Three ways in which T. Y. Lam impacted my life

Lia Vaš University of the Sciences, Philadelphia

Graduate student in algebraic topology world

$$\nu^{-1}(H^{(2)}_*(\overline{X})) \cong \mathsf{P}H^{\mathsf{G}}_*(\overline{X},\mathcal{N}\mathcal{G})$$

 $H_n^G(X,\mathcal{N}G)=H_n(\mathcal{N}G\otimes_{\mathbb{Z}G}C_*(X))$

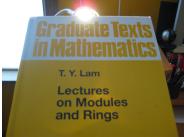
 $b_n^2(\overline{X}, \mathcal{N}G) = \dim_{\mathcal{N}G} \left(H_n^G(\overline{X}, \mathcal{N}G) \right)$

$$H_n^{(2)}(X) = \ker c_n^{(2)} / \operatorname{cl}(\operatorname{im} c_{n+1}^{(2)})$$

・ロト ・四ト ・ヨト ・ヨト

∃ <\0<</p>

2001 Odyssey



・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Lam on noncommutative localization

- "The Good" some rings can be embedded in division rings;
- "The Bad" not all rings can;
- "The Ugly" even those that can might have nonisomorphic "division rings of fractions".

The **total right ring of quotients** $Q_{tot}^r(R)$ is not "bad" (exist for every ring) and not "ugly" (unique up to iso). Not exactly "good" but it's close enough.

$$Q_{ ext{cl}}^{r}\subseteq Q_{ ext{tot}}^{r}\subseteq Q_{ ext{max}}^{r}$$

 $Q_{\text{tot}}^r(R)$ seems to be "just right".

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Impact of the Good-bad-ugly idea

Direct.

- 1. Simplification of Morita's construction of $Q_{tot}^r(R)$.
- 2. Symmetric version of perfect right rings of quotients.
- 3. Symmetric version $Q_{\text{tot}}^{\sigma}(R)$ of Q_{tot}^{r} .

Indirect.

- 4. Different rings of quotients \rightarrow Torsion theories.
- 5. Torsion theories \rightarrow different closures of VNAs \rightarrow dimension of VNA-like Baer rings.
- Perfect Symmetric Rings of Quotients, J. of Algebra and its Appl. 8(5) (2009).
- A Simplification of Morita's Construction of Q^r_{tot} for a Class of Rings, J. of Algebra 304(2) (2006).
- Dimension and Torsion Theories for a Class of Baer *-Rings, J. of Algebra 289(2) (2005).
- Torsion Theories for Finite von Neumann Algebras, Comm. in Algebra 33(3) (2005).

2005 – another important year

Philadelphia prior to 2005

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Conference at Ohio Univ., Athens, OH, 2005

Lam asked a question...

Which von Neumann algebras are clean as rings?

Clean Rings

A ring R is **clean** if

every element = unit + idempotent

Additive version of unit-regular.

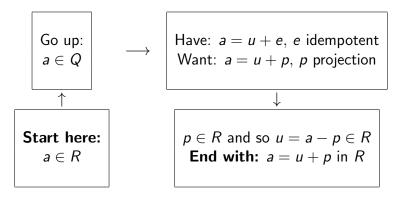
Examples: Unit-regular, local, semiperfect...

Non-examples: \mathbb{Z} , R[x] for R commutative, not all regular ("Bergman example")...

・ロト ・ 雪 ト ・ ヨ ト

Von Neumann algebras – "The Idea"

A finite VNA R has a **unit-regular** ring of quotients Q with the **same projections**.



Two problems: (1) want idempotent, have projection; (2) u may not be unit in R.

Fix for (2) – Almost Clean Rings

A ring R is almost clean if

element = regular el. + idempotent

Additive version of (abelian) Rickart.

Examples: clean, abelian Rickart,...

 $\ensuremath{\mathbb{Z}}$ is almost clean and not clean.

Non-examples: Couchot's paper.

Fix for (1) – Introducing stars

Von Neumann algebras are *-rings (have involution). Involution * : is additive, $(xy)^* = y^*x^*$, and $(x^*)^* = x$.

For *-rings **projections** take over the role of **idempotents**.

- Baer becomes Baer *-ring,
- Rickart becomes Rickart *-ring,
- ► regular becomes *-regular.
- So clean should become...

A *-ring R is *-clean if

element = unit + projection

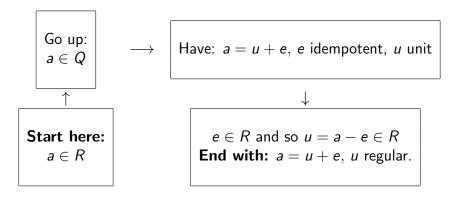
A *-ring R is almost *-clean if

element = regular el. + projection

Using this concept, I could show that:

An AW^* -algebra (in particular von Neumann algebra) of type I_f is almost *-clean.

It works for **any** ring that has a clean overing with the same idempotents.



◆□▶ ◆圖▶ ◆필▶ ◆필▶ - ヨー のへで

Exploring "The Idea" with Evrim Akalan

► R r. quasi-continuous ⇒
E(R) and R have same idempotents.

► *R* r. quasi-continuous + r. nonsingular \Rightarrow

 $E(R) = Q_{\max}^r(R)$ is clean, has same idempotents. So,

R is almost clean.

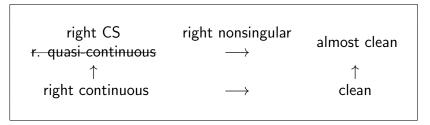
・ロト ・四ト ・ヨト ・ヨト ・ヨ

Stronger statements hold.

Module-case.

quasi-cont. + nonsingular \Rightarrow almost clean.

Ring-case. (Recall CS = "complements are summands".)



Corollary:

Finite *AW**-algebras are almost clean.

・ロット 通マン キョット キョン・ ヨー

Camillo-Khurana Theorem and special clean

Camillo-Khurana:

$$\begin{array}{c} \text{unit-regular} \\ a = eu \end{array} \longleftrightarrow \begin{array}{c} \text{special clean} \\ a = e + u, \ aR \cap eR = 0 \end{array}$$

Almost clean – Rickart connection:

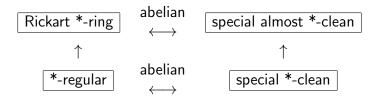
Rickart
$$a = er$$
abelian
 \leftrightarrow special almost clean
 $a = e + r, aR \cap eR = 0$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙

Uniqueness

$\begin{bmatrix} Rickart \\ a = er \end{bmatrix}$	abelian r. quasi-cont. ↔	uniquely special almost clean $a = e + r$ unique, $aR \cap eR = 0$
\uparrow		\uparrow
unit-regular	abelian	uniquely special clean
a = eu	\longleftrightarrow	$a = e + u$ unique, $aR \cap eR = 0$

Adapting the results to *-rings



★ ∃ > ∃

Outcomes and some questions

- *-Clean Rings; Some Clean and Almost Clean Baer *-rings and von Neumann Algebras, J. of Algebra, 324 (12) (2010).
- With E. Akalan, Classes of almost clean rings, *Algebras and Representation Theory*, in print.
- 1. Weaken abelian? Cannot completely drop it.
- 2. VNAs? For AW*-algebras:

 $\begin{array}{cccc} \text{finite, type } I & \longrightarrow & \text{finite} \\ \downarrow & & \downarrow \\ \text{almost } *\text{-clean} & \longrightarrow & \text{almost clean} \end{array}$

Then 2010 came...

... and my sabbatical in Malaga, Spain.

Besides working on Leavitt path algebras, I was also reading on uniform dimension.

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

Rings with dimension

Inspiration: Uniform dimension, Goldie reduced rank. **Goal:** Dimension similar to that on VNA-like Baer *-rings.

Strongly semihereditary rings with positive definite involution...

... a ring with any of the following:

- right nonsingular and every fin. gen. nonsingular module is projective.
- ▶ right nonsingular and *Rⁿ* is CS for all *n*.

Positive definite: $\sum_{i=1}^{n} x_i^* x_i = 0 \Rightarrow x_i = 0$ for all *i*, for all *n*.

Examples:

- Finite AW*-algebras. Moreover: Von-Neumann-algebra-like-rings (Baer *-rings with some axioms).
- 2. Leavitt path algebras over finite no-exit graphs. Not necessarily Baer *-rings.

 Strongly semihereditary rings and rings with dimension, Algebras and Representation Theory, in print.

Preprints of these papers are available on http://www.usciences.edu/~lvas and on arXiv.

Happy Birthday!

