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1. 1950s: Leavitt algebras as
examples of rings with
R™ =~ R".

2. 1970s: Cuntz's algebras —
C*-algebras defined by
analogous identities.

3. 1980s: Cuntz-Krieger
algebras — generalization of 2.
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Two worlds, two languages:

Operator Theory world | <~ Algebra world

T T
Graph C*-algebras «~ Leavitt Path Algebras




1. The first agenda.

TraCes Of

Traces of
Leavitt graph
path :
algebras algebras



The second agenda

2. While working on 1. | ended up filling the blank below.

A LPA is directly finite iff the graph is

Illustrate a more
general method of

“localization”

in the sketch of the proof.




But first — the larger picture

Berberian 1972. “Von Neumann algebras are blessed with an
excess of structure — algebraic, geometric, topological — so
much, that one can easily obscure, through proof by overkill,
what makes a particular theorem work.”

“If all the functional analysis is stripped away ... what remains
should (be) completely accessible through algebraic avenues”.
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Group Von Neumann algebras

PSS

AW*-algebras

Graph C*-algebras

Group rings

Baer *-rings

«~s  Leavitt Path Algebras

My algebraic avenues. 2000s: group
VNAs — finite VNAs — Baer *-rings.




... | started hanging out with Gonzalo (Aranda Pino)

>

and noticed that the search of algebraic avenues
motivates the study of Leavitt path al%ebraﬁs as well.



Trace evolution

1. The usual trace on M,(R).

The trace of an
idempotent/projection is
related to the dimension of
the corresponding projective
submodule/subspace.

2. More generally, traces of operators of a Hilbert space
— traces of von Neumann algebras — of C*-algebras.

3. Tomforde (2002) Graph traces and tracial states of graph
C*-algebras.

4. Traces on Leavitt path algebras?
5. Connections?



.. in the most general way. Let R and T be rings. A

isamapt: R — T which is
» additive and
» central ie. | t(xy) = t(yx) |
forall x,y € R
If R and T are K-algebras, we
also want it to be
» K-linear i.e. t(kx) = kt(x)
forall x € R and k € K.
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Examples

1. Kaplansky trace on a group ring KG. > a,g — a1
2. Augmentation map on KG. Y a,g — Y a,.

3. Standard trace on matrix ring over K.
Matrix ring = KG for G = matrix units.

KG = contracted KG = KG/KO.
KG = KG + 0 if G is without 0.

Traces on contracted semigroup
rings with Zak (Mesyan).

Characterization of minimal traces.
» tis minimal: t(x) = 0 iff x is in the commutator.



Relevance to Leavitt path algebras?
G = {pq* | p, q paths of a graph E }. Here ¢* is a ghost path.
G = graph inverse semigroup and
KG = Cohn path algebra.

Cohn path algebra + CK2 axiom
= Leavitt path algebra.

V w=vand vw=0if v # w,

El s(e)e =er(e) =

E2 r(e)e* = e*s(e) = e*
CK1 e*e=r(e), e*f=0ife#f
CK2 v =7 ee* for e € s7I(v) if v is regular (= emits edges,
finitely many).



Traces on Cohn and Leavitt path algebras

G = graph inverse semigroup.

Proposition [Zak-Lia].

traces on Cohn path algebra  «~»  central maps on G

traces on Leavitt path algebra «~  central maps on G
which agree with CK2

A central map t on G | agrees with CK2 |iff

tv) =t(D ee’) =D tlee’) =) t(e'e)=> t(r(e))

for v regular with e € s71(v).




Involution kicks in
X in x-ring is positive (x > 0) if x = finite sum of yy*.
R, T x-rings, t: R — T trace.

» tis positive if x > 0 implies t(x) > 0.
» tis faithful if x > 0 implies t(x) > 0.

If t is positive on a LPA, then

(P)  t(v) = > e t(r(e))

for all v, and finite | C s7*(v).
» | =0=t(v) >0.
» vregularand I =s7i(v) = > is =.

If ¢ is faithful then | (F) ¢(v) > 0 | for all v.




Are these meaningful?

Desirable properties.
1. (P) is sufficient for positivity and (F) for faithfulness.
2. Traces are determined by values on vertices.

1 fails. The C-valued t on C[x, x™?]
(=LPA of a loop) given by

t(x") =i"t(x" ") =i"

has (P) and (F) but is not positive
since
t(L+x)(L+x1) =2+2i

2 also fails. The map on vertices of the graph below

.1<—.3—>.1

has (P) and (F) but does not extend to a trace: CK2 fails
(B#A1+1)



Fixing 1 — Canonical traces

t = trace on Lk (E), p,q = paths.
1. t is canonical if

t(pq*) =0, for p # q and t(pp") = t(r(p)).

2. t is gauge invariant if

t(pg*) = kIPI=l9lt(pg*)  for any nonzero k € K.

Equivalent for char K = 0.



Theorem 1 [Lia]. If t is a canonical trace on Lx(E), then

t is positive <= (P) holds.

t is faithful <= (F) holds.

™
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Fixing 2 — Graph Traces

A graph trace is a map ¢ O T o IR T

,F?Fﬁﬁifﬁﬂw‘ ik

on the set of vertices such that

> | 6(v) = Saes 0(r(e)) | for

I =s7*(v), and v regular.

It is
» positive if | 6(v) > >, d(r(e)) |for all v, and finite

I Cs7H(v).

» faithful if positive and | 6(v) > 0 | for all v.




Harmony continued

Theorem 2 [Lia].

canonical trace on Lx(E) <~ graph trace on E

positive, positive
canonical trace on Lx(E) <~ graph trace on E

faithful, faithful
canonical trace on Lx(E) «~ graph trace on E

Direct corollary of Theorem 1.

~T




Instead of going over 6 pages of proof...

. let me tell you what my] driving force ‘Was.

1. Classification of von Neumann algebras via traces.

2. Results on traces of graph C*-algebras.



Connecting with the C*-algebra world

Theorem [Pask-Rennie, 2006]. E row-finite and countable.
All maps are C-valued.

faithful, semifinite,

lower semicontinuous

gauge-invariant faithful

trace on C*(E) e~s graph trace on E

semifinite = {x € C*(E)"|t(x) < oo} is norm dense in
C*(E)".

lower semicontinuous = t(lim, . a,) < liminf,_ t(a,)
for all a, € C*(E)* norm convergent.



Let us better polish that Rosetta stone

Operator

theory trace Algebra trace

Defined on the Defined
positive cone. everywhere.
t(xx*) = t(x*x) Central.
Faithful if Faithful if
positive and

t(xx*) =0=x=0. t(Zxx*)zOéZxx*zO.

Luckily, char C = 0 so no Rosetta stone needed for:

canonical = gauge invariant.




Using Rosetta stone

Fixing the domain. Write x = a+ iband a=a" —a",
b= b" — b~. Define

t(x) =t(a"t) —t(a”) +i(t(b") — t(b7)).

This is C-linear and positive.

Fixing faithfulness. If R and T are x-rings, t : R — T a
positive trace, and
1. T positive definite (37 ; x;x* =0 = x; = 0 for all /,
for all n),
2. R proper (xx* =0= x =0) then

txx*)=0=x=0| <= [ t(D_xx")=0=> xx*=0.

Luckily, C is positive definite and any C*-algebra is proper.




Connecting the worlds

Corollary [Lia]. E rew-finite-and countable. All maps are

C-valued.
semifinite,
lower semicont.,
faithful, faithful, faithful
gauge-invariant canonical
trace «~  trace «~s  graph trace
on C*(E) on L¢(E) on E

Proof. We already have that (2) = (3).

Every t as in (1) restricts to t as in (3) without using
row-finiteness.

Every t as in (2) extends to t as in (1) using Gauge Invariant
Uniqueness Theorem proven for countable graphs.



Where to next with this?

Remember my driving force:

A von Neumann algebra is finite
iff  there is a finite, normal, faithful trace.

| wandered:

A Leavitt path algebra Lk (E) is finite
iff  there is a K-valued canonical, faithful trace (7)
iff  the graph is

Recall that a *-ring is finite if

‘ xx* =1 implies x*x=1. ‘

Easy: the existence of a faithful trace implies finiteness.
xx*=1 = 1—-x"x>0and t(1 —xx*)=0so

t(l—=-xx)=tl—-xx")=0 = 1—-x"x=0 = x"x=1



Houston, we have a problem

’ finite iff xx* =1 = x*x=1. ‘

What is “1” if E is not finite?

There are still local units: for
every finite set of elements, there
is an idempotent acting like a
unit.

A x-ring with local units R is if for every x and an
idempotent u with xu = ux = x,

* *

xx* =u implies x*x = u.

In this case u is a projection (selfadjoint idempotent).



While we are at it...

A unital ring R is directly (Dedekind) finite if

xy =1 1implies yx=1.

Equivalently: if no direct summand of R is isomorphic to R.

A ring with local units R is directly finite if for every x, y and
an idempotent v with xu = ux = x and yu = uy =y,

xy =u implies yx =u.

Finite Not Finite

M,(K) Column finite matrices over K



Necessary condition for LPAs to be finite — no exits

Fa cycle p

then a LPA is NU

| not (directly) finite. |

o 5 EXIT

Let x=p+ (1 —0,w)w,and u=v+(1—10,,)w. Then
x*x = u and xx* # u.

If E is finite, this is sufficient too:

E no-exit = Lk(E) finite sum of matricial algebras over K or
K[x,x '] = Lk(E) is directly finite.




Idea for the converse

1. Start with x, y in Lx(E) for some E no-exit.
2. Consider u, local unit for x and y, with xy = u.
Want yx = u.
3. Consider a finite subgraph F determined by the paths
appearing in x, y, u.
4. F is no-exit and so L (F) is directly finite so yx = wu.
Done.
Problem: Lk (F) may not
be a subalgebra of Lx(E).
So yx = u in Lg(F) does
not mean yx = u in Lx(E).

Houston, can we
“localize” ?



Yes: using Cohn, Leavitt and everything in between

Cohn
Ck(E)

Cohn-Leavitt
CLk(E,S)

Leavitt
L« (E)

CK2 holds for

CK2 holds for

CK2 holds for

no some all
regular v's regular v's regular v's
v €S < CK2 holds
Have their C*-counterparts: T - BEn DRIED

relative graph C*-algebras

JEREET 6 fgm\
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C*(E, S)




No-exits for Cohn-Leavitt algebras over finite £

Not really that much larger class: | CLx(E,S) = Lx(Es)

Using the above iso and no-exit
characterization for finite graphs,
we have that for E finite, N 0

CLk(E,S) is (directly) finite.

iff
E is no-exit and

vertices of all cycles are in S.




Goodearl-Ara work

For every finite subgraph G of E, there are
» a finite subgraph F of E which contains G and
» a subset T of regular vertices of E such that

CLk(F,T) is a subalgebra of Lk (E).

Proven in larger generality for separated graphs.




Original idea now works!

Same as originally:
1. Start with x, y in Lx(E) for some E no-exit.

2. Consider a local unit u, local for x and y with xy = v.
Want yx = u.

3. Consider a finite subgraph G determined by the paths
appearing in x, y, u.

Different:

4. Look at finite F and its T such that CLx(F, T) is a
subalgebra of Lx(E).

5. F is no-exit and all the vertices of its cycles are in T by
construction.

6. Thus CLk(F, T) is directly finite.

7. So yx = uin CLk(F, T) and thus in Lx(E) too. Done.



Corollaries

Idea of “localizing”: more general than just for finiteness.
For example. Proof of the Abrams-Rangaswamy result

Lk (E) regular iff E acyclic. I ‘ m
4 Al
| i




Lk(E) is (directly) finite Z Lk(E) has a faithful trace
) )
E is no-exit = E is no-exit and

No exits here.

No trace since value of
t(v) > nt(w) for all n.

DA



Local home

http://www.usciences.edu/~lvas and arXiv.



