
REALIZATION OF GRADED MATRIX ALGEBRAS AS LEAVITT PATH
ALGEBRAS

LIA VAŠ

Abstract. While every matrix algebra over a field K can be realized as a Leavitt path algebra,
this is not the case for every graded matrix algebra over a graded field. We provide a complete
description of graded matrix algebras over a field, trivially graded by the ring of integers, which are
graded isomorphic to Leavitt path algebras. As a consequence, we show that there are graded corners
of Leavitt path algebras which are not graded isomorphic to Leavitt path algebras. This contrasts a
recent result stating that every corner of a Leavitt path algebra of a finite graph is isomorphic to a
Leavitt path algebra. If R is a finite direct sum of graded matricial algebras over a trivially graded
field and over naturally graded fields of Laurent polynomials, we also present conditions under which
R can be realized as a Leavitt path algebra.

1. Introduction

Every matrix algebra over a field K or the ring K[x, x−1] is isomorphic to a Leavitt path algebra.
In contrast, not every graded matrix algebra over a field is graded isomorphic to a Leavitt path
algebra by [6, Proposition 3.7]. Here, a Leavitt path algebra is considered with the natural grading
by the ring of integers Z and the field K is considered to be trivially Z-graded. The Leavitt
Path Algebra Realization Question of [6, Section 3.3] asks for a characterization of those graded
matrix algebras over K which can be realized as Leavitt path algebras. In Proposition 3.2, we
answer this question by providing a complete characterization of graded matrix algebras over K
which are graded isomorphic to Leavitt path algebras. In Proposition 3.4, we provide analogous
characterization for graded matrix algebras over naturally Z-graded K[xm, x−m] for any positive
integer m. These two results are used in Proposition 3.5 which presents conditions under which a
finite direct sum of graded matricial algebras over K and K[xm, x−m] can be realized by a Leavitt
path algebra.

As a consequence of Proposition 3.2, we show that there are graded corners of Leavitt path
algebras which are not graded isomorphic to Leavitt path algebras (Example 3.6). This contrasts
a recent result from [2] which states that every corner of a Leavitt path algebra of a finite graph is
isomorphic to another Leavitt path algebra.

2. Prerequisites

A ring R is graded by a group Γ if R =
⊕

γ∈Γ Rγ for additive subgroups Rγ and RγRδ ⊆ Rγδ for

all γ, δ ∈ Γ. The elements of the set H =
⋃
γ∈ΓRγ are said to be homogeneous. The grading is trivial

if Rγ = 0 for every nonidentity γ ∈ Γ. A graded ring R is a graded division ring if every nonzero
homogeneous element has a multiplicative inverse. If a graded division ring R is commutative then
R is a graded field.
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We adopt the standard definitions of graded ring homomorphisms and isomorphisms, graded left
and right R-modules, graded module homomorphisms, and graded algebras as defined in [5] and
[3]. We use ∼=gr to denote a graded ring isomorphism.

In [3], for a Γ-graded ring R and γ1, . . . , γn ∈ Γ, Mn(R)(γ1, . . . , γn) denotes the ring of matrices
Mn(R) with the Γ-grading given by

(rij) ∈Mn(R)(γ1, . . . , γn)δ if rij ∈ Rγ−1
i δγj

for i, j = 1, . . . , n.

The definition of Mn(R)(γ1, . . . , γn) in [5] is different: Mn(R)(γ1, . . . , γn) in [5] corresponds to
Mn(R)(γ−1

1 , . . . , γ−1
n ) in [3]. More details on the relations between the two definitions can be found

in [7, Section 1]. Although the definition from [5] has been in circulation longer, some matricial
representations of Leavitt path algebras involve positive integers instead of negative integers making
the definition from [3] more convenient when working with Leavitt path algebras. Because of this,
we opt to use the definition from [3]. With this definition, if F is the graded free right module
(γ−1

1 )R⊕ · · · ⊕ (γ−1
n )R,1 then HomR(F, F ) ∼=gr Mn(R)(γ1, . . . , γn) as Γ-graded rings.

We also recall [5, Remark 2.10.6] stating the first two parts in Lemma 2.1 and [3, Theorem 1.3.3]
stating part (3) for Γ abelian. Although we use these results in case when Γ is the ring of integers,
we note that the proof [3, Theorem 1.3.3] generalizes to arbitrary Γ. The last sentence in the lemma
is the statement of [3, Proposition 1.4.4. and Theorem 1.4.5].

Lemma 2.1. [5, Remark 2.10.6], [3, Theorem 1.3.3, Proposition 1.4.4, and Theorem 1.4.5] Let R
be a Γ-graded ring and γ1, . . . , γn ∈ Γ.

(1) If π a permutation of the set {1, . . . , n}, then

Mn(R)(γ1, γ2, . . . , γn) ∼=gr Mn(R)(γπ(1), γπ(2) . . . , γπ(n))

by the map x 7→ pxp−1 where p is the permutation matrix with 1 at the (i, π(i))-th spot for
i = 1, . . . , n and zeros elsewhere.

(2) If δ in the center of Γ,

Mn(R)(γ1, γ2, . . . , γn) = Mn(R)(γ1δ, γ2δ, . . . , γnδ).

(3) If δ ∈ Γ is such that there is an invertible element uδ in Rδ, then

Mn(R)(γ1, γ2, . . . , γn) ∼=gr Mn(R)(γ1δ, γ2 . . . , γn)

by the map x 7→ u−1xu where u is the diagonal matrix with uδ, 1, 1, . . . , 1 on the diagonal.

If Γ is abelian and R and S are Γ-graded division rings, then

Mn(R)(γ1, γ2, . . . , γn) ∼=gr Mm(S)(δ1, δ2, . . . , δm)

implies that R ∼=gr S, that m = n, and the list δ1, δ2, . . . , δm is obtained from the list γ1, γ2, . . . , γn
by a composition of finitely many operations as in parts (1) to (3).

To shorten the notation, if each γi ∈ Γ, i = 1, . . . , k, appears di times in the list

γ1, γ1, . . . , γ1, γ2, γ2 . . . , γ2, . . . . . . . . . , γk, γk, . . . , γk,

we abbreviate this list as
d1(γ1), d2(γ2), . . . , dk(γk).

1If M is a graded right R-module and γ ∈ Γ, the γ-shifted or γ-suspended graded right R-module (γ)M is defined
as the module M with the Γ-grading given by

(γ)Mδ = Mγδ

for all δ ∈ Γ. Any finitely generated graded free right R-module is of the form (γ1)R⊕ . . .⊕ (γn)R for γ1, . . . , γn ∈ Γ
and HomR(F, F ) is a Γ-graded ring which is graded isomorphic to Mn(R)(γ1, . . . , γn) (both [5] and [3] contain details).
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So, if K is a graded field, we use the following abbreviation

Mn(K)(γ1, γ1, . . . , γ1, γ2, γ2 . . . , γ2, . . . . . . . . . , γk, γk, . . . , γk) = Mn(K)(d1(γ1), d2(γ2), . . . , dk(γk))

For example, if K is a field trivially graded by the group of integers, we use M9(K)(4(0), 3(1), 2(2))
to shorten M9(K)(0, 0, 0, 0, 1, 1, 1, 2, 2).

2.1. Leavitt path algebras. Let E be a directed graph. The graph E is row-finite if every vertex
emits finitely many edges and it is finite if it has finitely many vertices and edges. A sink of E is a
vertex which does not emit edges. A vertex of E is regular if it is not a sink and if it emits finitely
many edges. A cycle is a closed path such that different edges in the path have different sources. A
cycle has an exit if a vertex on the cycle emits an edge outside of the cycle. The graph E is acyclic
if there are no cycles. We say that graph E is no-exit if v emits just one edge for every vertex v of
every cycle.

Let E0 denote the set of vertices, E1 the set of edges and s and r denote the source and range
maps of a graph E. If K is any field, the Leavitt path algebra LK(E) of E over K is a free K-algebra
generated by the set E0 ∪ E1 ∪ {e∗ | e ∈ E1} such that for all vertices v, w and edges e, f,

(V) vw = 0 if v 6= w and vv = v, (E1) s(e)e = er(e) = e,
(E2) r(e)e∗ = e∗s(e) = e∗, (CK1) e∗f = 0 if e 6= f and e∗e = r(e),
(CK2) v =

∑
e∈s−1(v) ee

∗ for each regular vertex v.

By the first four axioms, every element of LK(E) can be represented as a sum of the form∑n
i=1 aipiq

∗
i for some n, paths pi and qi, and elements ai ∈ K, for i = 1, . . . , n. Using this represen-

tation, it is direct to see that LK(E) is a unital ring if and only if E0 is finite in which case the sum
of all vertices is the identity. For more details on these basic properties, see [1].

A Leavitt path algebra is naturally graded by the group of integers Z so that the n-component
LK(E)n is the K-linear span of the elements pq∗ for paths p, q with |p| − |q| = n where |p| denotes
the length of a path p. While one can grade a Leavitt path algebra by any group Γ (see [3, Section
1.6.1]), we always consider the natural grading by Z.

2.2. Finite no-exit graphs. If K is a trivially Z-graded field, let K[xm, x−m] be the graded field
of Laurent polynomials Z-graded by K[xm, x−m]mk = Kxmk and K[xm, x−m]n = 0 if m does not
divide n.

By [4, Proposition 5.1], if E is a finite no-exit graph, then LK(E) is graded isomorphic to

R =
k⊕
i=1

Mki(K)(γi1 . . . , γiki)⊕
n⊕
j=1

Mnj
(K[xmj , x−mj ])(δj1, . . . , δjnj

)

where k is the number of sinks, ki is the number of paths ending in the sink indexed by i for
i = 1, . . . , k, and γil is the length of the l-th path ending in the i-th sink for l = 1, . . . , ki and
i = 1, . . . , k. In the second term, n is the number of cycles, mj is the length of the j-th cycle for
j = 1, . . . , n, nj is the number of paths which do not contain the cycle indexed by j and which end
in a fixed but arbitrarily chosen vertex of the cycle, and δjl is the length of the l-th path ending in
the fixed vertex of the j-th cycle for l = 1, . . . , nj and j = 1, . . . , n.

Note that this representation is not necessarily unique as Example 2.2 shows, but it is unique
up to a graded isomorphism. We refer to the graded algebra R above as a graded matricial repre-
sentation of LK(E).
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Example 2.2. Consider the graph below.

• // •u
%%
•vcc

If we consider the number and lengths of paths which end at u, we obtain M3(K[x2, x−2])(0, 1, 1)
as a graded matricial representation of the corresponding Leavitt path algebra. If we consider the
paths ending at v, we obtain M3(K[x2, x−2])(0, 1, 2). These two algebras are graded isomorphic by
Lemma 2.1 since (0, 1, 1) → (0 + 1, 1 + 1, 1 + 1) → (1, 2, 2 − 2) = (1, 2, 0) → (0, 1, 2) where →
denotes an application of an operation from Lemma 2.1 and results in a graded isomorphism of the
corresponding matrix algebras.

3. Realization of graded matrix algebras as Leavitt path algebras

Every matrix algebra over a field K or the ring K[x, x−1] is isomorphic to a Leavitt path algebra.
Indeed, for any positive integer n, let Ln be the “line of length n−1”, i.e. the graph with n vertices
v1, v2, . . . , vn and an edge from vi to vi+1 for all i = 1, . . . , n − 1. Then LK(Ln) ∼= Mn(K) ([1,
Proposition 1.3.5] contains more details). Adding an edge from vn to vn to Ln produces a graph Cn
such that LK(Cn) ∼= Mn(K[x, x−1]). In this section, we provide a complete description of graded
matrix algebras over a trivially Z-graded field K or over the Laurent polynomials K[xm, x−m] (Z-
graded as in section 2.2) which are graded isomorphic to Leavitt path algebras. As a consequence,
we also present conditions under which a finite direct sum of graded matricial algebras over K and
over K[xm, x−m] can be realized as a Leavitt path algebra.

Lemma 3.1. Let n and m be positive integers and γ1, γ2, . . . , γn be arbitrary integers.

(1) If the smallest element is subtracted from the list γ1, γ2, . . . , γn, the elements are permuted
so that they are listed in a nondecreasing order, and if k is the largest element of the new
list, the new list is l0(0), l1(1), . . . , lk(k) for some nonnegative integers l1, . . . , lk−1 and some

positive l0 and lk such that n =
∑k

i=0 li. The integers k and l0, l1, . . . , lk are unique for the
graded isomorphism class of Mn(K)(γ1, γ2, . . . , γn).

(2) If the elements γ1, γ2, . . . , γn are considered modulo m and arranged in a nondecreasing order,
the resulting list is l0(0), l1(1), . . . , lm−1(m− 1) for some nonnegative integers l0, l1, . . . , lm−1

such that n =
∑m−1

i=0 li. The integers l0, l1, . . . , lm−1 are unique for the graded isomorphism
class of Mn(K[xm, x−m])(γ1, γ2, . . . , γn) up to their order.

Proof. (1) If k and l0, l1, . . . , lk are obtained as in the statement of part (1), Mn(K)(γ1, γ2, . . . , γn) ∼=gr

Mn(K)(l0(0), l1(1), . . . , lk(k)) by Lemma 2.1. To show uniqueness, assume that

Mn(K)(l0(0), l1(1), . . . , lk(k)) ∼=gr Mn(K)(l′0(0), l′1(1), . . . , l′k′(k
′))

for some nonnegative k′ and l′1, . . . , l
′
k′−1 and positive l′0, l

′
k′ such that n =

∑k′

i=0 l
′
i. By Lemma 2.1, the

list l′0(0), l′1(1), . . . , l′k′(k
′) is obtained from l0(0), l1(1), . . . , lk(k) by applying finitely many operations

of the three types from Lemma 2.1. Since the 0-component is the only nonzero component of K,
the only feasible operation as in part (3) of Lemma 2.1 does not change the list of shifts. If a
positive element is added to the list l0(0), l1(1), l2(2), . . . , lk(k), the resulting list does not have 0
in it and if a negative element is added to the same list, the resulting list does not consist of
nonnegative elements, hence an operation from part (2) of Lemma 2.1 is not present. This means
that only an operation from part (1) of Lemma 2.1 can be performed, so l′0(0), l′1(1), . . . , l′k′(k

′) is
obtained by a permutation of l0(0), l1(1), . . . , lk(k). However, since the elements are already listed
in a nondecreasing order, this means that the lists are equal so k = k′ and li = l′i for all i = 0, . . . , k.
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(2) If l0, . . . , lm−1 are obtained as in the statement of part (2), Mn(K[xm, x−m])(γ1, γ2, . . . , γn) ∼=gr

Mn(K[xm, x−m])(l0(0), l1(1), . . . , lm−1(m− 1)) by Lemma 2.1. To show uniqueness, assume that

Mn(K[xm, x−m])(l0(0), l1(1), . . . , lm−1(m− 1)) ∼=gr Mn(K)(l′0(0), l′1(1), . . . , l′m−1(m− 1))

for some nonnegative l′0, l
′
1, . . . , l

′
m−1 such that n =

∑m−1
i=0 l′i. By Lemma 2.1, the list l′0(0), l′1(1), . . . ,

l′m−1(m−1) is obtained from l0(0), l1(1), . . . , lm−1(m−1) by applying finitely many operations of the
three types from Lemma 2.1. Since the elements in both lists of shifts are already in {0, 1, . . . ,m−1},
if an operation from part (2) of Lemma 2.1 is present, then the results are considered modulo m
again using part (3) of Lemma 2.1. To obtain the resulting list in a nondecreasing order, the
elements are permuted using part (1) of Lemma 2.1. This shows that there is an integer k such
that l′i = li+mk for all i = 0, . . . ,m− 1 where +m denotes the operation of the cyclic abelian group
Z/mZ of order m. If we reorder the elements l0, . . . , lm−1 using the permutation of {0, . . . ,m − 1}
given by i 7→ i+m k, the list becomes l0+mk = l′0, . . . , lm−1+mk = l′m−1. �

We say that the nonnegative integers k and l0, l1, . . . , lk from part (1) of Lemma 3.1 are representa-
tives of the graded isomorphism class of Mn(K)(γ1, γ2, . . . , γn). By Lemma 3.1, such representatives
are unique. We also say that the nonnegative integers l0, l1, . . . , lm−1 from part (2) of Lemma 3.1
are representatives of the graded isomorphism class of Mn(K[xm, x−m])(γ1, γ2, . . . , γn). By Lemma
3.1, such representatives are unique up to their order. For example, m = 2 and l0 = 1, l1 = 2 for
the algebras M3(K[x2, x−2])(0, 1, 1) and M3(K[x2, x−2])(0, 1, 2) from Example 2.2.

Proposition 3.2. Let n be a positive integer, γ1, γ2, . . . , γn be arbitrary integers, and R be the
algebra Mn(K)(γ1, γ2, . . . , γn). The following conditions are equivalent.

(1) R is graded isomorphic to a Leavitt path algebra.
(2) R is graded isomorphic to a Leavitt path algebra of a finite acyclic graph with a unique sink.
(3) R is graded isomorphic to Mn(K)(0, l1(1), l2(2), . . . , lk(k)) for some nonnegative k and pos-

itive integers l1, . . . , lk such that n = 1 +
∑k

i=1 li.
(4) If k and l0, . . . , lk are representatives of the graded isomorphism class of R, then li is positive

for all i = 1, . . . , k and l0 = 1.

Proof. If R ∼=gr LK(E) for some graph E, then E is row-finite and acyclic by [6, Corollary 3.5].
Since R is unital, E has finitely many vertices. A row-finite graph with finitely many vertices is
finite, so E is finite. The algebra R is graded simple (see the second paragraph of [3, Remark 1.4.8]),
so E has only one sink since otherwise a graded matricial representation of LK(E) is not graded
simple. This shows (1) ⇒ (2). The converse (2) ⇒ (1) is direct.

To show (2) ⇒ (3), let R ∼=gr LK(E) for some finite acyclic graph E with a unique sink v. Since
the set of lengths of paths of E which end at v is finite, there is a maximal element k of this set
and a path p to v of length k. Let li be the number of paths of length i to v for i = 0, . . . , k. Then
Mn′(K)(l0(0), l1(1), l2(2), . . . , lk(k)) where n′ =

∑k
i=0 li is graded isomorphic to a graded matricial

representation of LK(E) and, hence, to R as well. The relation n = n′ holds by Lemma 2.1. The
trivial path is the only one of length zero so l0 = 1. The subpaths of p which end at v have lengths
0, 1, 2, . . . , k, so li is positive for each i = 0, . . . , k.

To show (3) ⇒ (2), let k be any nonnegative integer and l1, . . . , lk be positive integers such that

n = 1 +
∑k

i=1 li. We construct a finite acyclic graph E with a unique sink such that LK(E) ∼=gr

Mn(K)(0, l1(1), l2(2), . . . , lk(k)). Let E0 be an isolated vertex v01. Obtain E1 by adding l1 new
vertices v11, . . . , v1l1 to E0 and an edge from v1j to v01 for all j = 1, . . . , l1. If Ei−1 is created, obtain
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Ei by adding li new vertices vi1, . . . , vili to Ei−1 and an edge from vij to v(i−1)1 for all j = 1, . . . , li.

After Ek is created, let E =
⋃k
i=0Ei. By construction, E is finite and acyclic and v01 is the only

sink. The trivial path to v01 is the only one of length zero and E has exactly li paths of length i
ending at v01 for all i = 1, . . . , k. So, LK(E) ∼=gr Mn(K)(0, l1(1), l2(2), . . . , lk(k)).

Conditions (3) and (4) are equivalent by Lemma 3.1 since the representatives k and l0, . . . , lk are
unique. �

Remark 3.3. The key requirement in Proposition 3.2 is that the representatives l1, . . . , lk−1 of the
graded isomorphism class of R are positive. This ensures that there are no “gaps” in the lengths of
paths. For example, the algebra M2(K)(0, 2) is graded isomorphic to no Leavitt path algebra since
if there is a path of length 2 to a sink, then there has to be a path of length 1 to that sink also.

A graph is said to be a comet if every vertex connects to a unique cycle of the graph. Such graph
is no-exit since if there is an exit e from the only cycle c, then the range of e connects to the cycle c
implying the existence of another cycle containing e and a path from the range of e to some vertex
of c. Since the cycle c is unique, no such e can exist.

Proposition 3.4. Let m and n be positive integers, γ1, γ2, . . . , γn be arbitrary integers, and let
R = Mn(K[xm, x−m])(γ1, γ2, . . . , γn). The following conditions are equivalent.

(1) R is graded isomorphic to a Leavitt path algebra.
(2) R is graded isomorphic to a Leavitt path algebra of a finite comet graph.
(3) R is graded isomorphic to Mn(K[xm, x−m])(l0(0), l1(1), . . . , lm−1(m − 1)) for some positive

integers l0, l1, . . . , lm−1 such that n =
∑m−1

i=0 li.
(4) If l0, . . . , lm−1 are representatives of the graded isomorphism class of R, then li is positive

for all i = 0, . . . ,m− 1.

Proof. To show (1) ⇒ (2), assume that R ∼=gr LK(E) for some graph E. By [6, Corollary 3.6], E
is a row-finite no-exit graph without sinks. Since R is unital, E has finitely many vertices so the
condition that E is row-finite implies that E is finite. The algebra R is graded simple, so E has only
one cycle since otherwise a graded matricial representation of LK(E) is not graded simple. Hence,
E is a finite comet graph. The converse (2) ⇒ (1) is direct.

To show (2) ⇒ (3), let R ∼=gr LK(E) for some finite comet graph E. If m′ is the length of the
cycle of E, v is a vertex of the cycle, li is the number of paths to v of length i modulo m′ which

do not contain the cycle, and n′ =
∑m′−1

i=0 li, then Mn′(K[xm
′
, x−m

′
])(l0(0), l1(1), . . . , lm′−1(m′ − 1))

is graded isomorphic to a graded matricial representation of LK(E) and so to R also. By Lemma
2.1, K[xm

′
, x−m

′
] ∼=gr K[xm, x−m]. Assuming that m′ < m, produces a contradiction by considering

the m′-components. One shows that m ≥ m′ similarly and so m = m′. By Lemma 2.1, n = n′. For
i = 0, . . . ,m− 1, li is positive since there is a subpath of the cycle which ends at v and which has
length i.

To show (3) ⇒ (2), consider any positive integers l0, . . . , lm−1 such that n =
∑m−1

i=0 li. Construct
a finite comet graph E as follows. Consider an isolated cycle of length m with vertices v0, . . . , vm−1

ordered so that vi+1 emits an edge to vi for i = 0, . . . ,m − 2 and v0 emits an edge to vm−1. For
each i = 1, . . . ,m− 1, add li − 1 new vertices vi1, . . . , vi(li−1) and an edge from vij to vi−1 for each
j = 1, . . . , li − 1. Add also l0 − 1 new vertices v01, . . . , v0(l0−1) and an edge from v0j to vm−1 for
each j = 1, . . . , l0 − 1. The graph E obtained in this way is a finite comet graph with a cycle
of length m. For each i = 1, . . . ,m − 1, there are li − 1 paths to v0 of length i which are not
subpaths of the cycle and there is one path from vi to v0 inside of the cycle. There are l0 − 1
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paths to v0 of length m which are not subpaths of the cycle and there is a trivial path to v0.
So, li is the number of paths to v0 of length i modulo m which do not contain the cycle. Thus,
LK(E) ∼=gr Mn(K[xm, x−m])(l0(0), l1(1), . . . , lm−1(m− 1)).

Conditions (3) and (4) are equivalent by Lemma 3.1 since reordering a list of positive elements
l0, . . . , lm−1 produces a list where all elements are also positive. �

Proposition 3.5. Let k, n be nonnegative, ki, nj,mj positive, and γi1 . . . , γiki , δj1, . . . , δjnj
arbitrary

integers for i = 1, . . . , k, j = 1, . . . , n. If

R =
k⊕
i=1

Mki(K)(γi1 . . . , γiki)⊕
n⊕
j=1

Mnj
(K[xmj , x−mj ])(δj1, . . . , δjnj

),

then the following conditions are equivalent.

(1) R is graded isomorphic to a Leavitt path algebra.
(2) R is graded isomorphic to a Leavitt path algebra of a finite no-exit graph.
(3) There are some nonnegative integers k′i and positive integers li1, li2, . . . , lik′i , i = 1, . . . , k, and

sj0, sj1, . . . , sj(mj−1), j = 1, . . . , n such that ki = 1 + li1 + li2 + . . . + lik′i , for all i = 1, . . . , k,
that nj = sj0 + sj1 + . . .+ sj(mj−1) for all j = 1, . . . , n, and that R is graded isomorphic to

k⊕
i=1

Mki(K)(0, li1(1), li2(2), . . . , lik′i(k
′
i))⊕

n⊕
j=1

Mnj
(K[xmj , x−mj ])(sj0(0), sj1(1), . . . , sj(mj−1)(mj−1)).

(4) If k′i and li0, . . . , lik′i are representatives of the graded isomorphism class of the algebra
Mki(K)(γi1 . . . , γiki) for i = 1, . . . , k and if sj0, . . . , sj(mj−1) are representatives of the graded
isomorphism class of the algebra Mnj

(K[xmj , x−mj ])(δj1, . . . , δjnj
) for j = 1, . . . , n then

li0 = 1 and li1, . . . , lik′i are positive for all i = 1, . . . , k and sj0, . . . , sj(mj−1) are positive
for all j = 1, . . . , n.

Proof. If R ∼=gr LK(E) for some graph E, E is row-finite and no-exit by [6, Corollary 3.4]. Since R
is unital and E is row-finite, E is finite. This shows (1) ⇒ (2). The converse (2) ⇒ (1) is direct.

To show (2) ⇒ (3), let R ∼=gr LK(E) for some finite no-exit graph E. By the graded version
of the Wedderburn-Artin Theorem (see [3, Remark 1.4.8]), by the argument that K[xm

′
, x−m

′
] ∼=gr

K[xm, x−m] implies that m′ = m shown in the proof of (2) ⇒ (3) of Proposition 3.4, and by
reordering the terms of R if necessary, we can assume that a graded matricial representation M
of LK(E) is

⊕k
i=1 Mki(K)(γ′i1 . . . , γ

′
iki

) ⊕
⊕n

j=1 Mnj
(K[xmj , x−mj ])(δ′j1, . . . , δ

′
jnj

) for some integers

γ′i1 . . . , γ
′
iki

and δ′j1, . . . , δ
′
jnj
. For each i = 1, . . . , k, the proof of (2) ⇒ (3) in Proposition 3.2 implies

that there is a nonnegative integer k′i and positive integers li1, . . . , lik′i such that ki = 1+li1 + . . .+lik′i
and that there is φi : Mki(K)(γ′i1 . . . , γ

′
iki

) ∼=gr Mki(K)(0, li1(1), . . . , lik′i(k
′
i)). For each j = 1, . . . , n,

the proof of (2) ⇒ (3) in Proposition 3.4 implies that there are positive integers sj0, . . . , sj(mj−1)

such that nj = sj0 + . . . + sj(mj−1) and that there is ψj : Mnj
(K[xmj , x−mj ])(δ′j1, . . . , δ

′
jnj

) ∼=gr

Mnj
(K[xmj , x−mj ])(sj0(0), . . . , sj(mj−1)(mj − 1)). If φ is

⊕k
i=1 φi ⊕

⊕n
j=1 ψj, then composing R ∼=gr

LK(E) and LK(E) ∼=gr M with φ produces a graded isomorphism of R and a graded algebra as in
condition (3).

To show (3)⇒ (2), let k′i be a nonnegative integer and let li1, . . . , lik′i , sj0, . . . , sj(mj−1) be positive
integers such that ki = 1 + li1 + . . . + lik′i and that nj = sj0 + . . . + sj(mj−1) for each i = 1, . . . , k
and j = 1, . . . , n. By Proposition 3.2, there is a finite acyclic graph Ei with a unique sink such
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that LK(Ei) ∼=gr Mki(K)(0, li1(1), . . . , lik′i(k
′
i)) for every i = 1, . . . k. By Proposition 3.4, there is

a finite comet graph Fj such that LK(Fj) ∼=gr Mnj
(K[xmj , x−mj ])(sj0(0), . . . , sj(mj−1)(mj − 1)) for

every j = 1, . . . , n. Let E be the disjoint union of graphs Ei, i = 1, . . . , k and Fj, j = 1, . . . , n so
that LK(E) is graded isomorphic to a graded algebra as in condition (3).

The equivalence of (3) and (4) holds by Lemma 3.1 since representatives of the graded isomor-
phism class of a matricial algebra over K are unique and representatives of the graded isomorphism
class of a matricial algebra over K[xm, x−m] are unique up to their order. �

3.1. Graded corners of Leavitt path algebras. If R is a graded ring and e a homogeneous
idempotent, the ring eRe is a graded corner. By [2, Theorem 3.15], every corner of a Leavitt path
algebra of a finite graph is isomorphic to another Leavitt path algebra. Using Proposition 3.2, the
example below shows that a graded corner of a Leavitt path algebra may not be graded isomorphic
to another Leavitt path algebra.

Example 3.6. Let E be the graph below.

•u
e // •v

f // •w
If φ is the graded isomorphism LK(E) ∼=gr M3(K)(0, 1, 2) described in section 2.2, then φ maps
the graded idempotent u + w to the graded idempotent e = e11 + e33 where e11 and e33 are the
standard matrix units. So, the graded corner eM3(K)(0, 1, 2)e is graded isomorphic to the graded
algebra M2(K)(0, 2). By Proposition 3.2, M2(K)(0, 2) is not graded isomorphic to any Leavitt path
algebra.
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