Cleanness of Von-Neumann algebras and alike rings

Lia Vaš Saint Joseph's University

Mr. Clean meets the stars

At the conference at Ohio Univ. in Athens, March 2005.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

T. Y. Lam asked a question...

Which von Neumann algebras are clean as rings?

- Background on VNAs and VNA-like rings.
- Background on clean rings.
- Introducing stars: *-cleanness.
- Cleanness of a class of VNA- like rings.
- Generalizations and specializations: almost clean and strongly clean rings.
- Some more recent progress on Lam's question.

John von Neumann's dream – to capture abstractly the concept of an algebra of observables in quantum mechanics. He constructed algebras which

captured all the **types** of non-commutative measures that occur: (1) in classical theory, (2) in quantum systems (infinite in size or in degrees of freedom).

人口 医水黄 医水黄 医水黄素 化甘油

VNA - damsel in distress

- H Hilbert space
- $\mathcal{B}(H)$ bounded operators.
- A von Neumann algebra \mathcal{A} is a 1) *-closed unital subalgebra of $\mathcal{B}(\mathcal{H})$,
- 2a) equal to its double commutant \mathcal{A}'' (where $\mathcal{A}' = \{x \in \mathcal{B}(\mathcal{H}) \mid ax = xa$ for all $a \in \mathcal{A}\}$)

equivalently

2b) weakly closed in $\mathcal{B}(H)$.

Five Types

finite, discrete	l _f	"sum" of I_n with μ on $\{1,2,\ldots,n\}$
infinite, discrete	I_{∞}	μ on $\{1,2,\ldots\}$
finite, continuous	111	μ on [0,1]
infinite, continuous	II_{∞}	μ on ${\mathbb R}$
"very" infinite	111	μ on $\{0,\infty\}$

Examples

I _n	$\mathcal{B}(H), \;\; dim(H) = n \;\;$ "finite matrices"			
I_{∞}	$\mathcal{B}(H),\;\; dim(H) = \infty\;\;$ "infinite matrices"			
	group VNA for G			
	"very infinite and nonabelian"			
	(more on the next two slides)			
II_{∞}	"infinite matrices" over type II_1			

Types I_f and II_1 are finite von Neumann algebras.

Recall: $l^2(G)$ = square summable complex valued functions over G. Hilbert space.

$$l^2(G) = \{ \sum_{g \in G} a_g g \mid \sum_{g \in G} |a_g|^2 < \infty \}.$$

The group von Neumann algebra $\mathcal{N}G$ is

► the space of G-invariant operators on l²(G) i.e. f(xg) = f(x)g for x ∈ l²(G), g ∈ G. equivalently

Types of group von Neumann algebras

 $\mathcal{N}G$ is always finite (so either I_f , II_1 or a sum of the two types).

$\mathcal{N}G$ is I_f	<i>G</i> is virtually abelian
$\mathcal{N} G$ is II_1	G _f has infinite index

virtually abelian = has an abelian subgroup of finite index

So, $\mathcal{N}G$ is not I_f if G is "very infinite and nonabelian".

 $G_f = \{g \in G \mid g \text{ has finitely many elements in its conjugacy class }\}.$

Von Neumann Algebra – in distress

"Von Neumann algebras are blessed with an excess of structure – algebraic, geometric, topological – so much, that one can easily obscure, through proof by overkill, what makes a particular theorem work."

"If all the functional analysis is stripped away ... what remains should (be) completely accessible through algebraic avenues".

Berberian, S. K. Baer *-rings; Springer-Verlag, Berlin-Heidelberg-New York, 1972.

The overkill that Berberian is referring to:

a mosquito

a machine gun

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Law and Order - Enter the Rings

Kaplansky's dream: to axiomatize (at least part of) the theory of VNAs. Followed similar path as von Neumann (looked at projections, idempotents, annihilators) – ended up defining <u>Baer *-rings</u> and AW*-algebras.

idempotent: ee = e

projection: idempotent and $p = p^*$

(* is an involution: additive, $(xy)^* = y^*x^*$, and $(x^*)^* = x$) right **annihilator** of a set $X : \{r \in R \mid Xr = 0\}$

The Knight in shining armor – Baer *-Ring

- **Baer ring** every right annihilator is generated by an idempotent.
- **Baer** *-**ring** every right annihilator is generated by a projection.

AW^{*}-algebra – Baer *-ring that is also a C^* -algebra.

AW* generalizes VNA's; Baer * generalizes AW*.

(日) (日) (日) (日) (日) (日) (日) (日)

Finite "Von-Neumann-algebra-like" – Six Axioms

- A1 A Baer *-ring R is **finite** if $x^*x = 1$ implies $xx^* = 1$ for all $x \in R$.
- A2 *R* satisfies **existence of projections** and **unique positive square root** axioms.
- A3 Partial isometries are addable.
- A4 *R* is **symmetric**: for all $x \in R$, $1 + x^*x$ is invertible.
- A5 There is a central element $i \in R$ such that $i^2 = -1$ and $i^* = -i$.
- A6 *R* satisfies the **unitary spectral** axiom (if unitary *u* is such that $\operatorname{ann}_r(1-u)$ is sufficiently small, then 1-u is locally invertible in a sequence of subrings that converge to *R*).

What do A1 – A6 bring?

Berberian: R can be embedded in a

unit-regular ring Q

satisfying A1-A6, having

the same projections

as R.

regular: $(\forall x \in R) (\exists y \in R) x = xyx$ unit-regular: $(\forall x \in R) (\exists y \in R \text{ invertible}) x = xyx$

うせん 同一人用 人用 人用 人口 マ

The story of clean rings begins...

Original Mr. Clean - Keith Nicholson

Nicholson introduced clean rings in 1977.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つへつ

Ohio U., Zanesville, 2007.

A ring *R* is **clean** if

every element = unit + idempotent

Additive version of unit-regular.

Examples: Unit-regular, local, semiperfect...

Non-examples: \mathbb{Z} , R[x] for R commutative, not all regular ("Bergman example"), ...

Von-Neumann-algebra-like rings – "The Idea"

Recall that a VNA-like R has a **unit-regular** ring of quotients Q with **same projections**.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

(circa 2007)

Two issues here. The first...

We get an **idempotent** and want a **projection**.

Not that big of a deal: for *-rings projections take over the role of idempotents.

- Baer becomes Baer *-ring,
- regular becomes *-regular (regular: every principal ideal is gen by an idempotent)
- So clean should become...

*-clean:

every element = unit + projection

The second issue

If $u \in R$ is invertible in Q, why should it be invertible in R also?

A ring R is almost clean if

element = non-zero-divisor + idempotent

Examples: clean, abelian Baer,...

 $\ensuremath{\mathbb{Z}}$ is almost clean and not clean.

Non-examples: Couchot's paper.

Von-Neumann-algebra-like rings are almost clean

Type I_n Baer *-rings that satisfying A2:

- R *-isomorphic to $M_n(Z(R))$,
- Z(Q) is abelian and *-regular so it is *-clean.
- Thus, $M_n(Z(Q)) \cong Q$ is *-clean.
- R is almost *-clean.

Type I_f Baer *-rings that satisfying A2–A6:

- There are central orthogonal projections p_n such that p_nR is of type I_n.
- Q is the direct product of $p_n Q$.
- Rings $p_n Q$ are *-clean so Q is *-clean.
- *R* is almost *-clean.

Corollary: If R is regular, then Q = R and R is *-clean.

Back to Lam's question

Corollary.

An AW^* -algebra (in particular von Neumann algebra) of type I_f is almost *-clean.

If it is regular, then it is *-clean.

Other types?

Example. Let $G = \prod_n G_n$, where G_n are finite. Then $\mathcal{N}G$ is <u>*-clean</u> (because it is regular).

• If just finitely many G_n are not abelian, G is type I_f .

► If not, then $\mathcal{N}G$ is *-clean and **not of type** I_f .

It works for **any** ring that has a clean overing with the same idempotents.

Continuous, quasi-continuous, and CS

R – a ring, M – a right R-module. Some axioms.

- (C1) Every submodule of M is essential inside a summand of M.
- (C2) Every submodule of M that is isomorphic to a summand of M is itself a summand of M.
- (C3) If A and B are summands of M and $A \cap B = 0$, then $A \oplus B$ is also a summand of M.

Some definitions. R is

 right CS ("complements are summands") if R_R satisfies (C1).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- 2. right quasi-continuous if R_R satisfies (C1) and (C3).
- 3. right **continuous** if R_R satisfies (C1) and (C2).

$$3. \Rightarrow 2. \Rightarrow 1.$$

Exploring "The Idea" with Evrim Akalan (in 2011)

- R r. quasi-continuous ⇒
 Q := E(R) and R have the
 same idempotents.
- ► *R* r. quasi-continuous + r. nonsingular \Rightarrow
 - Q is clean and with the same idempotents as R. So,

R is almost clean.

Stronger statement. Corollary

Let $a \in R$ be arbitrary, $e \in R$ be idempotent.

right continuous \longrightarrow a = e + unit \downarrow \downarrow r. quasi-continuousr. nonsing.right CS \longrightarrow a = e + non-zero-divisor

Thus,

Right CS + right nonsingular \Rightarrow almost clean.

Corollary:

Finite AW^* -algebras (thus II_1 -type VNAs) are almost clean.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Special clean

Camillo-Khurana (2001):

$$\begin{array}{c} \text{unit-regular} \\ a = eu \end{array} \longleftrightarrow \begin{array}{c} \text{special clean} \\ a = e + u, \ aR \cap eR = 0 \end{array}$$

Akalan-Vas (2013):

Rickartabelianspecial almost clean
$$a = er$$
 \longleftrightarrow $a = e + r$, $aR \cap eR = 0$

"abelian" in the operator theory sense: all idempotents are central.

Uniqueness

abelian uniquely special almost clean Rickart r. quasi-cont. a = e + r unique, $aR \cap eR = 0$ a = erunit-regular uniquely special clean abelian a = e + u unique, $aR \cap eR = 0$ a = eu

・ロト・日本・日本・日本・日本・日本

Adapting the results to *-rings

▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ � � �

< - File >

every element = idempotent e + invertible uand eu = ue

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

More answers from 5 authors in 2022

Chui, Huang, Wu, Yuan, Zhang:

- 1. A VNA is **strongly clean** if and only if it is a finite direct sum of I_n types.
- 2. A VNA is **strongly *-clean** if and only if it is abelian (in the operator theory sense).
- 3. All finite VNAs are clean.
- 4. A VNA is almost *-clean if and only if it is finite.

Examples

G finite	$\mathcal{N}G$ is type I_f , regular (in fact semisimple), so *-clean (strongly iff abelian)
$G=\mathbb{Z}$	<i>NG</i> is not regular, type <i>I</i> ₁ and strongly *-clean
$G = \mathbb{Z} \oplus D_3$	$\mathcal{N}G$ is type I_f , not regular, strongly clean but not strongly *-clean

Interesting: \mathbb{CZ} is not clean and it is dense in $\mathcal{N}(\mathbb{Z})$ which is (strongly *-) clean.

Another long-standing question

Is the Leavitt algebra L(1, n) clean?

L(1,2) is the universal example of a ring R such that $R \oplus R \cong R$ (as modules). It can be defined via 4 generators x_1, x_2, y_1, y_2 satisfying the relations:

$$y_i x_i = 1, i = 1, 2, y_i x_j = 0, i \neq j$$
 and $x_1 y_1 + x_2 y_2 = 1$

It can also be defined as the Leavitt path algebra of the graph

$$\bigcirc \bullet \bigcirc$$

known as the rose with 2 petals.

Analogously, L(1, n) can be represented as the LPA of the rose with n petals.

Is L(1, n) clean?

Questions

- Other types? Are type *II*₁ von Neumann algebras *-clean? (we know they are clean and almost *-clean) <u>Possible start:</u> consider *NG* for *G* = ℤ * ℤ.
- 2. Do the 5-authors' results generalize to AW*-algebras? To Baer *-rings?

Preprints of my papers are available on

www.liavas.net

and on **arXiv**.

