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Abstract. We characterize Leavitt path algebras which are Rickart, Baer, and Baer ∗-rings in terms of the
properties of the underlying graph. In order to treat non-unital Leavitt path algebras as well, we generalize
these annihilator-related properties to locally unital rings and provide a more general characterizations
of Leavitt path algebras which are locally Rickart, locally Baer, and locally Baer ∗-rings. Leavitt path
algebras are also graded rings and we formulate the graded versions of these annihilator-related properties
and characterize Leavitt path algebras having those properties as well.

Our characterizations provide a quick way to generate a wide variety of examples of rings. For example,
creating a Baer and not a Baer ∗-ring, a Rickart ∗-ring which is not Baer, or a Baer and not a Rickart ∗-ring,
is straightforward using the graph-theoretic properties from our results. In addition, our characterizations
showcase more properties which distinguish behavior of Leavitt path algebras from their C∗-algebra coun-
terparts. For example, while a graph C∗-algebra is Baer (and a Baer ∗-ring) if and only if the underlying
graph is finite and acyclic, a Leavitt path algebra is Baer if and only if the graph is finite and no cycle has
an exit, and it is a Baer ∗-ring if and only if the graph is a finite disjoint union of graphs which are finite
and acyclic or loops.

0. Introduction

Leavitt path algebras associated to directed graphs were introduced in [1, 8] as the algebraic counterparts
of the graph C∗-algebras and as generalizations of Leavitt algebras. The study of Leavitt path algebras
grew rapidly and several directions of research emerged. One of these directions is the characterization of
the ring-theoretic properties of a Leavitt path algebra LK(E) in terms of the graph-theoretic properties of
the graph E, i.e. results of the form

LK(E) has (ring-theoretic) property (P ) if and only if E has (graph-theoretic) property (P ′).

While relevant in its own right, this line of research has also become a way to create rings with various
predetermined properties. Namely, by choosing suitable graphs, one can produce prime rings which are not
primitive (Kaplansky’s Conjecture [4]), simple rings which are not purely infinite simple ([2]), and strongly
graded rings which are not crossed-products ([18]), to mention just a few applications. The characterization
theorems have been formulated and proven for a number of ring-theoretic properties: being simple, purely
infinite simple, hereditary, exchange, semisimple, artinian, noetherian, directly finite, to name some of
them, and, in particular, von Neumann regular ([5]), right semihereditary and right nonsingular ([8, 10, 23]).
Thus, the Leavitt path algebra characterization is known for most of the properties listed in the diagram
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from [21, p. 262] shown below.
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However, the property of being Baer has not yet been characterized for Leavitt path algebras. In this
paper, we fill this gap by producing a graph-theoretic property which characterizes when a Leavitt path
algebra is Baer (Theorem 15).

Recall that a ring A is Baer if the right (equivalently left) annihilator of any subset of A is generated
by an idempotent and that A is right Rickart if the right annihilator of any element is generated by an
idempotent. A left Rickart ring is defined analogously. These properties emerged from the consideration
of operator algebras by Kaplansky and Rickart. Kaplansky and Berberian considered these properties for
general rings in order to find “algebraic avenues” (as Berberian puts it in [12]) into operator theory, i.e. to
study algebraic counterparts of operator algebras using algebraic methods alone. The treatment of Leavitt
path algebras as the algebraic counterparts of graph C∗-algebras, fits right into this trend. In this respect,
the characterization of Baer Leavitt path algebras seems to be a particularly natural progression.

Most algebras of operators as well as Leavitt path algebras are involutive. In the presence of an
involution, the projections, self-adjoint idempotents, are “vastly easier to work with than idempotents”
([12]). If the word “idempotent” is replaced by the word “projection” in the definitions of Baer and Rickart
rings, one obtains Baer ∗-rings and Rickart ∗-rings respectively. We also produce a graph-theoretic property
which determines when a Leavitt path algebra is a Baer ∗-ring (Theorem 16).

The properties of an involution of the field K directly impact the involution-related properties of
LK(E). As a consequence, when characterizing properties of Leavitt path algebras as involutive rings,
the underlying field, not just the graph, also becomes relevant (see [11, Theorem 3.3], for example). This
contrasts characterization results for graph C∗-algebras for which the underlying field is fixed. Our Baer
∗-ring characterization (Theorem 16) holds under the assumption that the involution on K is positive
definite and we show that this assumption is necessary.

In many cases, a single property of the graph E characterizes an algebraic property of both LK(E) and
the graph C∗-algebra C∗(E). There are some exceptions (for example in results characterizing being von
Neumann regular or being prime) but generally such exceptions occur less often. Our results provide more
examples of such exceptions. In particular,

LK(E) is Baer if and only if E is finite and no cycle has an exit while
C∗(E) is Baer if and only if E is finite and acyclic (has no cycles).

Also, if K is positive definite,

LK(E) is a Baer ∗-ring if and only if E is a finite disjoint union of
graphs which are finite and acyclic or loops while

C∗(E) is a Baer ∗-ring if and only if C∗(E) is Baer if and only if E is finite and acyclic.

Also, a graph C∗-algebra is Rickart if and only if it is a Rickart ∗-ring and we show that there is a Rickart
Leavitt path algebra which is not a Rickart ∗-ring.

The graph-theoretic properties which appear in our main results (Proposition 13 and Theorems 15 and
16) make it straightforward to construct algebras with various properties such as the following: Rickart
and not Baer, Baer and not Baer ∗, Rickart ∗ and not Baer nor regular, and Baer and not a Rickart ∗-ring.
These examples illustrate the use of the characterization results more generally than just for Leavitt path
algebras.

A Rickart ring is necessarily unital, restricting the characterization of Rickart, Baer and Baer ∗-rings to
Leavitt path algebras over graphs with finitely many vertices. However, while not always unital, Leavitt
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path algebras always have local units. So, one can “localize” ring-theoretic properties by considering
those properties on corners generated by the local units as it has been done with noetherian and artinian
properties in [3], with unit-regular rings in [11] and with directly finite rings in [26]. This motivates our
definitions: we say that a ring is locally Rickart if each corner is Rickart and we “localize” the other
annihilator-related properties similarly. We formulate and prove our main results (Proposition 13 and
Theorems 15 and 16) to provide characterizations of these more general properties without any restriction
on the cardinality of the underlying graph.

Leavitt path algebras are also naturally graded by the group of integers. Many ring-theoretic properties
have been adapted to graded rings (for example graded regular in [17] or graded directly finite in [19]). We
adapt the properties from diagram (D) to graded rings and show that the same relations from diagram (D)
continue to hold (Proposition 3). Our main results (Proposition 13 and Theorems 15 and 16) characterize
the graded versions of the annihilator-related properties of Leavitt path algebras as well. It is interesting
to point out the following.

LK(E) is graded Baer if and only if LK(E) is Baer while
LK(E) can be a graded Baer ∗-ring without being a Baer ∗-ring.

If the word “Baer” is replaced with the word “Rickart” in the sentence above, the claim continues to
hold. In addition, while Leavitt path algebras satisfy Handelman’s Conjecture (stating that a ∗-regular
ring is necessarily directly finite and unit-regular) as shown in [11], we show that the graded version of
Handelman’s Conjecture fails for Leavitt path algebras by producing an algebra which is graded ∗-regular
and neither graded unit-regular nor graded directly finite.

The paper is organized as follows. In §1, we formulate graded versions of the annihilator-related prop-
erties, prove some basic properties of those (including the graded version of diagram (D)) and generalize
the properties of the annihilators from unital to locally unital rings. In §2, we focus on some properties of
the involution of a Leavitt path algebra and provide an alternative proof of [11, Proposition 2.4] stating
that a Leavitt path algebra is positive definite if and only if the underlying field is positive definite (Propo-
sition 12). In §3, we characterize Rickart, Baer, Baer ∗, locally Rickart, locally Baer, locally Baer ∗, and
graded Rickart, graded Rickart ∗, graded Baer and graded Baer ∗ Leavitt path algebras (Proposition 13
and Theorems 15 and 16) and present some applications of our results and various examples in Remarks
3.1. We conclude the paper by considering Leavitt path algebras which are Rickart ∗-rings and posing a
question in §4.

1. Annihilator-related conditions for graded and locally unital rings

1.1. Rickart and Baer rings. For a subset X of a ring A (not necessarily unital), the right annihilator
annr(X) of X in A denotes the set of elements a ∈ A such that xa = 0 for all x ∈ X. The left annihilator
annl(X) is defined analogously. It is straightforward to check that annr(X) is a right and annl(X) is a left
ideal of A. If B is a subring of A and X ⊆ B, we use annBr (X) to denote the set annr(X) ∩B of elements
that annihilate X from the right in B. The analogous notation annBl (X) is used for the left annihilator of
X in B.

Recall that A is right Rickart if annr(x) is generated by an idempotent as a right ideal for any x ∈ A,
left Rickart if the analogous condition holds for the left annihilators of elements, and Rickart if it is both
left and right Rickart. If a ring is right Rickart, the idempotent which generates the right annihilator of
zero is a left identity. Consequently, Rickart rings are necessarily unital.

A ring A is said to be an involutive ring or a ∗-ring, if it has an involution ∗, an anti-automorphism of
order two. A ∗-ring A is left Rickart if and only if A is right Rickart since (annr(x))∗ = annl(x

∗) for any
x ∈ A. Thus, a left or right Rickart ring with involution is unital.

A unital ring A is Baer if annr(X) (equivalently annl(X)) is generated by an idempotent for any X ⊆ A.
This condition is left-right symmetric since annl(annr(annl(X))) = annl(X).
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1.2. Rickart * and Baer *-rings. If A is a ∗-ring, the projections (self-adjoint idempotents) take over
the role of idempotents. A ∗-ring A is said to be a Rickart ∗-ring if annr(x) is generated by a projection
for any x ∈ A. This condition is left-right symmetric (since (annr(x))∗ = annl(x

∗)) and a Rickart ∗-ring
is necessarily unital. The projection which generates the annihilator of an element is necessarily unique
since pA = qA for p, q projections implies that p = q. Note that idempotents do not necessarily have this
property.

A ∗-ring A is a Baer ∗-ring if annr(X) (equivalently annl(X)) is generated by a projection for any
X ⊆ A. Berberian’s book [12] contains a detailed and comprehensive treatment of Baer ∗-rings. In [13],
one can find more details on Rickart, Baer and Rickart ∗-rings as well.

If A is a ∗-ring, the matrix ring Mn(A) also becomes an involutive ring with the ∗-transpose involution
given by (aij)

∗ = (a∗ji). If a ∗-ring A is also a K-algebra for some commutative, unital ∗-ring K, then A is

a ∗-algebra if (kx)∗ = k∗x∗ for k ∈ K and x ∈ A.
An involution ∗ on A is positive definite if, for any n and any x1, . . . , xn ∈ A,

∑n
i=1 xix

∗
i = 0 implies

xi = 0 for each i = 1, . . . , n. If this condition holds for positive integers less than or equal to n, the
involution is n-proper. A 1-proper involution is simply said to be proper. A ∗-ring with a positive definite
(n-proper) involution is said to be a positive definite (n-proper) ring.

1.3. Graded rings. If Γ is an abelian group, a ring A is a Γ-graded ring if A =
⊕

γ∈ΓAγ such that each

Aγ is an additive subgroup of A and AγAδ ⊆ Aγ+δ for all γ, δ ∈ Γ. The elements of Ah =
⋃
γ∈ΓAγ are the

homogeneous elements of A. If A is an algebra over a field K, then A is a graded algebra if A is a graded
ring and Aγ is a K-vector subspace for any γ ∈ Γ.

A Γ-graded ring A is trivially graded if A0 = A and Aγ = 0 for 0 6= γ ∈ Γ. Note that any ring can be
trivially graded by any abelian group.

For a Γ-graded ring A and (γ1, . . . , γn) in Γn, Mn(A)(γ1, . . . , γn) denotes the Γ-graded ring Mn(A) with
the δ-component consisting of the matrices (aij) ∈Mn(A) such that aij ∈ Aδ+γj−γi for i, j = 1, . . . , n (more
details in [18, Section 1.3]).

A graded right A-module is a right A-module M with a direct sum decomposition M =
⊕

γ∈ΓMγ where
Mγ is an additive subgroup of M such that MγAδ ⊆ Mγ+δ for all γ, δ ∈ Γ. In this case, for δ ∈ Γ, the
δ-shifted graded right A-module M(δ) is defined as M(δ) =

⊕
γ∈ΓM(δ)γ , where M(δ)γ = Mδ+γ . A right

A-module homomorphism f of graded right A-modules M and N is a graded homomorphism if f(Mγ) ⊆ Nγ

for any γ ∈ Γ.

A graded right ideal of A is a right ideal I such that I =
⊕

γ∈Γ I ∩Aγ . A right ideal I of A is a graded

right ideal if and only if I is generated by homogeneous elements. This property implies that annr(X) is a
graded right ideal of A for any set X of homogeneous elements of A. Graded left ideals and graded ideals
are defined similarly.

If A is a Γ-graded ring, a graded free right A-module is defined as a graded right module which is
a free right A-module with a homogeneous basis (see [18, Section 1.2.4]). A graded free left module is
defined analogously. If A is a Γ-graded ring and γ1, . . . , γn ∈ Γ, then A(γ1)⊕ · · · ⊕ A(γn) is a graded free
right A-module. Conversely, any finitely generated graded free right A-module is of this form. A graded
projective right A-module is a graded module which is graded isomorphic to a direct summand of a graded
free right A-module (see [18, Proposition 1.2.15] for an equivalent definition).

1.4. Graded Rickart and Baer rings. We adapt the definitions of Rickart and Baer rings to graded
rings and show some properties of graded Rickart and Baer rings.

Definition 1. A Γ-graded ring A is a graded right Rickart ring if for any homogeneous element x, annr(x) is
generated by a homogeneous idempotent. A graded left Rickart ring and a graded Rickart ring are defined
analogously. A unital, graded ring A is a graded Baer ring if for any set X of homogeneous elements,
annr(X) (equivalently annl(X)) is generated by a homogeneous idempotent.



BAER AND BAER *-RING CHARACTERIZATIONS OF LEAVITT PATH ALGEBRAS 5

Analogously to the non-graded case, one can show that the definition of a graded Baer ring is left-right
symmetric (see [21, Proposition 7.46]) and that a graded Rickart ring is unital (with an idempotent that
generates annr(0), or equivalently annl(0), as the identity). Also note that Definition 1 reduces to the
usual definitions if the graded ring is trivially graded.

The next lemma shows that unital, graded right Rickart rings can be characterized by the properties
which are analogous to those in the non-graded case.

Lemma 2. Let A be a unital, Γ-graded ring. The following conditions are equivalent.

(1) A is a graded right Rickart ring.
(2) Every graded principal right ideal of A is projective.
(3) Every graded principal right ideal of A is graded projective.

As a consequence, if A is a graded ring which is right Rickart, then it is graded right Rickart.

Proof. (1) ⇒ (2). Let x ∈ Aγ for some γ ∈ Γ. Then xA is a graded right ideal of A with the grading given
by (xA)δ = xAδ−γ and the multiplication Lx by x on the left, is a graded homomorphism A → A with
the image xA(γ). Since A is graded right Rickart, annr(x) = eA, for some idempotent e ∈ A0. So, the left
multiplication Le : A→ eA given by a 7→ ea is a graded map and the short exact sequence

0 −→ annr(x)
i
↪→ A

Lx−→ xA(γ) −→ 0

of graded right A-modules splits as Lei is the identity map on annr(x). Thus, xA(γ) is graded projective.
A shift of a graded projective module is also graded projective, so xA is graded projective and, hence,
projective.

(2) ⇒ (3). If a graded right ideal is projective then it is graded projective by [18, Proposition 1.2.15].

(3)⇒ (1). If x ∈ Ah and xA is graded projective, then xA(γ) is graded projective also. Thus, there is a
graded homomorphism φ : A→ annr(x) such that φ(y) = y for all y ∈ annr(x). Since A is unital, φ(1) = e
is an idempotent such that annr(x) = eA. The idempotent e is homogeneous as e = φ(1) ∈ φ(A0) ⊆ A0.

The last sentence of the lemma holds since, if A is right Rickart, then any principal right ideal is
projective and so condition (2) holds. �

A graded ring A is graded Baer if and only if it is graded Rickart and the lattice of principal right ideals
generated by homogeneous idempotents is complete. This statement and its proof are completely analogous
to the statement and the proof of [13, Proposition 1.21]. Using the graded-version of this statement, one
can show that a graded ring which is Baer is graded Baer. The converse does not hold as the following
example illustrates. The group ring Z[Γ] is not Baer for any finite group Γ ([27, Theorem 2.4]). If Γ is any
finite abelian group, it is direct to show that Z[Γ] is graded Baer for the grading with Z[Γ]γ = {mγ | m ∈ Z}
for γ ∈ Γ.

We point out another property of graded right (left) Rickart and Baer rings. If A is graded right Rickart,
then A0 is right Rickart. Indeed, if x ∈ A0 and annr(x) = eA for an idempotent e ∈ A0, we claim that
annA0

r (x) = eA0. If xr = 0 for r ∈ A0, then r = es for some s ∈ A. But since r, e ∈ A0, all the homogeneous
components of s from Aγ for γ 6= 0 have to be trivial. Hence s ∈ A0 and so r ∈ eA0. The converse is
straightforward. Similarly, if A is graded left Rickart, then A0 is left Rickart and if A is graded Baer, then
A0 is Baer.

We now establish the implications of diagram (D) for graded rings. Let us introduce the graded versions
of the remaining properties of the diagram.

A graded ring is graded right (semi)hereditary if any (finitely generated) graded right ideal is graded
projective. A graded ring is graded von Neumann regular if for any homogeneous element x, there is a
homogeneous element y such that xyx = x. A graded ring is graded right nonsingular if for any nonzero,
homogeneous element x, there is a nontrivial, graded right ideal I such that annr(x) ∩ I = 0.

A unital, graded right semihereditary ring is graded right Rickart by Lemma 2. A graded Baer ring is
graded Rickart by definition. We prove the remaining implications of diagram (D) for unital, graded rings.
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Proposition 3. Let A be a unital, Γ-graded ring.

(1) If A is graded von Neumann regular then A is graded semihereditary.
(2) The ring A is graded right semihereditary if and only if Mn(A)(γ1, . . . , γn) is graded right Rickart, for

any n = 1, 2, . . . and any γ1, . . . , γn ∈ Γ.
(3) If A is graded right Rickart, then A is right nonsingular.

The proof follows the proofs of analogous statements for the non-graded case, [15, Theorem 1.1] and
[16, Proposition 5.2] (or [21, Proposition 7.63]). We include the proof for completeness.

Proof. (1) If A is graded regular, the right ideal generated by a homogeneous element x ∈ A is generated by
a homogeneous idempotent. Indeed, if y ∈ Ah is such that xyx = x, then xy is a homogeneous idempotent
and xA = xyA. Therefore, all principal graded right ideals are projective. We show that the same holds
for graded right ideals generated by two elements. Consider xA + yA for x, y ∈ Ah. Let e = e2 ∈ A0 be
such that xA = eA. Then y − ey ∈ Ah ∩ (xA+ yA) and so xA+ yA = eA+ (y − ey)A. Let f = f2 ∈ A0

be such that (y − ey)A = fA. This implies that ef = 0, and so g = f − fe is a homogeneous idempotent
with ge = eg = 0 and eA+ gA = (e+ g)A. Since fg = g and gf = f , it follows that gA = fA = (y− ey)A.
Consequently, xA + yA = eA + gA = (e + g)A. The claim for any finitely generated graded right ideal
follows by induction. The claim for graded left ideals is showed analogously.

(2) Begin semihereditary is a Morita invariant property ([21, Corollary 18.6]). Using an analogous proof,
one can show that being graded semihereditary is a graded Morita invariant property. Thus, if A is graded
right semihereditary, then Mn(A)(γ1, . . . , γn) is graded right semihereditary and thus graded right Rickart.

For the converse, suppose that I is a graded right ideal generated by x1, . . . , xn with xi ∈ Aγi , for
i = 1, . . . , n. Let R = Mn(A)(γ1, . . . , γn) and consider x = x1e11 + x2e12 + · · · + xne1n where eij are the
standard matrix units. By definition, x is in Rγ1 ([18, §1.3.1] has more details). The graded right ideal
xR = Ie11 + Ie12 + · · · + Ie1n is a graded projective right R-module by Lemma 2. On the other hand,
since R is a graded free right A-module, xR is a graded projective right A-module. Since xR is graded
isomorphic to In, I is a graded summand of a free right A-module and so I is a graded projective right
A-module.

(3) Let 0 6= x ∈ Ah. Then annr(x) = eA for an idempotent e ∈ A0 and the graded right ideal (1− e)A
is such that annr(x) ∩ (1− e)A = 0. Since x 6= 0 and A is unital, eA ( A and so (1− e)A 6= 0. �

1.5. Graded Rickart *-ring and graded Baer *-rings. In [19], a Γ-graded ring A with involution is
said to be a graded ∗-ring if A∗γ ⊆ A−γ for every γ ∈ Γ. In this case, considering projections in place of
idempotents leads to the following definitions.

Definition 4. A graded ∗-ring A is a graded Rickart ∗-ring if the right (equivalently left) annihilator of
any homogeneous element is generated by a homogeneous projection. A graded ∗-ring A is a graded Baer
∗-ring if the right (equivalently left) annihilator of any set of homogeneous elements is generated by a
homogeneous projection.

We point out some properties which follow from these definitions. First, all concepts in Definition 4
are left-right symmetric. Second, the projections from the definitions above are necessarily unique. Third,
if A is a graded ∗-ring which is Rickart ∗, then it is a graded Rickart ∗-ring. Similarly, if A is Baer ∗,
then A is a graded Baer ∗-ring. These two claims follow from the graded analogues of [13, Proposition
1.11] and [13, Proposition 1.24]. These graded analogues can be shown directly following the proofs of [13,
Proposition 1.11] and [13, Proposition 1.24] and replacing “idempotent” with “homogeneous idempotent”,
“projection” with “homogeneous projection”, “ring” with “graded ring” and doing similar adjustments.
Lastly, if A is a graded Rickart ∗-ring, then A0 is a Rickart ∗-ring and if A is a graded Baer ∗-ring, then
A0 is a Baer ∗-ring. In remark (5) of 3.1 and §4, we present examples of Baer ∗ but not graded Baer ∗ and
Rickart ∗ but not graded Rickart ∗-rings.

The involution of a Rickart ∗-ring is necessarily proper. We show that an analogous statement holds for
graded rings. We say that a graded ∗-ring is graded proper, if xx∗ = 0 implies x = 0 for any homogeneous
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element x. If A is a graded Rickart ∗-ring, x ∈ Aγ and xx∗ = 0, then x∗ ∈ annr(x) = pA for some
homogeneous projection p. Thus x∗ = px∗. “Starring” this relation implies that x = (px∗)∗ = xp = 0.

We note that if A is graded and proper, then A is graded proper and if A is graded proper, then the
zero-component A0 is proper.

The definitions of positive definite and n-proper rings can be generalized to graded ∗-rings also by
requiring that elements considered in the definitions are homogeneous. A graded ∗-ring A is graded n-
proper if and only if Mn(A)(γ1, . . . , γn) is graded proper for any n and any γ1, . . . , γn ∈ Γ as can be
shown by a proof analogous to the corresponding non-graded statement (see [11, Lemma 2.1]). Note that
the ∗-transpose (aij)

∗ = (a∗ji), for (aij) ∈ Mn(A)(γ1, . . . , γn), gives the structure of a graded ∗-ring to

Mn(A)(γ1, . . . , γn) if A is a graded ∗-ring.

We shall also use the following graded version of [13, Proposition 1.13].

Proposition 5. Let A be a unital, Γ-graded ∗-ring. The following conditions are equivalent.

(1) A is graded regular and a graded Rickart ∗-ring.
(2) A is graded regular and graded proper.
(3) For any homogeneous x ∈ A, there is a homogeneous projection p such that xA = pA.

We showed that (1) implies (2). The remaining implications follow from the proof of [13, Proposition
1.13] when “idempotent” is replaced with “homogeneous idempotent”, “projection” with “homogeneous
projection”, “regular” with “graded regular”, “proper” with “graded proper” and doing similar adjust-
ments.

If a unital, graded ∗-ring satisfies the equivalent conditions of Proposition 5, we say that it is graded
∗-regular.

1.6. Locally Rickart and Baer rings. As we pointed out, a Rickart ring is necessarily unital. The
main object of our interest, a Leavitt path algebra, is not necessarily unital. Thus, we generalize the
annihilator-related properties which we consider to non-unital rings.

The properties of being right (left) Rickart and Baer are passed to corners ([13, Propositions 2.2, 2.3])
since if X ⊆ eAe for e = e2 ∈ A, and annr(X) = fA for some idempotent f , then anneAer (X) = efeAe.
The same argument can be used to show that the properties of being graded right (left) Rickart and graded
Baer are passed to corners generated by homogeneous idempotents. Analogously, being (graded) Rickart
∗ and (graded) Baer ∗ are passed to corners generated by (homogeneous) projections. These facts can be
used to generalize the annihilator-related properties from unital to non-unital rings as follows.

Definition 6. Let A be a ring, possibly non-unital. The ring A is locally right Rickart if eAe is right
Rickart for any idempotent e. We analogously define locally left Rickart, locally Rickart, locally Baer,
locally Rickart ∗, and locally Baer ∗, as well as the graded versions of all these concepts.

The local concepts we introduced are particularly meaningful for locally unital rings. Recall that a ring
A is locally unital if for each finite set F of elements of A, there is an idempotent u such that ux = xu = x
for all x ∈ F. The set of all such idempotents u is said to be a set of local units. If A is also a ∗-ring and
the local units are projections, then we say that A is locally ∗-unital.

If A is Γ-graded, A is graded locally unital if for each finite set F of (homogeneous) elements of A, there
is a homogeneous idempotent u such that ux = xu = x for all x ∈ F. One can check that the statements
with and without the word “homogeneous” in parentheses in the previous sentence are equivalent. If A is
also a ∗-ring and the graded local units are projections, we say that A is graded locally ∗-unital.

If A is a locally unital ring with the set of local units U, then for A to be locally right Rickart, locally
left Rickart or locally Baer, it is sufficient that uAu is right Rickart, left Rickart or Baer respectively for
all u ∈ U. This is because for any idempotent e, there is a local unit u ∈ U such that e ∈ uAu and so
eAe = euAue is a corner of uAu. Since any of the annihilator-related properties which we consider transfer
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to corners, eAe keeps the property which uAu has. Analogous statements can be made for graded rings,
for ∗-rings, and for graded ∗-rings.

In addition, the local definitions coincide with the usual ones for unital rings. For example, if A is
a unital ring, then A is locally right Rickart if and only if A is right Rickart. One direction follows by
considering the corner generated by the identity and the other since the property of being right Rickart
passes to corners. Analogous statements can be made for graded rings, for ∗-rings and for graded ∗-rings.

We shall use the graded and involutive version of [21, Theorem 7.55] stating that a ring with no infinite
set of nonzero, orthogonal idempotents is left (right) Rickart if and only if it is Baer. The proof of the
graded version of this statement is analogous to the proof of [21, Theorem 7.55] and we omit it. The
involutive version, in which the idempotents are replaced by projections, Baer with Baer ∗ and Rickart
with Rickart ∗, holds by an analogous proof. We formulate the graded and graded local versions of this
statement and note that those can be shown using analogous proofs.

Proposition 7. Let A be a Γ-graded ∗-ring. If A has no infinite set of nonzero, orthogonal, homogeneous
projections, then A is a graded Rickart ∗-ring if and only if A is a graded Baer ∗-ring.

If no corner of A generated by a homogeneous projection has an infinite set of nonzero, orthogonal,
homogeneous projections, then A is a graded locally Rickart ∗-ring if and only if A is a graded locally Baer
∗-ring.

In §3, we use the following lemma, showing an implication of diagram (D) for locally unital rings.

Lemma 8. If A is locally unital and right semihereditary, then A is locally right Rickart.

Proof. Since A is right semihereditary, xA is projective for any x ∈ A and so the short exact sequence
0 −→ annr(x) −→ A −→ xA −→ 0 splits. Let φ be a map A → annr(x) such that φ(y) = y for all
y ∈ annr(x). If u is a local unit for x, the map ψ : uAu→ uAu defined by ψ(y) = uφ(y) is a homomorphism
of right uAu-modules. The element ψ(y) is in annr(x) for any y ∈ uAu since xψ(y) = xuφ(y) = xφ(y) = 0.
So, ψ(y) ∈ annr(x)∩uAu = annuAur (x). If y ∈ annuAur (x), then y ∈ annr(x) and so φ(y) = y. Thus we have
that ψ(y) = uφ(y) = uy = y and the short exact sequence

0 −→ annuAur (x) −→ uAu −→ xuAu −→ 0

splits. �

We adapt a part of Proposition 5 to (graded) locally ∗-unital rings. We note the following lemma first.

Lemma 9. A locally (graded) Rickart ∗-ring with a set of (graded) local ∗-units is (graded) proper.

Proof. If A is a locally Rickart ∗-ring, x ∈ A, and u a local ∗-unit such that x ∈ uAu, then x∗ ∈ uAu since
u is a projection. If xx∗ = 0 then the same relation holds in uAu. Then x = 0 since uAu is Rickart ∗ and,
as such, proper. The graded version of the lemma follows analogously. �

Proposition 10. Let A be a (graded) ∗-ring with a set of (graded) local ∗-units. Then the following
conditions are equivalent.

(1) A is (graded) regular and a (graded) locally Rickart ∗-ring.
(2) A is (graded) regular and (graded) proper.

Proof. The condition (1) implies (2) by Lemma 9. For the converse, if A is (graded) regular, then each
corner of A is (graded) regular as well. If p is a (homogeneous) projection, then pAp is a (graded) ∗-ring
and, since A is (graded) proper, pAp is also (graded) proper. Thus, pAp is (graded) regular and (graded)
proper. In the non-graded case, pAp is a Rickart ∗-ring by the analogue of Proposition 5 for non-graded
rings ([13, Proposition 1.13]). In the graded case, pAp is a graded Rickart ∗-ring by Proposition 5. �

We point out that condition (2) is the same as in the unital case (compare with Proposition 5). This
is not surprising since a locally unital ring is “locally regular” if and only if it is regular. Indeed, if A is
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regular, then each corner of A is regular. Conversely, if each corner of A is regular, x ∈ A, and u = u2 is
such that x ∈ uAu, then there is y ∈ uAu such that xyx = x holds in uAu and, hence, in A also.

2. Positive definite Leavitt path algebras

After a brief review of some graph-theoretic properties and the definition of a Leavitt path algebra,
we focus on certain properties of the involution of a Leavitt path algebra. Specifically, we recall [11,
Proposition 2.4] which asserts that a Leavitt path algebra is positive definite if and only if the underlying
field is positive definite, the statement we use in Proposition 13 and Theorems 15 and 16. We show that
an analogous statement holds for corner skew Laurent polynomial rings and, as a consequence, we provide
an alternative proof of [11, Proposition 2.4].

Let E = (E0, E1, s, r) be a directed graph where E0 is the set of vertices, E1 the set of edges, and
s, r : E1 → E0 are the source and the range maps.

A vertex v of a graph E is said to be regular if the set s−1(v) is nonempty and finite. A vertex v is a
sink if s−1(v) is empty and a source if r−1(v) is empty. A graph E is row-finite if sinks are the only vertices
which are not regular, finite if E is row-finite and E0 is finite (in which case E1 is necessarily finite as
well), and countable if both E0 and E1 are countable.

A path a in a graph E is a finite sequence of edges a = e1 . . . en such that r(ei) = s(ei+1) for i =
1, . . . , n − 1. Such path a has length |a| = n. The maps s and r extend to paths by s(a) = s(e1) and
r(a) = r(en) and s(a) and r(a) are the source and the range of a respectively. We consider a vertex v to be
a trivial path of length zero with s(v) = r(v) = v. A path a = e1 . . . en is said to be closed if s(a) = r(a).
If a = e1 . . . en is a closed path and s(ei) 6= s(ej) for all i 6= j, then a is a cycle. A cycle of length one is a
loop. A graph E is said to be no-exit if s−1(v) has just one element for every vertex v every cycle visits.

An infinite path of a graph E is a sequence of edges e1e2 . . . such that r(ei) = s(ei+1) for i = 1, 2, . . ..
An infinite path is an infinite sink if it has no cycles or exits. An infinite path ends in a sink or a cycle
if there is a positive integer n such that the subpath enen+1 . . . is either an infinite sink or is equal to the
path cc . . . for some cycle c of positive length.

Extend a graph E to the graph with the same vertices and with edges E1 ∪ {e∗ | e ∈ E1} where the
range and source relations are the same as in E for e ∈ E1 and s(e∗) = r(e) and r(e∗) = s(e) for the added
edges. Extend the map ∗ to all the paths by defining v∗ = v for all vertices v and (e1 . . . en)∗ = e∗n . . . e

∗
1

for all paths a = e1 . . . en. Extend also the maps s and r to a∗ by s(a∗) = r(a) and r(a∗) = s(a).

For a graph E and a field K, the Leavitt path algebra LK(E) of E over K is the free K-algebra generated
by the set E0 ∪ E1 ∪ {e∗ | e ∈ E1} such that for all vertices v, w and edges e, f,

(V) vw = 0 if v 6= w and vv = v,
(E1) s(e)e = er(e) = e,
(E2) r(e)e∗ = e∗s(e) = e∗,

(CK1) e∗f = 0 if e 6= f and e∗e = r(e),
(CK2) v =

∑
e∈s−1(v) ee

∗ for each regular vertex v.

The first four axioms imply that LK(E) is a K-linear span of the elements ab∗ where a and b are paths,
and that LK(E) is unital if and only if E0 is finite (with the sum of elements of E0 as the identity). If E0

is not finite, the finite sums of vertices are the local units of LK(E).

If K is a field with involution ∗ (and there is always at least one such involution, the identity), the
Leavitt path algebra LK(E) becomes an involutive algebra by (

∑n
i=1 kiaib

∗
i )
∗ =

∑n
i=1 k

∗
i bia

∗
i for ki ∈ K and

paths ai, bi, i = 1, . . . , n. The algebra LK(E) is also naturally graded by Z with the n-component LK(E)n
equal to the K-linear span of elements ab∗ where a, b are paths with |a| − |b| = n. This grading is such
that LK(E)∗n = LK(E)−n for every integer n so LK(E) is a graded ∗-algebra. A Leavitt path algebra can
be graded by an arbitrary abelian group also (see [18] or [19]) and all of our results can easily be adapted
to any other grading of a Leavitt path algebra.
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A Leavitt path algebra of a finite graph with no sources can be represented as a corner skew Laurent
polynomial ring, a special case of a fractional skew monoid ring considered in [9]. Let R be a unital ring,
p an idempotent of R and φ : R → pRp a unital ring isomorphism. Let p0 = 1 and pn = φn(p0) for
n = 1, 2, . . .. A corner skew Laurent polynomial ring R[t+, t−, φ] is a unital ring whose elements are formal
expressions

tm−r−m + tm−1
− r−m+1 + · · ·+ t−r−1 + r0 + r1t+ + · · ·+ rnt

n
+,

where r−i ∈ piR for i = 1, . . . ,m, and rj ∈ Rpj for j = 0, . . . , n. The addition is component-wise and the
multiplication is determined by the distributive law and the following rules.

t−t+ = 1 t+t− = p rt− = t−φ(r) t+r = φ(r)t+

Assigning 1 to t+ and −1 to t− gives A = R[t+, t−, φ] a Z-graded ring structure with A =
⊕

n∈ZAn for

A0 = R, An = Rpnt
n
+, A−n = tn−pnR, n = 1, 2, . . . .

If p = 1 and φ is the identity map, then R[t+, t−, φ] reduces to the ring of Laurent polynomials R[t, t−1].

If R is also an involutive ring and φ is a ∗-isomorphism (which implies that p is a projection), then A
becomes a ∗-ring by (ti−r−i)

∗ = r∗−it
i
+ and (rit

i
+)∗ = ti−r

∗
i for i = 1, 2, . . . , and ∗ extended to A so that it is

additive. In this way, A becomes a graded ∗-ring. The following lemma relates some involutive properties
of R[t+, t−, φ] to those of the coefficient ring R.

Lemma 11. Let R be a unital ∗-ring, p ∈ R a projection and φ : R→ pRp a unital ∗-ring isomorphism.

(1) R is proper if and only if R[t+, t−, φ] is graded proper.
(2) R is positive definite if and only if R[t+, t−, φ] is positive definite.

Proof. (1) If A = R[t+, t−, φ] is graded proper, then A0 = R is proper. For the converse, suppose x ∈ Ah.
Then x = rtn+ or x = tn−r for some r ∈ Rpn or r ∈ pnR, or x ∈ A0 = R. In the first case, we have

xx∗ = rtn+t
n
−r
∗ = rφn(p0)r∗ = rpnr

∗ = rpnp
∗
nr
∗ = (rpn)(rpn)∗.

If R is proper, xx∗ = 0 implies that rpn = 0. Then x = rtn+ = rpnt
n
+ = 0. The proof of the case x = tn−r is

analogous. The case x ∈ R follows directly from the assumption.

(2) If A = R[t+, t−, φ] is positive definite, then R = A0 is also positive definite. For the converse, let

xk ∈ A, k = 1, . . . , l and xk = tmk
− r−mk,k + tmk−1

− r−mk+1,k + · · ·+ t−r−1,k + r0,k + r1,kt+ + · · ·+ rnk,kt
nk
+ for

some r−i,k ∈ piR, i = 1, . . . ,mk and rj,k ∈ Rpj , for j = 0, . . . , nk, k = 1, . . . , l. Then

φ−mk
(
r−mk,kr

∗
−mk,k

)
+ · · ·+ φ−1

(
r−1,kr

∗
−1,k

)
+ r0,kr

∗
0,k + r1,kr

∗
1,k + · · ·+ rnk,kr

∗
nk,k

is the constant term of xkx
∗
k for k = 1, . . . , l. If

∑l
k=1 xkx

∗
k = 0, then the sum of these constant terms is

zero also for k = 1, . . . , l. Since φ is a ∗-isomorphism and R is positive definite, r−i,k = 0 for i = 1, . . . ,mk,
and rj,k = 0 for j = 0, . . . , nk, for all k = 1, . . . , l. Thus xk = 0. �

A Leavitt path algebra of a finite graph with no sources can be represented as a corner skew Laurent
polynomial ring (by [9, Lemma 2.4], see also [7]). Let E be a finite graph with no sources and let E0 =
{v1, . . . , vn}. For each i = 1, . . . , n, we choose an edge ei such that r(ei) = vi and consider t+ = e1+. . .+en ∈
LK(E)1. Then t− = t∗+ is the left inverse of t+ and t+t− is a homogeneous projection. By [9, Lemma 2.4],
LK(E) = LK(E)0[t+, t−, φ] where φ : LK(E)0 → t+t−LK(E)0t+t−, is given by x 7→ t+xt−.

In [11, Proposition 2.3], it is shown that the Leavitt path algebra LK(E) over a positive definite field
K is proper and, as a consequence, that LK(E) is positive definite if and only if K is positive definite
([11, Proposition 2.4]). The proof of [11, Proposition 2.3] generalizes Raeburn’s result [25, Lemma 1.3.1],
stating the same claim but just for row-finite graphs without sinks. To drop these assumptions for countable
graphs, the proof of [11, Proposition 2.3] uses the Desingularization Process and, to drop the assumption
that the graph is countable, the proof uses the Subalgebra Construction. In Proposition 12, we prove the
analogous result for finite graphs using Lemma 11 and a construction of “attaching hooks” and extend it
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to row-finite graphs. The Desingularization Process and the Subalgebra Construction imply the result for
arbitrary graphs as well.

Proposition 12. Let E be a graph and K a field. The Leavitt path algebra LK(E) is positive definite if
and only if the field K is positive definite.

Proof. If LK(E) is positive definite and
∑n

i=1 kik
∗
i = 0 for ki ∈ K, i = 1, . . . , n, then

∑n
i=1 kivk

∗
i v
∗ = 0 for

any vertex v and so kiv = 0. This implies ki = 0 since v is in the basis of LK(E).

Conversely, if K is positive definite, then any matrix algebra over K is positive definite and hence any
ultramatricial algebra over K is also positive definite. If E is a finite graph with no sources, LK(E)0 is an
ultramatricial algebra ([8, the proof of Theorem 5.3]), and so LK(E)0 is positive definite. By Lemma 11,
LK(E) is positive definite.

Consider a finite graph E which may have sources now. Replace each source u of E by the vertex v of

the following graph •w77 // •v which we refer to as a “hook”, and add the rest of the hook. The
graph E′ obtained in this way has no sources and so LK(E′) is positive definite. The inclusion E → E′

induces a ∗-monomorphism φ : LK(E) → LK(E′). The image φ(LK(E)) is positive definite since LK(E′)
is positive definite. Thus LK(E), ∗-isomorphic to φ(LK(E)), is positive definite as well.

The Leavitt path algebra of a row-finite graph is a direct limit of Leavitt path algebras of certain finite
subgraphs (those which are complete in the sense of [8]) with the injective connecting maps. Thus, such
algebra is also positive definite. The claim then follows for a Leavitt path algebra of an arbitrary graph
using the Desingularization Process and the Subalgebra Construction just as in [11, Proposition 2.4]. �

3. Rickart, Baer and Baer *-Leavitt path algebras

In this section, we present Leavitt path algebra characterizations of annihilator-related properties, their
graded versions, as well as their local generalizations. We start with the characterization of Leavitt path
algebras which are (locally) Rickart, graded Rickart and graded Rickart ∗-rings.

Proposition 13. Let E be a graph and K a field. The algebra LK(E) is locally Rickart (thus also graded
locally Rickart). If K is positive definite, LK(E) is a graded locally Rickart ∗-ring.

As a corollary, the following conditions are equivalent.

(1) E0 is finite.
(2) LK(E) is a right (left) Rickart ring.
(3) LK(E) is a graded right (left) Rickart ring.

If K is positive definite, these conditions are also equivalent with the following.

(4) LK(E) is a graded Rickart ∗-ring.

Proof. By [10, Theorem 3.7], LK(E) is a hereditary ring and, thus, semihereditary also. By Lemma 8,
LK(E) is locally Rickart. Since every graded ring which is locally Rickart is graded locally Rickart, LK(E)
is graded locally Rickard. If K is positive definite, then LK(E) is positive definite also by Proposition 12.
The algebra LK(E) is graded regular by [17, Theorem 9] and so LK(E) is a graded locally Rickart ∗-ring
by Proposition 10.

Since LK(E) is a ∗-ring, the conditions (2) and (3) are left-right symmetric. Recall also that LK(E) is
unital if and only if (1) holds. A unital, locally right Rickart ring is right Rickart so (1) implies (2). Since
(2) implies (3) by Lemma 2 and (3) implies that LK(E) is unital, which is equivalent to (1), the conditions
(1), (2) and (3) are equivalent. A unital, graded locally Rickart ∗-ring is a graded Rickart ∗-ring, so (1)
implies (4), and (4) implies that LK(E) is unital, which is equivalent to (1). �

If R is a unital ring and κ a cardinal, let Mκ(R) denote the ring of infinite matrices over A, having
rows and columns indexed by κ, with only finitely many nonzero entries. By [3, Theorem 3.7], if E is a
countable, row-finite graph and K a field, the following conditions are equivalent.
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(1) E is a no-exit graph such that every infinite path ends in a sink or a cycle.
(2) There are countable sets I and J and countable cardinals κi, i ∈ I, and µj , j ∈ J, such that

LK(E) ∼=
⊕
i∈I

Mκi(K)⊕
⊕
j∈J

Mµj (K[x, x−1]). (i)

The isomorphism in formula (i) can be taken to be either ring or algebra isomorphism. In [22, Corollary
32], it is shown that the assumption on countability of the graph E can be dropped (in which case I, J,
κi and µj may be of arbitrary cardinalities) and that the isomorphism in formula (i) can be taken to be a
∗-isomorphism. The set I corresponds to the number of sinks of E, the set J to the number of cycles of E,
the cardinal µj in the summand Mµj (K[x, x−1]) corresponds to the number of paths ending in a fixed (but
arbitrary) vertex of the cycle indexed by j ∈ J which do not contain that cycle and the cardinal κi in the
summand Mκi(K) to the number of paths ending in the sink indexed by i ∈ I (with a bit more subtleties
if the sink is infinite as explained in [22], but we will not need those subtleties here).

By [19], if E is a row-finite graph such that condition (1) holds, then LK(E) is graded ∗-isomorphic to
the algebra ⊕

i∈I
Mκi(K)(γi)⊕

⊕
j∈J

Mµj (K[xnj , x−nj ])(δj) (ii)

where I and J can be of arbitrary cardinality, κi, i ∈ I, and µj , j ∈ J, are cardinals, nj positive integers,

γi ∈ Zκi for i ∈ I, and δj ∈ Zµj for j ∈ J.
We consider annihilator-related properties of the matrix algebras which appear in formulas (i) and (ii).

Lemma 14. Let κ be an arbitrary cardinal and K a ∗-field.

(1) The algebras Mκ(K) and Mκ(K[x, x−1]) are locally Baer.
(2) The trivial grading of K by Z and the Z-grading of K[x, x−1] given by K[x, x−1]m = {kxm | k ∈ K}

m ∈ Z, make the algebras Mκ(K)(γ) and Mκ(K[xn, x−n])(γ) into graded ∗-rings for n a positive integer,
and γ ∈ Zκ. These algebras are graded regular and, if K is positive definite, graded locally Baer ∗-rings.

(3) If K is positive definite, the algebras Mκ(K) and K[x, x−1] are locally Baer ∗-rings.
(4) The algebra Mκ(K[x, x−1]) is a locally Rickart ∗-ring if and only if κ = 1.

Proof. The algebras Mn(K) and Mn(K[x, x−1]) where n is a positive integer, are Baer rings. There are
several ways to see this. One, for example, is to note that these are hereditary rings by showing this
fact either by definition or by representing these algebras as Leavitt path algebras of appropriate row-
finite graphs and noting that all such algebras are hereditary by [8, Theorem 3.5]. As hereditary rings,
these algebras are also Rickart. In addition, these algebras have no infinite sets of nonzero, orthogonal
idempotents. So, they are Baer by [21, Theorem 7.55]. The algebras Mκ(K) and Mκ(K[x, x−1]) as in (1)
are locally Baer since the finite sums of matrix units eii, i ∈ κ, constitute sets of local units such that the
corners are isomorphic to Mn(K) and to Mn(K[x, x−1]) respectively.

The algebras Mκ(K)(γ) and Mκ(K[xn, x−n])(γ) as in (2) are graded regular. One could check this
directly or use the representations of these algebras as Leavitt path algebras over certain acyclic or comet
graphs (see [18]) and then use [17, Theorem 9]. If K is positive definite, then these algebras are positive
definite as well. This can also be checked directly or using the Leavitt path algebra representations and
Proposition 12. Thus, these algebras are graded locally Rickart ∗-rings by Proposition 10. Proposition 7
implies that these algebras are graded locally Baer ∗-rings.

To show (3), note that Mκ(K) is regular for any cardinal κ. This can also be seen directly or by
representing this algebra as a Leavitt path algebra over an acyclic graph and using [5, Theorem 1]. If K is
positive definite, Mκ(K) is regular and proper, so Mκ(K) is a locally Rickart ∗-ring by Proposition 10. By
Proposition 7, Mκ(K) is a locally Baer ∗-ring. The algebra K[x, x−1] is Baer by (1) and a Rickart ∗-ring
since it is an integral domain. Thus, it is a Baer ∗-ring.

One direction of (4) is obvious: if κ = 1, K[x, x−1] is a Rickart ∗-ring. To show the converse, note
that if κ is infinite, the algebra Mn(K[x, x−1]) where n is a finite ordinal is a corner of Mκ(K[x, x−1])
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generated by a projection. Thus, it is sufficient to show that if Mn(K[x, x−1]) is a Rickart ∗-ring then
n = 1. Assume that A = Mn(K[x, x−1]) is a Rickart ∗-ring. By [13, Proposition 1.11], this implies that
eA = ee∗A for each idempotent e of A. If n > 1, consider the idempotent e = e11 + e12(1 + x). Then
ee∗ = e11(3+x+x−1) and e11 = ee11 ∈ eA. Assuming that e11 ∈ ee∗A implies that e11 = e11(3+x+x−1)a
for some a = (aij) ∈ A where aij ∈ K[x, x−1] for i, j = 1, . . . , n. Multiplying by e11 on the right implies
that e11 = (3 + x + x−1)e11ae11. By equating the upper left corner of the matrices in this last equation,
we obtain that 1 = (3 + x + x−1)a11. This implies that 3 + x + x−1 is invertible in K[x, x−1] which is a
contradiction. Hence, n = 1. �

We characterize (locally) Baer, graded Baer, and graded Baer ∗ Leavitt path algebras now.

Theorem 15. Let E be a graph and K a field. The following conditions are equivalent.

(1) E is a row-finite, no-exit graph in which every infinite path ends in a sink or a cycle.
(2) LK(E) is a locally Baer ring.
(3) LK(E) is a graded locally Baer ring.

If K is positive definite, these conditions are also equivalent with the following.

(4) LK(E) is a graded locally Baer ∗-ring.

As a corollary, the following conditions are equivalent.

(1’) E is a finite, no-exit graph.
(2’) LK(E) is a Baer ring.
(3’) LK(E) is a graded Baer ring.

If K is positive definite, these conditions are also equivalent with the following.

(4’) LK(E) is a graded Baer ∗-ring.

Proof. First, we note that (1) implies (2) and, if K is positive definite, (1) implies (4). Indeed, if E is
a graph as in (1), then LK(E) is ∗-isomorphic to an algebra as in formula (i). The algebra of the form
Mκi(K) or Mµj (K[x, x−1]) is locally Baer by part (1) of Lemma 14 and so LK(E) is locally Baer. If (1)
holds, LK(E) is graded ∗-isomorphic to an algebra as in formula (ii). By part (2) of Lemma 14, if K is
positive definite, the algebra of the form Mκi(K)(γi) or Mµj (K[xnj , x−nj ])(δj) is a graded locally Baer
∗-ring. Thus, LK(E) is a graded locally Baer ∗-ring.

Since (2) implies (3) and (4) implies (3) by definition, it remains to show that (3) implies (1).

Let A = LK(E) be a graded locally Baer ring. We show that the following holds.

1. E has no cycles with exits.
2. E has no infinite emitters.
3. All infinite paths of E end in sinks or cycles.

Assuming the negation of any of the three conditions above, we shall produce a vertex v such that the
corner vAv is not graded Baer. Recall that the corner vAv is a K-linear span of all the elements of the
form ab∗ where a, b are paths of E originating at v and having the same range.

1. E has no cycles with exits. Suppose E has a cycle a = a1a2 . . . an which has an exit edge b so
that v = s(b) = s(a1) = r(an). Consider the infinite set of nonzero, orthogonal, homogeneous idempotents
S = {aibb∗a∗i | i = 0, 1, . . .} in vAv where a0 = v and the subsets So = {aibb∗a∗i | i is odd} and
Se = {aibb∗a∗i | i is even} of S. The ring vAv is graded Baer and so there is a homogeneous idempotent
e ∈ vAv such that

annvAvr (So) = eAv.

Since Se ⊆ annvAvr (So), aibb∗a∗i ∈ eAv, for i even. Thus

e aibb∗a∗i = aibb∗a∗i if i is even and aibb∗a∗i e = 0 if i is odd.
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Write e as k1x1y
∗
1+k2x2y

∗
2+· · ·+knxny∗n, where xj and yj are paths of the same length with r(xj) = r(yj),

s(xj) = s(yj) = v, and kj ∈ K for j = 1, . . . , n. Also write e as e1 + e2 + e3 + e4 where

e1 is the sum of those kjxjy
∗
j with xj = yj = ai for some i = 0, 1, . . .,

e2 is the sum of those kjxjy
∗
j where only yj is of the form ai for some i = 0, 1, . . .,

e3 is the sum of those kjxjy
∗
j where only xj is of the form ai for some i = 0, 1, . . .,

e4 is the sum of the rest of the monomials.

We note that such representation may not be unique. Note that the relation (e3 + e4)aib = 0 holds in
A for a sufficiently large i by the form of the terms appearing in e3 + e4 and the axiom (CK1). Thus, the
relation (e3 + e4)aibb∗a∗i = 0 holds in vAv. Similarly, (e∗2 + e∗4)aibb∗a∗i = 0 holds in vAv for a sufficiently
large i. Thus,

(e1 + e2)aibb∗a∗i = aibb∗a∗i for a sufficiently large even i, and

(e∗1 + e∗3)aibb∗a∗i = 0 for a sufficiently large odd i.

Choose an integer m larger than the length of xj and yj for all xj appearing in e2 and all yj appearing
in e3. Then ama∗me2 = ama∗me∗3 = 0. This implies that

ama∗me1 a
ibb∗a∗i = aibb∗a∗i for any sufficiently large, even i > m,

ama∗me∗1 a
ibb∗a∗i = 0 for any sufficiently large, odd i.

Represent e1 as
∑t

l=1 kla
nla∗nl for some positive integer t and nonnegative integers nl, l = 1, . . . , t. For

large enough m and odd i > m,

0 = ama∗me∗1 a
ibb∗a∗i =

t∑
l=1

k∗l a
ma∗m aibb∗a∗i = (

t∑
l=1

k∗l )a
ibb∗a∗i

and so (
∑t

l=1 k
∗
l )a

ibb∗a∗iaib = (
∑t

l=1 k
∗
l )a

ib = 0 holds in A. Since a set of paths is a linearly independent

set,
∑t

l=1 k
∗
l = 0 and so

∑t
l=1 kl = 0 also. For large enough m and even i > m,

aibb∗a∗i = ama∗me1 a
ibb∗a∗i = (

t∑
l=1

kl)a
ibb∗a∗i = 0.

Thus, 0 = aibb∗a∗iaib = aib holds in A for large enough even i. This is a contradiction since a set of paths
is a linearly independent set.

2. E has no infinite emitters. Suppose that E has a vertex v which is an infinite emitter and let
{ai}i=1,2,... be a set of edges which v emits. Consider the infinite set of nonzero, orthogonal, homogeneous
idempotents S = {aia∗i | i = 1, 2 . . .} in vAv and the subsets So = {aia∗i | i is odd} and Se = {aia∗i |
i is even} of S. Let e be a homogeneous idempotent in vAv such that annvAvr (So) = eAv. Then aia

∗
i e = 0

for i odd. Since Se ⊆ annvAvr (So), aia
∗
i = eaia

∗
i for i even.

Write e as k1x1y
∗
1 +k2x2y

∗
2 +· · ·+knxny∗n+kv, where xj and yj are paths of the same positive length with

r(xj) = r(yj), s(xj) = s(yj) = v, and kj , k ∈ K for j = 1, . . . , n, and denote k1x1y
∗
1 +k2x2y

∗
2 + · · ·+knxny

∗
n

by x so that e = x+ kv. Again, we do not claim that such representation is unique.

Since there is a finite number of paths xj appearing in x, there is an edge ai which does not appear in
xj for all j = 1, . . . , n and we can choose it such that i is odd. Then, a∗ix = 0 holds in A and so aia

∗
ix = 0

holds in vAv. Since i is odd, 0 = aia
∗
i e = aia

∗
i kv = kaia

∗
i . Multiplying by ai on the right, we obtain that

0 = kai holds in A. This implies that k = 0 since ai is in the basis of A. Hence e = x.

Choose an edge ai which does not appear in yj for all j = 1, . . . , n and we can choose it so that i is
even. Thus, xai = 0 holds in A and so xaia

∗
i = 0 holds in vAv. Since i is even, aia

∗
i = eaia

∗
i = xaia

∗
i = 0.

Multiplying by ai on the right, we have that 0 = aia
∗
i ai = ai holds in A. This is a contradiction since the

edges are in the basis of A.
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3. All infinite paths of E end in sinks or cycles. Let a be an infinite path and assume that a does
not end in a sink or a cycle. We showed that E is no-exit, so the only way that there is a cycle in a is if a
ends in it. Since that is not the case, there must be an infinite number of vertices of a with exits. Let us
represent a as a = a1a2 . . . for some paths ai of positive length such the range vi of each ai has an exit bi. Let
v = s(a), and c0 = v, c1 = a1, c2 = a1a2, c3 = a1a2a3, . . . . Consider the infinite set of nonzero, orthogonal,
homogeneous idempotents S = {cibib∗i c∗i | i = 1, 2, . . .} and the subsets So = {cibib∗i c∗i | i is odd} and
Se = {cibib∗i c∗i | i is even} of S. Let e be a homogeneous idempotent of vAv such that annvAvr (So) = eAv.
Then cibib

∗
i c
∗
i e = 0 for i odd. Since Se ⊆ annvAvr (So), cibib

∗
i c
∗
i = ecibib

∗
i c
∗
i for i even.

Write e as k1x1y
∗
1+k2x2y

∗
2+· · ·+knxny∗n, where xj and yj are paths of the same length with r(xj) = r(yj),

s(xj) = s(yj) = v, and kj ∈ K for j = 1, . . . , n. Also write e as e1 + e2 + e3 + e4 where

e1 is the sum of those kjxjy
∗
j with xj = yj = ci for some i = 0, 1, . . .,

e2 is the sum of those kjxjy
∗
j where only yj is of the form ci for some i = 0, 1, . . .,

e3 is the sum of those kjxjy
∗
j where only xj is of the form ci for some i = 0, 1, . . .,

e4 is the sum of the rest of the monomials.

Note that the relation (e3 + e4)cibi = 0 holds in A for a sufficiently large i by the form of the terms
appearing in e3 and e4 and the axiom (CK1). Thus, the relation (e3 + e4)cibib

∗
i c
∗
i = 0 holds in vAv.

Similarly, (e∗2 + e∗4)cibib
∗
i c
∗
i = 0 holds in vAv for a sufficiently large i. So,

(e1 + e2)cibib
∗
i c
∗
i = cibib

∗
i c
∗
i for a sufficiently large even i and

(e∗1 + e∗3)cibib
∗
i c
∗
i = 0 for a sufficiently large odd i.

Choose an integer m such that the length of cm is larger than the length of xj and yj for all xj appearing
in e2 and all yj appearing in e3. Then cmc

∗
me2 = cmc

∗
me
∗
3 = 0 and so

cmc
∗
me1 cibib

∗
i c
∗
i = cibib

∗
i c
∗
i for any sufficiently large, even i, i > m

cmc
∗
me
∗
1 cibib

∗
i c
∗
i = 0 for any sufficiently large, odd i.

Represent e1 as
∑t

l=1 klcnl
c∗nl

for some positive integer t and nonnegative integers nl, l = 1, . . . , t. For
large enough m and i > m odd, we have that

0 = cmc
∗
me
∗
1 cibib

∗
i c
∗
i =

t∑
l=1

k∗l cmc
∗
m cibib

∗
i c
∗
i = (

t∑
l=1

k∗l )cibib
∗
i c
∗
i .

Using an analogous argument as before, this implies that
∑t

l=1 k
∗
l = 0 and so

∑t
l=1 kl = 0. For large enough

m and i > m even,

cibib
∗
i c
∗
i = cmc

∗
me1 cibib

∗
i c
∗
i = (

t∑
l=1

kl)cibib
∗
i c
∗
i = 0.

The relation cibib
∗
i c
∗
i = 0 implies a contradiction as in the previous cases.

This finishes the proof of implication (3) ⇒ (1) and the proof of the equivalence of the conditions (1)
to (4). The equivalence of (1’) to (4’) follows from the equivalence of (1) to (4) as follows. If (1’) holds,
then (1) holds as well and LK(E) is unital. The condition (1) implies (2) and, if K is positive definite, (4).
If LK(E) is unital, (2) and (4) imply (2’) and (4’). So, (2’) and (4’) follow from (1’).

The implications (2’) ⇒ (3’) and (4’) ⇒ (3’) clearly hold. Finally, (3’) implies (3) and that LK(E) is
unital so E0 is finite. Since (3) implies (1), (1) holds and E0 is finite. A row-finite graph with finite E0 is
finite, thus condition (1’) holds. �

We characterize Leavitt path algebras which are (locally) Baer ∗-rings now.

Theorem 16. Let E be a graph and K be a positive definite field. The following conditions are equivalent.
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(1) E is a disjoint union of graphs which are either acyclic with each infinite path ending in a sink or
which are isolated loops.

(2) LK(E) is a locally Baer ∗-ring.

As a corollary, the following conditions are equivalent.

(1’) E is a finite disjoint union of graphs which are finite and acyclic or isolated loops.
(2’) LK(E) is a Baer ∗-ring.

Proof. Assuming that (1) holds, LK(E) is ∗-isomorphic to an algebra as in formula (i) where µj = 1 for
all j ∈ J . The matrix algebras in such representation are locally Baer ∗-rings by part (3) of Lemma 14.
Thus, (2) holds.

Conversely, assume that LK(E) is a locally Baer ∗-ring. Then LK(E) is locally Baer and so E is a
row-finite, no-exit graph in which every infinite path ends in a sink or a cycle by Theorem 15. The Leavitt
path algebra LK(E) is ∗-isomorphic to an algebra as in formula (i) where J is the number of cycles of E and
µj in the summand Mµj (K[x, x−1]) corresponds to the number of paths ending in a fixed (but arbitrary)

vertex of the cycle indexed by j ∈ J. If LK(E) is a locally Baer ∗-ring, then each algebra Mµj (K[x, x−1])
appearing in the representation (i) is such also. By part (4) of Lemma 14, this implies that µj = 1 for each
j and so the number of paths ending in any vertex of any cycle of E is one. Hence, each cycle of E is an
isolated loop.

The equivalence of (1’) and (2’) follows from the equivalence of (1) and (2) as follows. If (1’) holds,
then (1) holds as well and LK(E) is unital. The condition (1) implies (2) and (2) implies (2’) if LK(E)
is unital. So, (2’) follows from (1’). Conversely, (2’) implies (2) and that LK(E) is unital so E0 is finite.
Since (2) implies (1), (1) holds and E0 is finite. A row-finite graph with finite E0 is necessarily finite, and
so condition (1’) holds. �

To summarize, if K is a positive definite field and E is a connected graph, we have the following.

LK(E) is a Baer ∗-ring =⇒ LK(E) is Baer =⇒ LK(E) is Rickart
m m m

E is finite and acyclic or a loop =⇒ E is finite and no-exit =⇒ E0 is finite

Using the graph-theoretic properties in the bottom row of this diagram, it is very easy to create examples
of algebras which illustrate that each implication in the first row is strict. For example, for any positive
definite field, the first graph below produces an example of a Leavitt path algebra which is Baer but not a
Baer ∗-ring and the second graph produces an example of a Leavitt path algebra which is Rickart but not
Baer.

• // • ee • • eeoo

We reflect on the results from this section in a series of remarks.

3.1. Remarks.

(1) The assumption that K is positive definite is necessary in the relevant parts of Proposition 13 and
Theorem 15 as well as in Theorem 16. Let K be any field which is not 2-proper (for example the field
of complex numbers with the identity involution) nor graded 2-proper (any trivially graded and not
2-proper field is such). Then M2(K) is not graded proper (see §1.5) and thus not a graded Rickart ∗-
ring. The algebra M2(K) is graded ∗-isomorphic to the Leavitt path algebra over the graph • // • .
This graph satisfies conditions (1) of Proposition 13, (1’) of Theorem 15 and (1’) of Theorem 16.

(2) Theorem 16 exhibits another difference between Leavitt path algebras and their graph C∗-algebra
counterparts. An AW ∗-algebra (a C∗-algebra which is a Baer ∗-ring) is separable if and only if it is finite
dimensional. Since a graph C∗-algebra of a countable graph is separable (see [24, Remark 1.26]) and
it is finite dimensional if and only if the associated graph is finite and acyclic (by [6, Proposition 3.4]),

a graph C∗-algebra C∗(E) is a Baer ∗-ring if and only if E is finite and acyclic.
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This contrasts Theorem 16 and, if E is a loop • ee and we consider C with the complex-conjugate
involution, LC(E) is a Baer ∗-ring while C∗(E) is not.

The referee of the paper noted a more direct argument for the fact that LC(E) is a Baer ∗-ring
while C∗(E) is not: there are no nontrivial annihilators in the Laurent polynomial ring so it is trivially
a Bear ∗-ring. On the other hand, the algebra of continuous functions on a sphere C(S1) has many
nontrivial and proper annihilators, but only contains two projections, the constant functions 0 and 1.

(3) Every right (left) ideal generated by an idempotent in a C∗-algebra can be generated by a projection
([14, Proposition IV.1.1]). Thus, for the graph C∗-algebras, being Rickart is equivalent with being a
Rickart ∗-ring and being Baer is equivalent with being a Baer ∗-ring. The Leavitt path algebras do not
have either of these two properties. Indeed, if E is the following graph • // • ee and we consider
C with the complex-conjugate involution, then LC(E) is Baer and not Baer ∗. Thus,

C∗(E) is Baer if and only if C∗(E) is a Baer ∗-ring while
LK(E) can be Baer and not a Baer ∗-ring even if K is positive definite.

In §4, we exhibit a graph E such that LC(E) is Rickart but not a Rickart ∗-ring.
(4) The proof of Theorem 15 reveals another difference between the properties of Leavitt path algebras

and the properties of C∗-algebras. Recall that a Rickart C∗-algebra is a C∗-algebra which is a Rickart
∗-ring. As it was pointed out in the introduction to [20], the annihilator of a countable set of elements
of such algebra is generated by a projection. This does not have to hold for a Leavitt path algebra
which is a Rickart ∗-ring. Indeed, if E is a graph with two vertices v and w and countably many edges
en, n = 1, 2, . . . , from v to w,

•v 44//
** $$ •w

and K is a positive definite field, then LK(E) is regular (by [5, Theorem 1]) and proper and hence a
Rickart ∗-ring. However, the set of elements ene

∗
n for n odd, is a countable set which is not generated

by a homogeneous idempotent by Theorem 15 nor by any idempotent as an appropriate modification
of the proof of Theorem 15 can show. This example also exhibits a Leavitt path algebra which is a
Rickart ∗-ring but not Baer by Theorem 15.

This example and the one from remark (1), exhibiting a Leavitt path algebra which is Baer but not
a Rickart ∗-ring, show that the classes of Rickart ∗-rings and Baer rings are independent of each other
for Leavitt path algebras.

(5) By Theorem 15, a Leavitt path algebra is graded (locally) Baer if and only if it is (locally) Baer.
However, using the graph-theoretic properties of Theorems 15 and 16, it is easy to construct an
example of a Leavitt path algebra which is a graded Baer ∗-ring and not a Baer ∗-ring.

This shows that the graded structure of Leavitt path algebras is less expected than it may seem at
first: if (P) is the property of being Baer and (Q) the property of being a Baer ∗-ring then

a Leavitt path algebra has (P) if and only if it has graded (P)
a Leavitt path algebra can have graded (Q) but not have (Q).

The last sentence is also true if (P) is the property of being Rickart (by Proposition 13) and (Q) is the
property of being regular (by [17, Theorem 9] and [5, Theorem 1]) or being a Rickart ∗-ring (as we
show in §4).

(6) An open conjecture of Handelman states that a ∗-regular ring is directly finite and unit-regular ([15,
Question 48, p. 349]). By results of [11] and [26], a counterexample to this conjecture cannot be found
in the class of Leavitt path algebras. However, one can show that

the graded version of Handelman’s Conjecture fails.

Recall that a graded ring is graded unit-regular if for any homogeneous element x, there is an
invertible homogeneous element y such that xyx = x. A graded ring is graded directly finite if for any
homogeneous elements x and y, xy = 1 implies yx = 1. Consider E to be the graph •99 ee with one
vertex and two edges a and b. If K is a positive definite field, the algebra LK(E) is graded regular and
proper by [17, Theorem 9] and Proposition 12, and so it is graded ∗-regular by Proposition 5. However,
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there is no homogeneous invertible element y such that aya = a so LK(E) is not graded unit-regular.
Also, a∗a = 1 but aa∗ 6= 1 so the algebra is not graded directly finite.

(7) Every Baer (and Baer ∗) ring can be decomposed into five factors, each of one of the five types described
in [12, §15] and [13, §8]. Since rings of three of the five types are not directly finite and all Baer Leavitt
path algebras are directly finite by [26, Theorem 4.12], just two types, called If and II1, are possible.
However, the algebras of the form Mn(K) and Mn(K[x, x−1]) are of type If since their identities are
faithful finite projections (by definitions in [12, §15] and [13, §8]). Thus,

a Baer Leavitt path algebra is a Baer ring of type If .

4. Leavitt path algebras which are Rickart *-rings

The previous section provides Leavitt path algebra characterizations of all annihilator-related properties
we introduced except the property of being a (locally) Rickart ∗-ring. In this section we provide some input
possibly leading to such characterization.

Recall that a unital ∗-ring A is said to be ∗-symmetric if 1 + xx∗ is invertible in A for each x ∈ A. In a
ring A with this property, for each idempotent e, there is a projection p such that eA = pA ([13, Lemma
1.34]). Thus, a ∗-symmetric ring A is Rickart if and only if A is Rickart ∗ and A is Baer if and only if A
is Baer ∗. We prove a lemma which helps us detect Leavitt path algebras which are not Rickart ∗-rings.

Lemma 17. If A is a ∗-ring which is not ∗-symmetric, then Mn(A) is not a Rickart ∗-ring for any integer
n > 1.

Proof. Let n > 1 and let x ∈ A be such that 1 + xx∗ is not invertible. If p = e11 + xe12, then p is an
idempotent such that e11 = pe11 ∈ pA and e11 /∈ pp∗A since 1 + xx∗ is not invertible. Thus, A is not a
Rickart ∗-ring since [13, Proposition 1.11] implies that eR = ee∗R for each idempotent e of a Rickart ∗-ring
R. �

If K is any ∗-field, K[x, x−1], with the involution as in Lemma 14, is not ∗-symmetric since 1 + (1 +
x)(1 + x−1) = 3 + x + x−1 is not invertible. Note that this argument has been used in the proof of part
(4) of Lemma 14. In fact, Lemma 17 provides an alternative proof of part (4) of Lemma 14.

We use Lemma 17 to exhibit a Leavitt path algebra which is Rickart but not a Rickart ∗-ring. Let T
denote the Toeplitz algebra. We can represent this algebra as a Leavitt path algebra over the graph ET
with two vertices u and v below.

•u •v ggoo

The property of being ∗-symmetric is passed onto quotients. Since K[x, x−1], ∗-isomorphic to the Leavitt
path algebra of the quotient graph ET /{u}, is a quotient of T and K[x, x−1] is not ∗-symmetric, T is not
∗-symmetric also. Thus, Mn(T ) is not a Rickart ∗-ring for any n > 1 by Lemma 17. Note that Mn(T )
can be represented as the Leavitt path algebra of the graph obtained by attaching a line of length n − 1
to both vertices of the graph ET . For example, M2(T ) is ∗-isomorphic to the Leavitt path algebra of the
graph below.

• • eeoo

•

OO

•

OO

This construction and Lemma 17 exhibit Leavitt path algebras which are Rickart rings but not Rickart
∗-rings even over a positive definite field.

We finish the paper with the following problem.

Find a graph property which characterizes Leavitt path algebras which are (locally) Rickart ∗-rings.
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In other words, if E is a connected graph and K a positive definite field, find a property replacing the
question mark in the diagram below. This diagram also summarizes the relationships between the classes
of Leavitt path algebras (LPAs). As we demonstrated, all the implications in this diagram are strict.

Baer LPAs
m

E is finite and no-exit

"*
Baer ∗ LPAs

m
E is finite and acyclic or a loop

19

%-

Rickart LPAs
m

E0 is finite

Rickart ∗ LPAs
m

E is ?

4<
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