Cancellation properties of nonunital and graded rings

Lia Vaš University of the Sciences, Philadelphia

Unital ring

Let us start with a very general question...

If P is a property of unital rings, how does one define a generalized version of P suitable for nonunital rings?

l.e., what are suitable nonunital-ring generalizations of the definitions which

either

1. refer to the identity, e.g. *R* is *directly* finite if $(\forall x, y \in R)(xy = 1 \Rightarrow yx = 1)$,

or

2. refer to an invertible element, e.g. R is *unit-regular* if $(\forall x \in R)(\exists u \in U(R)) \ x = xux).$

"Cancellation" properties

Module cancellation: $A \oplus C \cong B \oplus C \Rightarrow A \cong B$.

Module cancellation	Corresponding ring property
internal cancellation	unit-regularity
substitution	stable range one
(module-theoretic)	(ring-theoretic)
exchange	exchange
(module-theoretic)	(ring-theoretic)
direct finiteness	direct finiteness

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Sandwiched properties are also lumped together with the other cancellation properties.

unit-regular
$$\Rightarrow$$
 clean \Rightarrow exchange

clean =
$$(\forall x \in R)(\exists u \in U(R))$$

 $(\exists e \in I(R))x = u + e$

The **module** cancellations can be considered for a **general** (i.e. possibly nonunital) ring. *What is the* **ring** *cancellation then*?

Unitizations

If R is a general ring, a unital ring S such that R embeds in S as a double-sided ideal of S is an **unitization** of R.

The **standard unitization** R^u of R is the $R \oplus \mathbb{Z}$ with coordinate-wise addition and the multiplication given by

$$(x,k)(y,l) = (xy + lx + ky, kl).$$

$$(0,1)$$
 is the identity of R^{u} .

There are also two operations \ast and \circ

x * y = x + y + xy $x \circ y = x + y - xy$

If R is unital, then $U(R, \cdot) \cong U(R, *) \cong U(R, \circ)$.

Known generalizations

Unital version	Generalization
unit-regular $(\forall x \in R)$	$(\forall x \in R)$
$(\exists u \in U(R)) x = xux$	$(\exists u \in U(*)) x = xux + x^2.$
stable range one $(\forall x, y \in R)$	$(\forall x \in R, y \in R^u)$
$(xR + yR = R \Rightarrow$	$(x,1)R^{u} + yR^{u} = R^{u} \Rightarrow (\exists z \mid z)$
$(\exists z \in R)(x + yz)R = R)$	$e\in R^u)\;((x,1)+yz)R^u=R^u.$
exchange $(\forall x \in R)$	$(\forall x \in R)$
$(\exists e \in I(R) \cap xR)$	$(\exists e \in I(R) \cap xR)$
$1-e\in (1-x)R$	$e \in x \circ R$.
clean $(\forall x \in R)$	$(\forall x \in R)$
$(\exists u \in U(R))(\exists e \in I(R))$	$(\exists u \in U(*)) \ (\exists e \in I(R))$
x = u + e	x = u + e.
directly finite $(\forall x, y \in R)$?
$(xy = 1 \Rightarrow yx = 1)$	

Mary-Patricio, Vaserstein, Ara, Nicholson-Zhou respectively.

Why are these so different? Is there an unifying thread?

How can one define other properties (e.g. direct finiteness)?

Relating R^u , * and \circ helps.

Some facts.

1.
$$x \to -x$$
 gives $(R, *) \cong (R, \circ)$.

2.
$$U(R^u) = \pm (U(*), 1) = \pm (U(\circ), -1)$$

3.
$$(x,1)R^{u} = R^{u} \Leftrightarrow 0 \in x * R \Leftrightarrow 0 \in -x \circ R$$

If R is a general ring, the following conditions are equivalent.

- 1. For any $x \in R$, (x, 0) is a unit-regular element of R^{u} .
- 2. For any $x \in R$, there is $u \in U(*)$ such that $x = xux + x^2$.
- 3. For any $x \in R$, there is $u \in U(\circ)$ such that $x = xux x^2$.
- 4. For any embedding $\phi : R \to S$ such that S is an unitization of R and for any $x \in R$, $\phi(x)$ is a unit-regular element of S.

Exchange

If R is a general ring, the following conditions are equivalent.

- 1. $(\forall x \in R) (\exists e \in I(R)) e \in -xR$ and $e \in x * R$.
- 2. $(\forall x \in R) \ (\exists e \in I(R)) \ e \in xR \text{ and } e \in x \circ R.$
- 3. $(\forall x \in R) \ (\exists e \in I(R)) \ e \in xR \text{ and } (-e,1) \in (-x,1)R^u.$
- 4. For any embedding $\phi : R \to S$ such that S is an unitization of R, and $(\forall x \in R) \ (\exists e \in I(R)) \ e \in xR$ and $1 \phi(e) \in (1 \phi(x))S$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Direct finiteness

If R is a general ring, the following conditions are equivalent.

1.
$$(\forall x, y \in R) (x * y = 0 \Rightarrow y * x = 0)$$
.
2. $(\forall x, y \in R) (x \circ y = 0 \Rightarrow y \circ x = 0)$.
3. $(\forall u, v \in R^u) (uv = (0, 1) \Rightarrow vu = (0, 1))$.
4. $(\forall x, y \in R) ((x, 1)(y, 1) = (0, 1) \Rightarrow (y, 1)(x, 1) = (0, 1))$.
5. For any embedding $\phi : R \to S$ such that S is an unitization of R, and for any $x, y \in R$,
 $(\phi(x) + 1)(\phi(y) + 1) = 1$ implies
 $(\phi(y) + 1)(\phi(x) + 1) = 1$.
R is unital, then the above conditions are univalent with R being directly finite

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

If R is unital, then the above conditions are equivalent with R being directly finite.

Relationship between the cancellation properties

The unital case

$$\begin{array}{rcl} \mathsf{UR} \Leftrightarrow & \mathsf{Reg} + \mathsf{sr}{=}1 & \Rightarrow \mathsf{sr}{=}1 & \Rightarrow \mathsf{DF} \\ & & & & \\ & & & \\ & & & \mathsf{Cln} & & \Rightarrow \mathsf{Exch} \end{array}$$

The general case

$$\begin{array}{rcl} \mathsf{UR} \Leftarrow & \mathsf{Reg} + \mathsf{sr}{=}1 & \Rightarrow \mathsf{sr}{=}1 & \Rightarrow & \mathsf{DF} \\ & & & & \\ & & & \\ & & & \mathsf{CIn} & & \Rightarrow \mathsf{Exch} \end{array}$$

(日)

э

Further generalization

The algebras I've been working with a lot recently are also **graded**.

If Γ is a group, a ring R is Γ -graded if

$$R = \bigoplus_{\gamma \in \Gamma} R_{\gamma}$$
 such that $R_{\gamma}R_{\delta} \subseteq R_{\gamma\delta}$.

・ロト ・ 四ト ・ ヨト ・ ヨト

ring

Elements of each component R_{γ} are said to be **homogeneous**.

We use H to denote the set

of all homogeneous elements.

$$\bigcup_{\gamma\in \Gamma} R_{\gamma}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Example

If K is any field, let us grade $\mathbb{M}_2(K)$ by \mathbb{Z} so that $\begin{bmatrix} K & K \\ K & K \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ K & 0 \end{bmatrix} + \begin{bmatrix} K & 0 \\ 0 & K \end{bmatrix} + \begin{bmatrix} 0 & K \\ 0 & 0 \end{bmatrix}$ $\mathbb{M}_2(K) = \ldots + 0 + \mathbb{M}_2(K)_{-1} + \mathbb{M}_2(K)_0 + \mathbb{M}_2(K)_1 + 0 \ldots$ (thus $\mathbb{M}_2(K)_n = 0$ for $n \neq -1, 0, 1$).

There are many elements which are not homogeneous.

The only homogeneous idempotents are $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \text{ and } \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$ The only homogeneous invertible elements are $\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$ with $a, b \neq 0.$

The world of graded rings

To define the **graded version** P_{gr} of a property P, one replaces $\forall x$ and $\exists x$ with $\forall x \in H$ with $\exists x \in H$ in the definition.

$$\begin{aligned} & \mathbf{field} = (\forall x) & \longleftrightarrow & \mathbf{graded field} = (\forall x \in H) \\ & x \neq 0 \Rightarrow \exists x^{-1} & \longleftrightarrow & x \neq 0 \Rightarrow \exists x^{-1} \end{aligned} \\ & \mathbf{regular} = (\forall x) & \longleftrightarrow & \mathbf{graded regular} = (\forall x \in H) \\ & x \in xRx & \longleftrightarrow & x \in xRx \end{aligned} \\ & \mathbf{dir. finite} = (\forall x, y) & \longleftrightarrow & \mathbf{graded dir. fin.} = (\forall x, y \in H) \\ & xy = 1 \Rightarrow yx = 1 & \longleftrightarrow & xy = 1 \Rightarrow yx = 1 \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Graded versions

Unital version	Graded unital generalization
unit-regular $(\forall x \in R)$	$(\forall x \in H)$
$(\exists u \in U(R)) x = xux$	$(\exists u \in U(R) \cap H) x = xux.$
exchange $(\forall x \in H)$	$(\forall x \in R)$
$(\exists e \in I(R) \cap xR)$	$(\exists e \in I(R) \cap xR \cap H)$
$1-e\in (1-x)R$	$1-e\in (1-x)R$
clean $(\forall x \in R)$	$(\forall x \in H)$
$(\exists u \in U(R))(\exists e \in I(R))$	$(\exists u \in U(R) \cap H) \ (\exists e \in I(R) \cap H)$
x = u + e	x = u + e.

Positives:

$$\begin{array}{ll} \mathsf{UR}_{\mathsf{gr}} \Leftrightarrow & \textit{Reg}_{\mathsf{gr}} + (\mathsf{sr}{=}1)_{\mathsf{gr}} & \Rightarrow (\mathsf{sr}{=}1)_{\mathsf{gr}} & \Rightarrow \mathsf{DF}_{\mathsf{gr}} \\ \\ & \mathsf{Cln}_{\mathsf{gr}} & \Rightarrow \mathsf{Exch}_{\mathsf{gr}} \end{array}$$

(ロ)、(型)、(E)、(E)、(E)、(O)()

Downsides

 UR_{gr} and Cln_{gr} are **independent**. Both are very **restrictive**.

$$\begin{bmatrix}
0 & 1 \\
0 & 0
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 0
\end{bmatrix} \begin{bmatrix}
a & 0 \\
0 & b
\end{bmatrix} \begin{bmatrix}
0 & 1 \\
0 & 0
\end{bmatrix}$$
is false for any
 $a, b \in K$.

$$\begin{bmatrix}
0 & 1 \\
0 & 0
\end{bmatrix} = \begin{bmatrix}
a & 0 \\
0 & b
\end{bmatrix} + \begin{bmatrix}
c & 0 \\
0 & d
\end{bmatrix}$$
is false for any
 $a, b, c, d \in K$.
So,

 $\mathbb{M}_2(K)$ is neither graded unit-regular nor graded clean.

In fact, *R* is graded clean if and only if R_{ε} is clean and each nonzero element of R_{γ} is invertible for every $\gamma \neq \varepsilon$.

This makes us wonder:

Are the definitions of $\mathsf{UR}_{\mathsf{gr}},\,\mathsf{Cln}_{\mathsf{gr}}$ etc

meaningful?

Are they equivalent with the **graded versions** of module cancellations?

$$A \oplus C \cong_{\mathsf{gr}} B \oplus C \Rightarrow A \cong_{\mathsf{gr}} B$$

where $A \cong_{gr} B$ means that there is a module isomorphism f such that

$$f(A_{\gamma})=B_{\gamma}.$$

In this case f is an element of $HOM_R(A, B)_{\varepsilon}$ where ε is the identity of Γ . So,

the component $\text{END}_R(R_R)_{\varepsilon}$ has a special significance.

The ε -cancellation properties

If P is a property of a ring, let us say that a Γ -graded ring R has P_{ε} if $\text{END}_R(R_R)_{\varepsilon}$ has P.

If R is **unital** this boils down to R_{ε} has P.

With this definition,

Graded module cancellation	ε -cancellation property
graded internal cancellation	arepsilon-unit-regularity
graded substitution	arepsilon-stable range one
(module-theoretic)	(ring-theoretic)
finite exchange	ε -exchange
(module-theoretic)	(ring-theoretic)
direct finiteness	arepsilon-direct finiteness

In addition, Cln_{ε} is closed under formation of matrix rings.

In addition,

The unital case

$$\begin{array}{ccc} \mathsf{UR}_{\varepsilon} \Leftrightarrow & \textit{Reg}_{\mathsf{gr}} + (\mathsf{sr}{=}1)_{\varepsilon} & \Rightarrow (\mathsf{sr}{=}1)_{\varepsilon} & \Rightarrow \mathsf{DF}_{\varepsilon} \\ & & \Downarrow \\ & & \mathsf{CIn}_{\varepsilon} & \Rightarrow \mathsf{Exch}_{\varepsilon} \end{array}$$

The general case

$$UR_{\varepsilon} \leftarrow Reg_{gr} + (sr=1)_{\varepsilon} \Rightarrow (sr=1)_{\varepsilon} \Rightarrow DF_{\varepsilon}$$

$$\downarrow \\ Cln_{\varepsilon} \Rightarrow Exch_{\varepsilon}$$

$$\textcircled{1}$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(2)$$

$$(2)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$($$