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Graph algebra evolution

1. 1950s: Leavitt algebras as
examples of rings with
Rm ∼= Rn.

2. 1970s: Cuntz’s algebras –
C ∗-algebras defined by
analogous identities.

3. 1980s: Cuntz-Krieger
algebras – generalization of 2.

4. 1990s: Graph C ∗-algebras.

5. 2000s: Leavitt path algebras as algebraic analog of 4.
and generalization of 1.



Missing link?

Two worlds, two languages:

Operator Theory world ! Algebra world

↑ ↑
Graph C ∗-algebras ! Leavitt Path Algebras

Gene Abrams: “Find a
Rosetta stone”.



This talk’s agenda – two fold

1. The first agenda.

Traces of

Leavitt
path

algebras

Traces of

graph

C ∗-
algebras



The second agenda

2. While working on 1. I ended up filling the blank below.

A LPA is directly finite iff the graph is .

Illustrate a more
general method of

“localization”

in the sketch of the proof.



But first – the larger picture

Berberian 1972. “Von Neumann algebras are blessed with an
excess of structure – algebraic, geometric, topological – so
much, that one can easily obscure, through proof by overkill,
what makes a particular theorem work.”

“If all the functional analysis is stripped away ... what remains
should (be) completely accessible through algebraic avenues”.



Two worlds – with more than one inhabitant each

Group Von Neumann algebras ! Group rings

AW ∗-algebras ! Baer ∗-rings

Graph C ∗-algebras ! Leavitt Path Algebras

My algebraic avenues. 2000s: group

VNAs → finite VNAs → Baer ∗-rings.

Need more Rosetta stones.



And then...

... I started hanging out with Gonzalo (Aranda Pino)...

I ... and noticed that the search of algebraic avenues
motivates the study of Leavitt path algebras as well.



Trace evolution

1. The usual trace on Mn(R).

The trace of an
idempotent/projection is
related to the dimension of
the corresponding projective
submodule/subspace.

2. More generally, traces of operators of a Hilbert space
→ traces of von Neumann algebras → of C ∗-algebras.

3. Tomforde (2002) Graph traces and tracial states of graph
C∗-algebras.

4. Traces on Leavitt path algebras?

5. Connections?



So, let us look at a trace...

... in the most general way. Let R and T be rings. A

T-valued trace on R

is a map t : R → T which is

I additive and

I central i.e. t(xy) = t(yx)
for all x , y ∈ R

If R and T are K -algebras, we
also want it to be

I K -linear i.e. t(kx) = kt(x)
for all x ∈ R and k ∈ K .



Examples

1. Kaplansky trace on a group ring KG .
∑

agg 7→ a1

2. Augmentation map on KG .
∑

agg 7→
∑

ag .

3. Standard trace on matrix ring over K .
Matrix ring = KG for G = matrix units.

KG = contracted KG = KG/K0.

KG = KG + 0 if G is without 0.

Traces on contracted semigroup
rings with Zak (Mesyan).

Characterization of minimal traces.
I t is minimal: t(x) = 0 iff x is in the commutator.



Relevance to Leavitt path algebras?

G = {pq∗ | p, q paths of a graph E }. Here q∗ is a ghost path.

G = graph inverse semigroup and

KG = Cohn path algebra.

Cohn path algebra + CK2 axiom
= Leavitt path algebra.

V vv = v and vw = 0 if v 6= w ,

E1 s(e)e = er(e) = e

E2 r(e)e∗ = e∗s(e) = e∗

CK1 e∗e = r(e), e∗f = 0 if e 6= f

CK2 v =
∑

ee∗ for e ∈ s−1(v) if v is regular (= emits edges,
finitely many).



Traces on Cohn and Leavitt path algebras

G = graph inverse semigroup.

Proposition [Zak-Lia].

traces on Cohn path algebra ! central maps on G

traces on Leavitt path algebra ! central maps on G
which agree with CK2

A central map t on G agrees with CK2 iff

t(v) = t(
∑

ee∗) =
∑

t(ee∗) =
∑

t(e∗e) =
∑

t(r(e))

for v regular with e ∈ s−1(v).



Involution kicks in

x in ∗-ring is positive (x ≥ 0) if x = finite sum of yy ∗.
R ,T ∗-rings, t : R → T trace.

I t is positive if x ≥ 0 implies t(x) ≥ 0.

I t is faithful if x > 0 implies t(x) > 0.

If t is positive on a LPA, then

(P) t(v) ≥
∑

e∈I t(r(e))

for all v , and finite I ⊆ s−1(v).

I I = ∅ ⇒ t(v) ≥ 0.

I v regular and I = s−1(v)⇒ ≥ is =.

If t is faithful then (F) t(v) > 0 for all v .



Are these meaningful?

Desirable properties.
1. (P) is sufficient for positivity and (F) for faithfulness.
2. Traces are determined by values on vertices.

1 fails. The C-valued t on C[x , x−1]
(=LPA of a loop) given by

t(xn) = in, t(x−n) = in

has (P) and (F) but is not positive
since

t((1 + x)(1 + x−1)) = 2 + 2i .

2 also fails. The map on vertices of the graph below

•1 •3oo // •1

has (P) and (F) but does not extend to a trace: CK2 fails
(3 6= 1 + 1).



Fixing 1 – Canonical traces

t = trace on LK (E ), p, q = paths.

1. t is canonical if

t(pq∗) = 0, for p 6= q and t(pp∗) = t(r(p)).

2. t is gauge invariant if

t(pq∗) = k |p|−|q|t(pq∗) for any nonzero k ∈ K .

Equivalent for char K = 0.



Harmony

Theorem 1 [Lia]. If t is a canonical trace on LK (E ), then

t is positive ⇐⇒ (P) holds.

t is faithful ⇐⇒ (F) holds.



Fixing 2 – Graph Traces

A graph trace is a map δ
on the set of vertices such that

I δ(v) =
∑

e∈I δ(r(e)) for

I = s−1(v), and v regular.

It is

I positive if δ(v) ≥
∑

e∈I δ(r(e)) for all v , and finite

I ⊆ s−1(v).

I faithful if positive and δ(v) > 0 for all v .



Harmony continued

Theorem 2 [Lia].

canonical trace on LK (E ) ! graph trace on E

positive, positive
canonical trace on LK (E ) ! graph trace on E

faithful, faithful
canonical trace on LK (E ) ! graph trace on E

Direct corollary of Theorem 1.



Instead of going over 6 pages of proof...

... let me tell you what my driving force was.

1. Classification of von Neumann algebras via traces.

2. Results on traces of graph C ∗-algebras.



Connecting with the C ∗-algebra world

Theorem [Pask-Rennie, 2006]. E row-finite and countable.
All maps are C-valued.

faithful, semifinite,
lower semicontinuous
gauge-invariant faithful
trace on C ∗(E ) ! graph trace on E

semifinite = {x ∈ C ∗(E )+|t(x) <∞} is norm dense in
C ∗(E )+.
lower semicontinuous = t(limn→∞ an) ≤ lim infn→∞ t(an)
for all an ∈ C ∗(E )+ norm convergent.



Let us better polish that Rosetta stone

Operator
theory trace

Defined on the
positive cone.

t(xx∗) = t(x∗x)

Faithful if

Algebra trace

Defined
everywhere.

Central.

Faithful if
positive and

t(xx∗) = 0⇒ x = 0. t
(∑

xx∗
)

= 0⇒
∑

xx∗ = 0.

Luckily, char C = 0 so no Rosetta stone needed for:

canonical = gauge invariant.



Using Rosetta stone

Fixing the domain. Write x = a + ib and a = a+ − a−,
b = b+ − b−. Define

t(x) = t(a+)− t(a−) + i(t(b+)− t(b−)).

This is C-linear and positive.

Fixing faithfulness. If R and T are ∗-rings, t : R → T a
positive trace, and

1. T positive definite (
∑n

i=1 xix
∗
i = 0⇒ xi = 0 for all i ,

for all n),
2. R proper (xx∗ = 0⇒ x = 0) then

t(xx∗) = 0⇒ x = 0 ⇐⇒ t (
∑

xx∗) = 0⇒
∑

xx∗ = 0.

Luckily, C is positive definite and any C ∗-algebra is proper.



Connecting the worlds

Corollary [Lia]. E row-finite and countable. All maps are
C-valued.

semifinite,
lower semicont.,
faithful, faithful, faithful
gauge-invariant canonical
trace ! trace ! graph trace
on C ∗(E ) on LC(E ) on E

Proof. We already have that (2) = (3).
Every t as in (1) restricts to t as in (3) without using
row-finiteness.
Every t as in (2) extends to t as in (1) using Gauge Invariant
Uniqueness Theorem proven for countable graphs.



Where to next with this?

Remember my driving force:

A von Neumann algebra is finite
iff there is a finite, normal, faithful trace.

I wandered:

A Leavitt path algebra LK (E ) is finite
iff there is a K -valued canonical, faithful trace (?)
iff the graph is .

Recall that a ∗-ring is finite if

xx∗ = 1 implies x∗x = 1.

Easy: the existence of a faithful trace implies finiteness.

xx∗ = 1 ⇒ 1− x∗x ≥ 0 and t(1− xx∗) = 0 so

t(1− x∗x) = t(1− xx∗) = 0 ⇒ 1− x∗x = 0 ⇒ x∗x = 1.



Houston, we have a problem

finite iff xx∗ = 1 ⇒ x∗x = 1.

What is “1” if E is not finite?

There are still local units: for
every finite set of elements, there
is an idempotent acting like a
unit.

A ∗-ring with local units R is finite if for every x and an
idempotent u with xu = ux = x ,

xx∗ = u implies x∗x = u.

In this case u is a projection (selfadjoint idempotent).



While we are at it...

A unital ring R is directly (Dedekind) finite if

xy = 1 implies yx = 1.

Equivalently: if no direct summand of R is isomorphic to R .

A ring with local units R is directly finite if for every x , y and
an idempotent u with xu = ux = x and yu = uy = y ,

xy = u implies yx = u.

Finite

Mn(K )

Not Finite

Column finite matrices over K



Necessary condition for LPAs to be finite – no exits

If a cycle p has an exit,

then a LPA is

not (directly) finite.

p

��

xx

55 •v //

WW

•w

Let x = p + (1− δv ,w )w , and u = v + (1− δv ,w )w . Then
x∗x = u and xx∗ 6= u.

If E is finite, this is sufficient too:
E no-exit ⇒ LK (E ) finite sum of matricial algebras over K or
K [x , x−1]⇒ LK (E ) is directly finite.



Idea for the converse

1. Start with x , y in LK (E ) for some E no-exit.

2. Consider u, local unit for x and y , with xy = u.
Want yx = u.

3. Consider a finite subgraph F determined by the paths
appearing in x , y , u.

4. F is no-exit and so LK (F ) is directly finite so yx = u.
Done.

Problem: LK (F ) may not
be a subalgebra of LK (E ).

So yx = u in LK (F ) does
not mean yx = u in LK (E ).

Houston, can we
“localize”?



Yes: using Cohn, Leavitt and everything in between

Cohn Cohn-Leavitt Leavitt
CK(E) CLK(E,S) LK(E)

CK2 holds for CK2 holds for CK2 holds for
no some all

regular v ’s regular v ’s regular v ’s
v ∈ S ⇔ CK2 holds

Have their C ∗-counterparts:
relative graph C ∗-algebras

C ∗(E , S)



No-exits for Cohn-Leavitt algebras over finite E

Not really that much larger class: CLK (E , S) ∼= LK (ES)

Using the above iso and no-exit
characterization for finite graphs,

we have that for E finite,

CLK (E , S) is (directly) finite.
iff

E is no-exit and
vertices of all cycles are in S.



Goodearl-Ara work

For every finite subgraph G of E , there are
I a finite subgraph F of E which contains G and
I a subset T of regular vertices of E such that

CLK(F,T) is a subalgebra of LK(E).

Proven in larger generality for separated graphs.



Original idea now works!

Same as originally:

1. Start with x , y in LK (E ) for some E no-exit.

2. Consider a local unit u, local for x and y with xy = u.
Want yx = u.

3. Consider a finite subgraph G determined by the paths
appearing in x , y , u.

Different:

4. Look at finite F and its T such that CLK (F ,T ) is a
subalgebra of LK (E ).

5. F is no-exit and all the vertices of its cycles are in T by
construction.

6. Thus CLK (F ,T ) is directly finite.

7. So yx = u in CLK (F ,T ) and thus in LK (E ) too. Done.



Corollaries

Idea of “localizing”: more general than just for finiteness.

For example. Proof of the Abrams-Rangaswamy result

LK (E ) regular iff E acyclic.



Where will the trace take us next?

LK (E ) is (directly) finite
;
⇐ LK (E ) has a faithful trace

m m

E is no-exit ⇐ E is no-exit and ?

•v 44//
** $$ •w

No exits here.

No trace since value of
t(v) ≥ nt(w) for all n.



Local home

http://www.usciences.edu/∼lvas and arXiv.


