Leavitt path and graph *C**-algebras: connections via traces

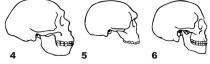
Lia Vaš University of the Sciences, Philadelphia

Making connections

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Graph algebra evolution

- 1. **1950s:** Leavitt algebras as examples of rings with $R^m \cong R^n$.
- 1970s: Cuntz's algebras C*-algebras defined by analogous identities.
- 3. **1980s:** Cuntz-Krieger algebras generalization of 2.

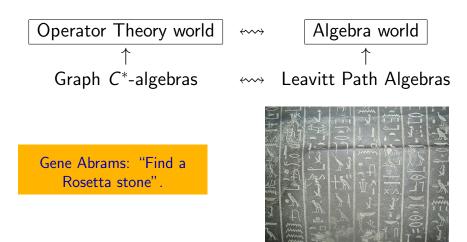


(日)、

- 4. 1990s: Graph C*-algebras.
- 5. **2000s:** Leavitt path algebras as algebraic analog of 4. and generalization of 1.

Missing link?

Two worlds, two languages:



・ロト・雪ト・雪ト・雪 シック

This talk's agenda - two fold

1. The first agenda.

Traces of graph C*algebras

3

(日)、

Traces of Leavitt path algebras

The second agenda

2. While working on 1. I ended up filling the blank below.

A LPA is directly finite iff the graph is ____

Illustrate a more general method of

"localization"

in the sketch of the proof.

But first - the larger picture

Berberian 1972. "Von Neumann algebras are blessed with an excess of structure – algebraic, geometric, topological – so much, that one can easily obscure, through proof by overkill, what makes a particular theorem work."

"If all the functional analysis is stripped away ... what remains should (be) completely accessible through algebraic avenues".

Two worlds - with more than one inhabitant each

Group Von Neumann algebras	\longleftrightarrow	Group rings
AW*-algebras	\longleftrightarrow	Baer *-rings
Graph C*-algebras	\longleftrightarrow	Leavitt Path Algebras

 $\frac{\text{My algebraic avenues.}}{\text{VNAs} \rightarrow \text{finite VNAs} \rightarrow \text{Baer *-rings.}}$

Need more Rosetta stones.

(日)、

And then...

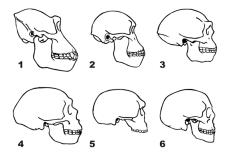
... I started hanging out with Gonzalo (Aranda Pino)...

 ... and noticed that the search of algebraic avenues motivates the study of Leavitt path algebras as well.

Trace evolution

1. The usual trace on $M_n(R)$.

The **trace** of an idempotent/projection is related to the **dimension** of the corresponding projective submodule/subspace.



- 2. More generally, **traces of operators** of a Hilbert space \rightarrow traces of von Neumann algebras \rightarrow of C^* -algebras.
- 3. Tomforde (2002) Graph traces and tracial states of **graph** C*-algebras.
- 4. Traces on Leavitt path algebras?5. Connections?

So, let us look at a trace...

... in the most general way.

T-valued trace on R

- is a map $t: R \to T$ which is
 - additive and
 - ► central i.e. t(xy) = t(yx)for all $x, y \in R$
- If R and T are K-algebras, we also want it to be
 - ► *K*-linear i.e. t(kx) = kt(x)for all $x \in R$ and $k \in K$.

Let R and T be rings. A

Examples

- 1. Kaplansky trace on a group ring KG. $\sum a_g g \mapsto a_1$
- 2. Augmentation map on KG. $\sum a_g g \mapsto \sum a_g$.
- 3. **Standard trace** on matrix ring over *K*. Matrix ring = \overline{KG} for G = matrix units.

$$\overline{KG}$$
 = contracted $KG = KG/K0$.
 $KG = \overline{KG + 0}$ if G is without 0.

Traces on contracted semigroup rings with Zak (Mesyan).

Characterization of minimal traces.

• *t* is **minimal**: t(x) = 0 iff *x* is in the commutator.

(日) (同) (三) (三) (三) (○) (○)

Relevance to Leavitt path algebras?

 $G = \{pq^* | p, q \text{ paths of a graph } E\}$. Here q^* is a **ghost path**.

G = graph inverse semigroup and

 \overline{KG} = Cohn path algebra.

 $\begin{array}{l} {\sf Cohn \ path \ algebra} + {\sf CK2 \ axiom} \\ = {\sf Leavitt \ path \ algebra}. \end{array}$

V
$$vv = v$$
 and $vw = 0$ if $v \neq w$,

E1
$$\mathbf{s}(e)e = e\mathbf{r}(e) = e$$

E2
$$r(e)e^* = e^*s(e) = e^*$$

CK1 $e^*e = \mathbf{r}(e)$, $e^*f = 0$ if $e \neq f$

0000

CK2 $v = \sum ee^*$ for $e \in s^{-1}(v)$ if v is regular (= emits edges, finitely many).

Traces on Cohn and Leavitt path algebras

G =graph inverse semigroup.

Proposition [Zak-Lia].

traces on Cohn path algebra
$$\longleftrightarrow$$
central maps on Gtraces on Leavitt path algebra \longleftrightarrow central maps on Gwhich agree with CK2

ith CK2 iff A central map t on G

$$t(v) = t(\sum ee^*) = \sum t(ee^*) = \sum t(e^*e) = \sum t(\mathbf{r}(e))$$

for v regular with $e \in \mathbf{s}^{-1}(v)$.

Involution kicks in

x in *-ring is **positive** ($x \ge 0$) if x = finite sum of yy^* . R, T *-rings, $t : R \to T$ trace.

- *t* is **positive** if $x \ge 0$ implies $t(x) \ge 0$.
- t is faithful if x > 0 implies t(x) > 0.

If t is **positive** on a LPA, then

(P)
$$t(v) \ge \sum_{e \in I} t(\mathbf{r}(e))$$

for all v, and finite $I \subseteq \mathbf{s}^{-1}(v)$.

- $\blacktriangleright I = \emptyset \Rightarrow t(v) \ge 0.$
- v regular and $I = \mathbf{s}^{-1}(v) \Rightarrow \ge i\mathbf{s} = .$

If t is **faithful** then | (F) t(v) > 0 | for all v.

for all v.

Are these meaningful?

Desirable properties.

- 1. (P) is **sufficient** for positivity and (F) for faithfulness.
- 2. Traces are determined by values on vertices.

1 fails. The \mathbb{C} -valued t on $\mathbb{C}[x, x^{-1}]$ (=LPA of a loop) given by

$$t(x^n)=i^n, t(x^{-n})=i^n$$

has (P) and (F) but is not positive since

$$t((1+x)(1+x^{-1})) = 2+2i.$$

2 also fails. The map on vertices of the graph below

$$\bullet^1 \longleftrightarrow \bullet^3 \longrightarrow \bullet^1$$

has (P) and (F) but does not extend to a trace: CK2 fails $(3 \neq 1 + 1).$ ◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Fixing 1 – Canonical traces

$$t =$$
trace on $L_{\kappa}(E), p, q =$ paths.

1. t is **canonical** if

 $t(pq^*) = 0$, for $p \neq q$ and $t(pp^*) = t(\mathbf{r}(p))$.

2. t is gauge invariant if

$$t(pq^*)=k^{|p|-|q|}t(pq^*)$$
 for any nonzero $k\in {\cal K}$.

Equivalent for char K = 0.

Theorem 1 [Lia]. If t is a canonical trace on $L_{\mathcal{K}}(E)$, then

$$t ext{ is positive } \iff (\mathsf{P}) ext{ holds.}$$

 $t ext{ is faithful } \iff (\mathsf{F}) ext{ holds.}$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ─ □ ─ つへで

Fixing 2 – Graph Traces

A graph trace is a map δ on the set of vertices such that

•
$$\delta(v) = \sum_{e \in I} \delta(\mathbf{r}(e))$$
 for $I = \mathbf{s}^{-1}(v)$, and v regular.

lt is

Harmony continued

Theorem 2 [Lia].

canonical trace on $L_{\mathcal{K}}(E)$	****	graph trace on <i>E</i>
positive, canonical trace on $L_{\mathcal{K}}(E)$	\longleftrightarrow	positive graph trace on <i>E</i>
faithful, canonical trace on $L_{\kappa}(E)$	$\leftrightarrow \rightarrow$	faithful graph trace on <i>E</i>

Direct corollary of Theorem 1.

Instead of going over 6 pages of proof...

... let me tell you what my **driving force** was.

1. Classification of von Neumann algebras via traces.

・ロト ・聞ト ・ヨト ・ヨト

- 34

2. Results on traces of graph C^* -algebras.

Connecting with the C^* -algebra world

Theorem [Pask-Rennie, 2006]. *E* row-finite and countable. All maps are \mathbb{C} -valued.

```
faithful, semifinite,
lower semicontinuous
gauge-invariant faithful
trace on C^*(E) \longleftrightarrow graph trace on E
```


semifinite = { $x \in C^*(E)^+ | t(x) < \infty$ } is norm dense in $C^*(E)^+$. lower semicontinuous = $t(\lim_{n\to\infty} a_n) \leq \liminf_{n\to\infty} t(a_n)$ for all $a_n \in C^*(E)^+$ norm convergent.

Let us better polish that Rosetta stone

Operator theory trace

Defined on the positive cone.

$$\mathsf{t}(\mathsf{x}\mathsf{x}^*) = \mathsf{t}(\mathsf{x}^*\mathsf{x})$$

Faithful if

Algebra trace

Defined everywhere.

Central.

Faithful if

= 0.

ъ

$$t(xx^*)=0 \Rightarrow x=0.$$

$$t\left(\sum xx^*\right) = 0 \Rightarrow \sum xx^*$$

イロン スポン メヨン メヨン

Luckily, char $\mathbb{C}=0$ so no Rosetta stone needed for:

```
canonical = gauge invariant.
```

Using Rosetta stone

Fixing the domain. Write x = a + ib and $a = a^+ - a^-$, $b = b^+ - b^-$. Define

$$t(x) = t(a^+) - t(a^-) + i(t(b^+) - t(b^-)).$$

This is \mathbb{C} -linear and positive.

Fixing faithfulness. If R and T are *-rings, $t : R \to T$ a positive trace, and

1. *T* positive definite $(\sum_{i=1}^{n} x_i x_i^* = 0 \Rightarrow x_i = 0$ for all *i*, for all *n*),

2. *R* proper
$$(xx^* = 0 \Rightarrow x = 0)$$
 then
 $t(xx^*) = 0 \Rightarrow x = 0 \iff t(\sum xx^*) = 0 \Rightarrow \sum xx^* = 0.$

Luckily, \mathbb{C} is positive definite and any C^* -algebra is proper.

Connecting the worlds

Corollary [Lia]. *E* row-finite and countable. All maps are \mathbb{C} -valued.

semifinite,				
lower semicont.,				
faithful,		faithful,		faithful
gauge-invariant		canonical		
trace	\longleftrightarrow	trace	\longleftrightarrow	graph trace
on <i>C</i> *(<i>E</i>)		on $L_{\mathbb{C}}(E)$		on <i>E</i>

Proof. We already have that (2) = (3). Every *t* as in (1) restricts to *t* as in (3) without using row-finiteness.

Every t as in (2) extends to t as in (1) using Gauge Invariant Uniqueness Theorem proven for countable graphs.

Where to next with this?

Remember my driving force:

A von Neumann algebra is finite iff there is a finite, normal, faithful trace.

I wandered:

A Leavitt pa	th algebra $L_{\mathcal{K}}(E)$ is	finite
iff	there is a <i>K</i> -valued	canonical, faithful trace (?)
iff	the graph is	

Recall that a *-ring is finite if

$$xx^* = 1$$
 implies $x^*x = 1$.

Easy: the existence of a faithful trace implies finiteness.

$$xx^* = 1 \implies 1 - x^*x \ge 0 \text{ and } t(1 - xx^*) = 0 \text{ so}$$

 $t(1 - x^*x) = t(1 - xx^*) = 0 \implies 1 - x^*x = 0 \implies x^*x = 1.$

Houston, we have a problem

finite iff
$$xx^* = 1 \Rightarrow x^*x = 1$$
.

What is "1" if E is not finite?

There are still **local units**: for every finite set of elements, there is an idempotent acting like a unit.

A *-ring with local units *R* is **finite** if for every *x* and an idempotent *u* with xu = ux = x,

$$xx^* = u$$
 implies $x^*x = u$.

In this case *u* is a projection (selfadjoint idempotent).

While we are at it...

A unital ring R is **directly (Dedekind) finite** if

$$xy = 1$$
 implies $yx = 1$.

Equivalently: if no direct summand of R is isomorphic to R.

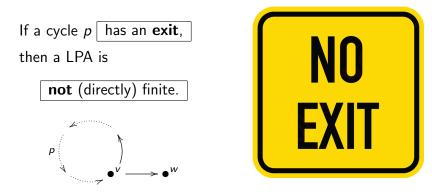
A ring with local units R is **directly finite** if for every x, y and an idempotent u with xu = ux = x and yu = uy = y,

$$xy = u$$
 implies $yx = u$.

Finite $M_n(K)$ Column finite matrices over K

Not Finite

Necessary condition for LPAs to be finite - no exits



Let $x = p + (1 - \delta_{v,w})w$, and $u = v + (1 - \delta_{v,w})w$. Then $x^*x = u$ and $xx^* \neq u$.

If E is finite, this is **sufficient too:** E no-exit $\Rightarrow L_{K}(E)$ finite sum of matricial algebras over K or $K[x, x^{-1}] \Rightarrow L_{K}(E)$ is directly finite.

Idea for the converse

- 1. Start with x, y in $L_{\mathcal{K}}(E)$ for some E no-exit.
- 2. Consider u, local unit for x and y, with xy = u. Want yx = u.
- 3. Consider a finite subgraph *F* determined by the paths appearing in *x*, *y*, *u*.
- 4. F is no-exit and so $L_{\mathcal{K}}(F)$ is directly finite so yx = u. Done.

Problem: $L_{\kappa}(F)$ may not be a subalgebra of $L_{\kappa}(E)$. So yx = u in $L_{\kappa}(F)$ does not mean yx = u in $L_{\kappa}(E)$.

> Houston, can we "localize"?

Yes: using Cohn, Leavitt and everything in between

Cohn C _κ (E)	$\begin{array}{c} \text{Cohn-Leavitt} \\ \text{CL}_{\text{K}}(\text{E},\text{S}) \end{array}$	Leavitt L _K (E)
CK2 holds for <u>no</u> regular <i>v</i> 's	$\begin{array}{c} CK2 \text{ holds for} \\ \mathbf{some} \\ regular \ v's \\ v \in S \ \Leftrightarrow CK2 \text{ holds} \end{array}$	CK2 holds for <u>all</u> regular <i>v</i> 's

Have their C^* -counterparts: relative graph C^* -algebras

No-exits for Cohn-Leavitt algebras over finite E

Not really that much larger class:

$$CL_{\mathcal{K}}(E,S)\cong L_{\mathcal{K}}(E_S)$$

Using the above iso and no-exit characterization for finite graphs, we have that for E <u>finite</u>,

 $CL_{\mathcal{K}}(E,S)$ is (directly) finite. iff *E* is **no-exit** and vertices of all cycles are in S.

(日) (同) (日) (日)

Goodearl-Ara work

For every finite subgraph G of E, there are

- ► a finite subgraph F of E which contains G and
- a subset T of regular vertices of E such that

 $\mathsf{CL}_{\mathsf{K}}(\mathsf{F},\mathsf{T})$ is a subalgebra of $\mathsf{L}_{\mathsf{K}}(\mathsf{E}).$

Proven in larger generality for separated graphs.

Original idea now works!

Same as originally:

- 1. Start with x, y in $L_{\mathcal{K}}(E)$ for some E no-exit.
- 2. Consider a local unit u, local for x and y with xy = u. Want yx = u.
- 3. Consider a finite subgraph G determined by the paths appearing in x, y, u.

Different:

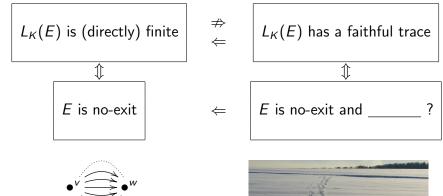
- 4. Look at finite F and its T such that $CL_{\mathcal{K}}(F, T)$ is a subalgebra of $L_{\mathcal{K}}(E)$.
- 5. F is no-exit and all the vertices of its cycles are in T by construction.
- 6. Thus $CL_{\kappa}(F, T)$ is directly finite.
- 7. So yx = u in $CL_{\kappa}(F, T)$ and thus in $L_{\kappa}(E)$ too. Done.

Corollaries

Idea of "localizing": more general than just for finiteness. **For example.** Proof of the Abrams-Rangaswamy result

 $L_{\kappa}(E)$ regular iff E acyclic.

Where will the trace take us next?



No exits here.

No trace since value of $t(v) \ge nt(w)$ for all n.

э

(日)、

Local home

 $http://www.usciences.edu/{\sim}Ivas and arXiv.$

(日) (四) (王) (日) (日) (日)