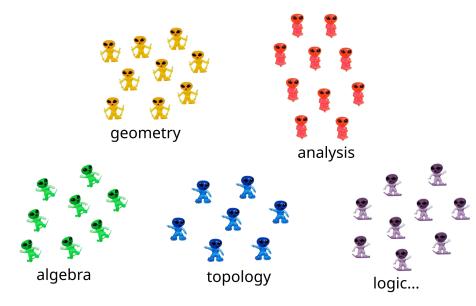
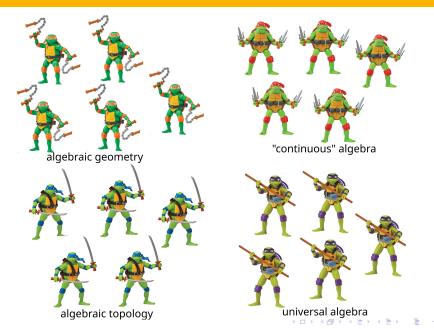
My mathematical journey

Lia Vaš Saint Joseph's University, Philadelphia, USA

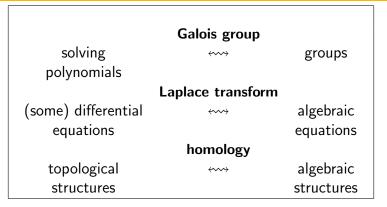
Modern mathematics...



And then there are also mutants...



Some bridges were built ...



So, building bridges seemed important...

... and I ended up working on one of them.

Operator theory

(or at least on one lane of the multi-lane highway of this bridge)

(日)

But, let me start from my roots...

Serbia

šljivovica

Novak Đoković

Nikola Jokić

▲□▶ ▲□▶ ▲臣▶ ★臣▶ = 臣 = のへで

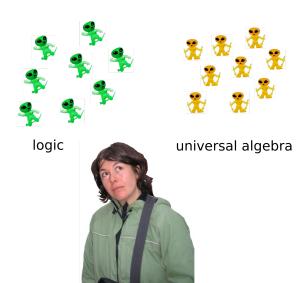
Serbian mathematician and a recognizable name ...

Mileva Marić with Albert Einstein in 1912

She was born near my home town, **Novi Sad**, and lived in it for a while. Their first daughter was born there.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

As a student in Novi Sad (early to mid 90s)



ヘロト 人間ト 人間ト 人間ト

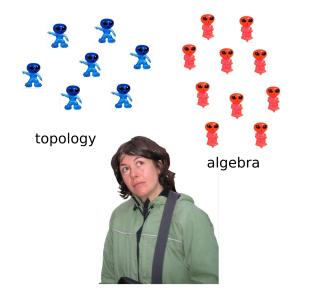
э

In 1996, I got a green card (on the lottery)...

... and was accepted to the PhD program at the University of Maryland

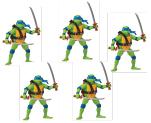
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

And the quest continued...



▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

In 2002, I graduated...



with a thesis technically in **algebraic topology** but motivated by the **operator-theory-to-algebra bridge**...

... and moved to Philadelphia.

My current (research) story starts in late 2000s...

When I met a group of mathematicians with similar interests of crossing bridges....

◆□ → ◆□ → ◆ □ → ◆ □ → □ □

... and travelling.

Gonzalo Aranda Pino

got me closer to algebras defined over graphs called
Leavitt path algebras

Graph algebras

Damsel in distress: a **graph** C*-**algebra** Knight in shining armour: a **Leavitt path algebra**. The examples of C^* -algebras were so vast and so diverse, that a need for their **classification** became evident.

This initiative is known as the

Elliott Classification Program.

Elliott completely classified one type of C^* -algebras (the "best behaved" type).

Graphs and paths

Start with a directed graph: vertices, edges, and source and

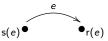
range map, s and r.

For example, the paths of

$$\bullet^u \xrightarrow{e} \bullet^v \xrightarrow{f} \bullet^w$$

are

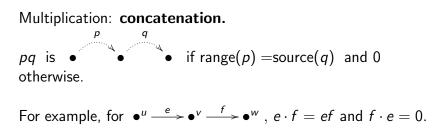
u, v, w (length 0), e, f (length 1) and ef (length 2).



(日) (四) (日) (日) (日)

Adding and multiplying paths – path algebra

Addition: a new element p + q.



Form a vector space over your favorite coefficient field with the paths as the *basis*. This is the **path algebra**.

For example, some elements of the path algebra over our example graph: $3e + \sqrt{5} ef$, and $2v - \frac{3}{4}f$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example $\bullet^{u} \xrightarrow{e} \bullet^{v} \xrightarrow{f} \bullet^{w}$ continued

The standard matrix units:
$$e_{11} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
,

$$e_{12} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
 etc.

The map

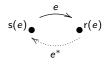
$$u\mapsto e_{11}, \ e\mapsto e_{12}, \ ef\mapsto e_{13}, \ v\mapsto e_{22}, \ f\mapsto e_{23},$$
 and
 $w\mapsto e_{33}$

extends to an isomorphism of the path algebra and the algebra of the **upper triangular matrices**. We represent this iso by

$$\left[\begin{array}{ccc} u & e & ef \\ 0 & v & f \\ 0 & 0 & w \end{array}\right]$$

To get to a C^* -algebra we need to have an involution (glorified transpose).

Add the **ghost edges** – elements of the form e^* for $e \in E^1$.



The vertices are **selfadjoint:** $v^* = v$ for $v \in E^0$.

Example 1 – Matrices

Generalizes to n-line.

Path algebra: upper triangular *n*×*n* matrices **Leavitt path algebra:** all *n*×*n* matrices

Graph C*-algebra: all *n*x*n* matrices but considered with the norm.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

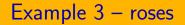
Paths: $v = 1 = e^0, e = e^1, e^2, e^3, \dots$ Representation: e = x

Path algebra: Polynomials with coefficients in *K*. Think that $3v + 5e^2 \iff 3 + 5x^2$.

Ghost edge e^* . Representation: $e^* = x^{-1}$

Leavitt path algebra: Laurent polynomials (like regular polynomials but with negative powers of x also). For example, $2e^* + 3v + 5e^2 \iff 2x^{-1} + 3 + 5x^2$.

Graph C*-algebra: continuous functions on a circle $C(S^1)$.



 $e \bigoplus e^{V} \oint f$

two-petal rose

Leavitt path algebra is known as the Leavitt algebra L(1,2). It is a universal example of a ring R with $R^2 \cong R$.

Graph C*-algebra: Cuntz algebra \mathcal{O}_2 .

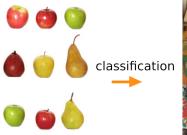
Generalizes to n-rose.

Some research trends

1. Characterizations. For a given algebra property P, find a graph property Q so that $L_{\mathcal{K}}(E)$ has P iff E has Q.

2. Generalizations. For example, generalize the class of graphs.

3. Classifications. For example, are $L_{\mathcal{K}}(E) \cong L_{\mathcal{K}}(F)$ as algebras \Leftrightarrow the Grothendieck groups are isomorphic?



Dimensions of vector spaces: 1, 2, 3...

One would want these dimensions to form a group, the

group of dimensions.

So, we "add" zero and inverses

 $\ldots,\,-3,\,-2,\,-1,\,0,\,1,\,2,\,3,\,\ldots$

And this is it: the zero Grothendieck group (of the underlying coefficient field) is the group of integers \mathbb{Z} .

Grothendieck groups of graph algebras are graded

(additional structure coming from the lengths of the paths).

Graded Classification Conjecture.

 $L_{\mathcal{K}}(E) \cong L_{\mathcal{K}}(F)$ are isomorphic as graded algebras \Leftrightarrow their graded Grothendieck groups are (pointed) isomorphic.

Asked by **Roozbeh Hazrat** in 2011.

2015 - 2023

disjoint cycles

porcupine

graded rings

porcupine quotient

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Sabbatical and Syracusa, Feb 2024

Oberwolfach, March 2024

Current state of things

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで