Cancellation properties of nonunital and graded rings

Lia Vaš
 University of the Sciences, Philadelphia

Unital ring

Nonunital ring

Let us start with a very general question...

If P is a property of unital rings, how does one define a generalized version of P suitable for nonunital rings?
l.e., what are suitable nonunital-ring generalizations of the definitions which

either

1. refer to the identity, e.g. R is directly finite if $(\forall x, y \in R)(x y=1 \Rightarrow y x=1)$,

2. refer to an invertible element, e.g. R is unit-regular if
$(\forall x \in R)(\exists u \in U(R)) x=x u x)$.

"Cancellation" properties

Module cancellation: $A \oplus C \cong B \oplus C \Rightarrow A \cong B$.

Module cancellation	Corresponding ring property
internal cancellation	unit-regularity
substitution	stable range one
(module-theoretic) exchange	(ring-theoretic) exchange
(module-theoretic) direct finiteness	(ring-theoretic) direct finiteness

"Sandwiched" properties

Sandwiched properties are also lumped together with the other cancellation properties.

$$
\text { unit-regular } \Rightarrow \text { clean } \Rightarrow \text { exchange }
$$

$$
\begin{gathered}
\text { clean }=(\forall x \in R)(\exists u \in U(R)) \\
(\exists e \in I(R)) x=u+e
\end{gathered}
$$

The module cancellations can be considered for a general (i.e. possibly nonunital) ring. What is the ring cancellation then?

Unitizations

If R is a general ring, a unital ring S such that R embeds in S as a double-sided ideal of S is an unitization of R.

The standard unitization R^{u} of R is the $R \oplus \mathbb{Z}$ with coordinate-wise addition and the multiplication given by

$$
(x, k)(y, I)=(x y+|x+k y, k|) .
$$

$(0,1)$ is the identity of R^{u}.
There are also two operations * and o

$$
\begin{aligned}
& x * y=x+y+x y \\
& x \circ y=x+y-x y
\end{aligned}
$$

If R is unital, then $U(R, \cdot) \cong U(R, *) \cong U(R, \circ)$.

Known generalizations

Unital version	Generalization
unit-regular $(\forall x \in R)$	$(\forall x \in R)$
$(\exists u \in U(R)) x=x u x$	$(\exists u \in U(*)) x=x u x+x^{2}$.
stable range one $(\forall x, y \in R)$	$\left(\forall x \in R, y \in R^{u}\right)$
$(x R+y R=R \Rightarrow$	$(x, 1) R^{u}+y R^{u}=R^{u} \Rightarrow(\exists z$
$(\exists z \in R)(x+y z) R=R)$	$\left.\in R^{u}\right)((x, 1)+y z) R^{u}=R^{u}$.
exchange $(\forall x \in R)$	$(\forall x \in R)$
$(\exists e \in I(R) \cap x R)$	$(\exists e \in I(R) \cap x R)$
$1-e \in(1-x) R$	$e \in x \circ R$.
clean $(\forall x \in R)$	$(\forall x \in R)$
$(\exists u \in U(R))(\exists e \in I(R))$	$(\exists u \in U(*))(\exists e \in I(R))$
$x=u+e$	$x=u+e$.
directly finite $(\forall x, y \in R)$	$?$
$(x y=1 \Rightarrow y x=1)$	

Mary-Patricio, Vaserstein, Ara, Nicholson-Zhou respectively.

Some questions...

Why are these so different? Is there an unifying thread? How can one define other properties (e.g. direct finiteness)?

Relating $R^{u}, *$ and \circ helps.

Some facts.

$$
\begin{gathered}
\text { 1. } x \rightarrow-x \text { gives }(R, *) \cong(R, \circ) . \\
\text { 2. } \begin{aligned}
U\left(R^{u}\right)= & \pm(U(*), 1)= \\
& \pm(U(\circ),-1)
\end{aligned}
\end{gathered}
$$

3. $(x, 1) R^{u}=R^{u} \Leftrightarrow 0 \in x * R \Leftrightarrow$

$$
0 \in-x \circ R
$$

Unit-regularity

If R is a general ring, the following conditions are equivalent.

1. For any $x \in R,(x, 0)$ is a unit-regular element of R^{u}.
2. For any $x \in R$, there is $u \in U(*)$ such that $x=x u x+x^{2}$.
3. For any $x \in R$, there is $u \in U(\circ)$ such that $x=x u x-x^{2}$.
4. For any embedding $\phi: R \rightarrow S$ such that S is an unitization of R and for any $x \in R, \phi(x)$ is a unit-regular element of S.

Exchange

If R is a general ring, the following conditions are equivalent.

1. $(\forall x \in R)(\exists e \in I(R)) e \in-x R$ and $e \in x * R$.
2. $(\forall x \in R)(\exists e \in I(R)) e \in x R$ and $e \in x \circ R$.
3. $(\forall x \in R)(\exists e \in I(R)) e \in x R$ and $(-e, 1) \in(-x, 1) R^{u}$.
4. For any embedding $\phi: R \rightarrow S$ such that S is an unitization of R, and $(\forall x \in R)(\exists e \in I(R)) e \in x R$ and $1-\phi(e) \in(1-\phi(x)) S$.

Direct finiteness

If R is a general ring, the following conditions are equivalent.

1. $(\forall x, y \in R)(x * y=0 \Rightarrow y * x=0)$.
2. $(\forall x, y \in R)(x \circ y=0 \Rightarrow y \circ x=0)$.
3. $\left(\forall u, v \in R^{u}\right)(u v=(0,1) \Rightarrow v u=(0,1))$.
4. $(\forall x, y \in R)((x, 1)(y, 1)=(0,1) \Rightarrow(y, 1)(x, 1)=(0,1))$.
5. For any embedding $\phi: R \rightarrow S$ such that S is an unitization of R, and for any $x, y \in R$, $(\phi(x)+1)(\phi(y)+1)=1$ implies $(\phi(y)+1)(\phi(x)+1)=1$.

If R is unital, then the above conditions are equivalent with R being directly finite.

Relationship between the cancellation properties

The unital case

$$
\begin{array}{cl}
\mathrm{UR} \Leftrightarrow \mathrm{Reg}+\mathrm{sr}=1 & \Rightarrow \mathrm{sr}=1 \Rightarrow \mathrm{DF} \\
\Downarrow & \\
\mathrm{Cln} & \Rightarrow \text { Exch }
\end{array}
$$

The general case

$$
\begin{array}{cl}
\mathrm{UR} \Leftarrow \mathrm{Reg}+\mathrm{sr}=1 & \Rightarrow \mathrm{sr}=1 \Rightarrow \mathrm{DF} \\
\Downarrow & \\
\mathrm{Cln} & \Rightarrow \text { Exch }
\end{array}
$$

Further generalization

The algebras I've been working with a lot recently are also graded.

If Γ is a group, a ring R is Γ-graded if

$$
R=\bigoplus_{\gamma \in \Gamma} R_{\gamma} \quad \text { such that } \quad R_{\gamma} R_{\delta} \subseteq R_{\gamma \delta}
$$

ring

graded ring

Homogeneous elements

Elements of each component R_{γ} are said to be homogeneous.
We use H to denote the set
of all homogeneous elements.

$\gamma \in \Gamma$

Example

If K is any field, let us grade $\mathbb{M}_{2}(K)$ by \mathbb{Z} so that

$$
\begin{aligned}
& {\left[\begin{array}{ll}
K & K \\
K & K
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
K & 0
\end{array}\right]+\left[\begin{array}{cc}
K & 0 \\
0 & K
\end{array}\right]+\left[\begin{array}{cc}
0 & K \\
0 & 0
\end{array}\right]} \\
& \mathbb{M}_{2}(K)=\ldots+0+\mathbb{M}_{2}(K)_{-1}+\mathbb{M}_{2}(K)_{0}+\mathbb{M}_{2}(K)_{1}+0 \ldots
\end{aligned}
$$

(thus $\mathbb{M}_{2}(K)_{n}=0$ for $n \neq-1,0,1$).
There are many elements which are not homogeneous.
The only homogeneous idempotents are
$\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$, and $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$.
The only homogeneous invertible elements are $\left[\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right]$ with $a, b \neq 0$.

The world of graded rings

To define the graded version P_{gr} of a property P, one replaces $\forall x$ and $\exists x$ with $\forall x \in H$ with $\exists x \in H$ in the definition.

$$
\begin{aligned}
& \text { field }=(\forall x) \quad \text { ↔ } \quad \text { graded field }=(\forall x \in H) \\
& x \neq 0 \Rightarrow \exists x^{-1} \quad \text { カ } \rightarrow \\
& \text { regular }=(\forall x) \quad \text { ↔ graded regular }=(\forall x \in H) \\
& x \in x R x \\
& \text { tus } \\
& x \in x R x
\end{aligned}
$$

dir. finite $=(\forall x, y) \quad \leftrightarrow$ graded dir. fin. $=(\forall x, y \in H)$

$$
x y=1 \Rightarrow y x=1 \quad \text { «n } \Rightarrow x y=1 \Rightarrow y x=1
$$

Graded versions

Unital version	Graded unital generalization
unit-regular $(\forall x \in R)$	$(\forall x \in H)$
$(\exists u \in U(R)) x=x u x$	$(\exists u \in U(R) \cap H) x=x u x$.
exchange $(\forall x \in H)$	$(\forall x \in R)$
$(\exists e \in I(R) \cap x R)$	$(\exists e \in I(R) \cap x R \cap H)$
$1-e \in(1-x) R$	$1-e \in(1-x) R$
clean $(\forall x \in R)$	$(\forall x \in H)$
$(\exists u \in U(R))(\exists e \in I(R))$	$(\exists u \in U(R) \cap H)(\exists e \in I(R) \cap H)$
$x=u+e$	$x=u+e$.

Positives:

$$
\begin{aligned}
\mathrm{UR}_{\mathrm{gr}} \Leftrightarrow \mathrm{Reg}_{\mathrm{gr}}+(\mathrm{sr}=1)_{\mathrm{gr}} & \Rightarrow(\mathrm{sr}=1)_{\mathrm{gr}} \Rightarrow \mathrm{DF}_{\mathrm{gr}} \\
\mathrm{Cln}_{\mathrm{gr}} & \Rightarrow \text { Exch }_{\mathrm{gr}}
\end{aligned}
$$

Downsides

$\mathrm{UR}_{\mathrm{gr}}$ and $\mathrm{Cln}_{\mathrm{gr}}$ are independent.
Both are very restrictive.

- $\quad \underset{a, b \in K .}{\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]\left[\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right]\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right] \text { is false for any }}$
$\begin{aligned}- & {\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]=\left[\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right]+\left[\begin{array}{ll}c & 0 \\ 0 & d\end{array}\right] \text { is false for any } } \\ & a, b, c, d \in K .\end{aligned}$
So,
$\mathbb{M}_{2}(K)$ is neither graded unit-regular nor graded clean.

In fact, R is graded clean if and only if R_{ε} is clean and each nonzero element of R_{γ} is invertible for every $\gamma \neq \varepsilon$.

This makes us wonder:

Are the definitions of $\mathrm{UR}_{\mathrm{gr}}, \mathrm{Cln}_{\mathrm{gr}}$ etc

meaningful?

Are they equivalent with the graded versions of module cancellations?

$$
A \oplus C \cong{ }_{\mathrm{gr}} B \oplus C \Rightarrow A \cong{ }_{\mathrm{gr}} B
$$

where $A \cong{ }_{\mathrm{gr}} B$ means that there is a module isomorphism f such that

$$
f\left(A_{\gamma}\right)=B_{\gamma} .
$$

In this case f is an element of $\operatorname{HOM}_{R}(A, B)_{\varepsilon}$ where ε is the identity of Γ. So,
the component $\mathrm{END}_{R}\left(R_{R}\right)_{\varepsilon}$ has a special significance.

The ε-cancellation properties

If P is a property of a ring, let us say that a Γ-graded ring R has P_{ε} if $\mathrm{END}_{R}\left(R_{R}\right)_{\varepsilon}$ has P.

If R is unital this boils down to R_{ε} has P.
With this definition,

Graded module cancellation	ε-cancellation property
graded internal cancellation	ε-unit-regularity
graded substitution	ε-stable range one
(module-theoretic)	(ring-theoretic)
finite exchange	ε-exchange
(module-theoretic)	(ring-theoretic)
direct finiteness	ε-direct finiteness

In addition, $\mathrm{Cln}_{\varepsilon}$ is closed under formation of matrix rings.

In addition,

The unital case

$$
\begin{aligned}
\mathrm{UR}_{\varepsilon} \Leftrightarrow \operatorname{Reg}_{\mathrm{gr}}+(\mathrm{sr}=1)_{\varepsilon} & \Rightarrow(\mathrm{sr}=1)_{\varepsilon} \Rightarrow \mathrm{DF}_{\varepsilon} \\
\Downarrow & \mathrm{Exch}_{\varepsilon}
\end{aligned}
$$

The general case

$$
\begin{aligned}
\mathrm{UR}_{\varepsilon} \Leftarrow \operatorname{Reg}_{\mathrm{gr}}+(\mathrm{sr}=1)_{\varepsilon} & \Rightarrow(\mathrm{sr}=1)_{\varepsilon} \quad \Rightarrow \mathrm{DF}_{\varepsilon} \\
\Downarrow & \Rightarrow \mathrm{Exch}_{\varepsilon}
\end{aligned}
$$

References: liavas.net

