II1 or a sum of the two
types).

NG is If G is virtually abelian

NG is II1 Gf has infinite index

virtually abelian = has an abelian subgroup of finite index

So, NG is not If if G is “very infinite and nonabelian”.

Gf = {g ∈ G | g has finitely many elements in its conjugacy
class }.



Von Neumann Algebra – in distress

“Von Neumann algebras are blessed with an excess
of structure – algebraic, geometric, topological – so
much, that one can easily obscure, through proof by
overkill, what makes a particular theorem work.”

“If all the functional analysis is stripped away ...
what remains should (be) completely accessible
through algebraic avenues”.

Berberian, S. K. Baer ∗-rings;
Springer-Verlag,
Berlin-Heidelberg-New York,
1972.



The overkill

The overkill that Berberian is referring to:

a mosquito a machine gun



Law and Order – Enter the Rings

Kaplansky’s dream: to axiomatize
(at least part of) the theory of VNAs.
Followed similar path as von
Neumann (looked at projections,
idempotents, annihilators) – ended up
defining Baer ∗-rings and
AW∗-algebras.

idempotent: ee = e

projection: idempotent and p = p∗

(∗ is an involution: additive, (xy)∗ = y ∗x∗, and (x∗)∗ = x)

right annihilator of a set X : {r ∈ R | Xr = 0}



The Knight in shining armor – Baer ∗-Ring

Baer ring – every right annihilator is
generated by an idempotent.

Baer ∗-ring – every right annihilator is
generated by a projection.

AW∗-algebra – Baer ∗-ring that is also
a C ∗-algebra.

AW∗ generalizes VNA’s; Baer ∗
generalizes AW∗.



Finite “Von-Neumann-algebra-like” – Six Axioms

A1 A Baer ∗-ring R is finite if x∗x = 1 implies xx∗ = 1 for
all x ∈ R .

A2 R satisfies existence of projections and unique
positive square root axioms.

A3 Partial isometries are addable.

A4 R is symmetric: for all x ∈ R , 1 + x∗x is invertible.

A5 There is a central element i ∈ R such that i2 = −1 and
i∗ = −i .

A6 R satisfies the unitary spectral axiom (if unitary u is
such that annr (1− u) is sufficiently small, then 1− u is
locally invertible in a sequence of subrings that converge
to R).



What do A1 – A6 bring?

Berberian: R can be embedded in a

unit-regular ring Q

satisfying A1–A6, having

the same projections

as R .

regular: (∀x ∈ R) (∃y ∈ R) x = xyx

unit-regular: (∀x ∈ R) (∃y ∈ R invertible) x = xyx



The story of clean rings begins...

Original Mr. Clean – Keith Nicholson
Nicholson introduced clean rings in 1977.

Ohio U., Zanesville, 2007.



Clean Rings

A ring R is clean if

every element = unit + idempotent

Additive version of unit-regular.

Examples: Unit-regular, local, semiperfect...

Non-examples: Z, R[x ] for R commutative, not all regular
(“Bergman example”), ...



Von-Neumann-algebra-like rings – “The Idea”

Recall that a VNA-like R has a unit-regular ring of quotients
Q with same projections.

Go up:
a ∈ Q

−→ Have: a = u + e, e idempotent
Want: a = u + p, p projection

↑ ↓

Start here:
a ∈ R

p ∈ R and so u = a − p ∈ R
End with: a = u + p in R

(circa 2007)



Two issues here. The first...

We get an idempotent and want a projection.

Not that big of a deal: for ∗-rings projections take over the
role of idempotents.

I Baer becomes Baer *-ring,

I regular becomes *-regular
(regular: every principal ideal is

gen by an idempotent)

I So clean should become...

*-clean:

every element = unit + projection



The second issue

If u ∈ R is invertible in Q, why should it be invertible in R
also?

A ring R is almost clean if

element = non-zero-divisor + idempotent

Examples: clean, abelian Baer,...

Z is almost clean and not clean.

Non-examples: Couchot’s paper.



Von-Neumann-algebra-like rings are almost clean

Type In Baer *-rings that satisfying A2:

I R *-isomorphic to Mn(Z (R)),

I Z (Q) is abelian and *-regular so it is *-clean.

I Thus, Mn(Z (Q)) ∼= Q is *-clean.

I R is almost *-clean.

Type If Baer *-rings that satisfying A2–A6:

I There are central orthogonal projections pn such that pnR
is of type In.

I Q is the direct product of pnQ.

I Rings pnQ are *-clean so Q is *-clean.

I R is almost *-clean.

Corollary: If R is regular, then Q = R and R is *-clean.



Back to Lam’s question

Corollary.

An AW ∗-algebra (in particular von Neumann
algebra) of type If is almost ∗-clean.

If it is regular, then it is ∗-clean.

Other types?

Example. Let G =
∏

n Gn, where Gn are finite.

Then NG is *-clean (because it is regular).

I If just finitely many Gn are not abelian, G is type If .

I If not, then NG is *-clean and not of type If .



How to extend “The Idea”?

It works for any ring that has a
clean overing with the same idempotents.

Go up:
a ∈ Q

−→ Have: a = u + e, e idempotent, u unit

↑ ↓

Start here:
a ∈ R

e ∈ R and so u = a − e ∈ R
Thus, a = u + e, u non-zero-divisor.



Continuous, quasi-continuous, and CS

R – a ring, M – a right R-module.
Some axioms.

(C1) Every submodule of M is essential inside a summand of
M .

(C2) Every submodule of M that is isomorphic to a summand
of M is itself a summand of M .

(C3) If A and B are summands of M and A ∩ B = 0, then
A⊕ B is also a summand of M .

Some definitions. R is

1. right CS (“complements are summands”) if RR satisfies
(C1).

2. right quasi-continuous if RR satisfies (C1) and (C3).

3. right continuous if RR satisfies (C1) and (C2).

3. ⇒ 2. ⇒ 1.



Exploring “The Idea” with Evrim Akalan (in 2011)

I R r. quasi-continuous ⇒
Q := E (R) and R have the
same idempotents.

I R r. quasi-continuous + r.
nonsingular ⇒
Q is clean and with the same
idempotents as R . So,

R is almost clean.



Stronger statement. Corollary

Let a ∈ R be arbitrary, e ∈ R be idempotent.

right continuous −→ a = e + unit

↓ ↓
r. quasi-continuous

right CS
r. nonsing.
−→ a = e + non-zero-divisor

Thus,

Right CS + right nonsingular ⇒ almost clean.

Corollary:

Finite AW ∗-algebras (thus II1-type VNAs) are almost clean.



Special clean

Camillo-Khurana (2001):

unit-regular
a = eu

←→ special clean
a = e + u, aR ∩ eR = 0

Akalan-Vas (2013):

Rickart
a = er

abelian
←→

special almost clean
a = e + r , aR ∩ eR = 0

“abelian” in the operator theory sense: all idempotents are
central.



Uniqueness

Rickart
a = er

abelian
r. quasi-cont.
←→

uniquely special almost clean
a = e + r unique, aR ∩ eR = 0

↑ ↑
unit-regular
a = eu

abelian
←→

uniquely special clean
a = e + u unique, aR ∩ eR = 0



Adapting the results to *-rings

Rickart *-ring
abelian
←→ special almost *-clean

↑ ↑

*-regular
abelian
←→ special *-clean



Strongly clean

every element = idempotent e + invertible u
and eu = ue



More answers from 5 authors in 2022

Chui, Huang, Wu, Yuan, Zhang:

1. A VNA is strongly clean if and only if it is a finite direct
sum of In types.

2. A VNA is strongly *-clean if and only if it is abelian (in
the operator theory sense).

3. All finite VNAs are clean.

4. A VNA is almost *-clean if and only if it is finite.



Examples

G finite NG is type If , regular (in fact semisimple),
so *-clean (strongly iff abelian)

G = Z NG is not regular, type I1 and
strongly *-clean

G = Z⊕ D3 NG is type If , not regular,
strongly clean but not strongly *-clean

Interesting: CZ is not clean and it is dense in N (Z) which is
(strongly *-) clean.



Another long-standing question

Is the Leavitt algebra L(1, n) clean?

L(1, 2) is the universal example of a ring R such that
R ⊕ R ∼= R (as modules). It can be defined via 4 generators
x1, x2, y1, y2 satisfying the relations:

yixi = 1, i = 1, 2, yixj = 0, i 6= j and x1y1 + x2y2 = 1

It can also be defined as the Leavitt path algebra of the graph

•99 ee

known as the rose with 2 petals.

Analogously, L(1, n) can be represented as the LPA of the rose
with n petals.

Is L(1, n) clean?



Questions

1. Other types? Are type II1 von Neumann algebras
*-clean? (we know they are clean and almost *-clean)
Possible start: consider NG for G = Z ∗ Z.

2. Do the 5-authors’ results generalize to AW∗-algebras? To
Baer ∗-rings?

Preprints of my papers
are available on

www.liavas.net

and on arXiv.


